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ABSTRACT: We developed a chromium-catalyzed, photochemical,
and linear-selective alkylation of aldehydes with alkylzirconium species
generated in situ from a wide range of alkenes and Schwartz’s reagent.
Photochemical homolysis of the C−Zr bond afforded alkyl radicals,
which were then trapped by a chromium complex catalyst to generate
the alkylchromium(III) species for polar addition to aldehydes. The
reaction proceeded with high functional group tolerance at ambient
temperature under visible-light irradiation.

Nucleophilic alkylation of carbonyl compounds with
organometallics is a fundamental process in organic

synthesis. Despite the high utility of organolithium and
-magnesium reagents, their excessive reactivity and basicity
often make them incompatible with functionalized substrates.
Therefore, improving the chemoselectivity and utility of
nucleophilic organometallic reagents is a very important
research topic.1 Among nucleophilic and chemoselective
organometal l ics for the alkylat ion of aldehydes,
alkylchromium(III) reagents are versatile for the synthesis of
multifunctional molecules.2 Alkyl halides (in most cases, alkyl
iodides) are traditionally used as precursors of alkylchromium-
(III) reagents (Figure 1a).3 Recently, Shenvi4 and Baran5

developed elegant methods for accessing alkylchromium(III)
reagents that allowed for chemoselective alkylation of
aldehydes with feedstock starting materials such as alkenes or
activated carboxylic acids (Figure 1a). Specifically, in Shenvi’s
reaction, branched addition products were obtained due to the
regioselectivity of Co-catalyzed hydrosilylation followed by
Co/Cr exchange through a secondary alkyl radical. Yahata
reported the nucleophilic addition of hydrocarbon alkanes to
aldehydes by combined use of a chromium salt and photoredox
catalyst, which also produced branched products (Figure 1a).6

Those methods significantly expanded the scope of Cr-
mediated carbonyl alkylation, but stoichiometric amounts of
Cr salts are required. Although catalytic processes for
generating alkylchromium species have been reported, the
substrate scope remains to be improved.7,8 Here, we developed
Cr-catalyzed, linear-selective alkylation of aldehydes by
alkylzirconium species generated in situ from alkenes and
Schwartz’s reagent (Figure 1b). Due to the mild reaction
conditions, various multifunctional substrates are compatible.
Our working hypothesis for Cr-catalyzed alkylation of

aldehydes is shown in Figure 2. Alkylzirconium 2 is

regioselectively prepared from alkene 1 and Schwartz’s reagent
under mild conditions.9 Photoactivation of 2 by visible-light
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Figure 1. Precursors (R−X) of alkylchromium(III) species in
alkylation of aldehydes. (a) For previously reported Cr-mediated
reactions. (b) This work: alkylzirconium species as a precursor for
alkylchromium(III) species.
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irradiation produces reduced Zr(III) species 3 and alkyl radical
4 through homolysis of the C−Zr bond,10 the latter of which is
oxidatively intercepted by Cr(II) complex 5 to afford
alkylchromium(III) 6.4−8,11 Then, 6 reacts with aldehydes 7
to produce Cr(III) alkoxide 8. Ligand exchange between 8 and
Zr(IV) species affords Zr(IV) alkoxide 9 and Cr(III) salt 10.7a

Finally, single-electron reduction of 10 by Zr(III) species 3
regenerates 5 and closes the catalytic cycle.12 We envisioned
catalytic turnover in Cr and linear selectivity due to the high
oxophilicity of Zr(IV) salts (8 to 9) and the regioselectivity in
hydrozirconation (1 to 2).
According to this hypothesis, we optimized the reaction

conditions using benzaldehyde (7a) and 1-hexene (1a).
Hexylzirconocene was prepared in situ by mixing alkene 1a
and Schwartz’s reagent in THF for 30 min. Alkylation product
11a was obtained in 70% yield in the presence of 20 mol % of
CrCl2 under visible-light irradiation. A linear product was
predominantly observed. Control experiments revealed that
CrCl2 and light irradiation were both essential for efficient
reaction progress.13

We next studied the substrate scope under the optimized
conditions. First, the scope of alkenes was investigated
(Scheme 1a). The reaction with terminal alkenes afforded
linear alkylated products in up to 70% yield (11a−11e).14 A
silyl group, alkyl halides, and alkyl tosylate were all tolerated
(11f−11i). Ether-containing alkenes gave the target product in
an acceptable yield (11j, 11k). Free alcohol did not interfere
with the reaction (11l). The reactivity of the present
chromium catalysis using 5-hexen-1-ol as an alkene substrate
was compared with the previously reported catalytic alkylation
of aldehydes, silver perchlolate-15a or zinc bromide-cataly-
zed15b reactions. A higher yield was obtained when using the
chromium catalysis, demonstrating the utility of the present
conditions.13 Alkenes containing a protected amine afforded an
amino alcohol derivative (11m). Hydrozirconation proceeded
chemoselectively at a CC double bond in the presence of a
CC triple bond, and the alkylation reaction proceeded at the
alkene moiety of the substrate (11n).16 Increasing the reaction
scale to 1.0 mmol did not affect the results (68%, 11a). When
1,5-hexadiene was used, 11c was obtained as a major product
(28%), suggesting the presence of a radical intermediate. This
result was consistent with the proposed reaction mechanism
shown in Figure 2.13

When internal alkenes were used, terminal alkylzirconocenes
were generated under thermodynamic conditions.17 Based on
this chain walking strategy,18 we tested internal alkenes as an
alkyl group source (Scheme 1b). 2-Hexene afforded linear

alkylated product 11a with bond formation at the terminal
carbon in 68% yield. trans-Anethole gave 11o in 61% yield.
We next investigated the scope of aldehydes (Scheme 2). A

series of aromatic aldehydes bearing halogens (11p−11r),
electron-withdrawing groups (11s, 11t), an electron-donating
group (11u), and pinacol boron ester (11v) reacted with 1-
hexene (1a), affording the corresponding products. The
reaction chemoselectively proceeded with the aldehyde moiety
in the presence of an ester or amide group (11w−11y). The

Figure 2. Proposed catalytic cycle.

Scheme 1. Substrate Scope of Alkenesa

aGeneral reaction conditions: 1 (0.44 mmol) and ZrCp2HCl (0.4
mmol) were reacted in THF (0.5 mL) at room temperature. After 30
min, the resulting solution was added to a solution of 7a (0.2 mmol)
and CrCl2 (0.04 mmol) in THF (1.5 mL). The mixture was stirred at
room temperature under blue LED irradiation for 20 h. Yield was
isolated yield. b1.0 mmol scale. cMethylenecyclopentane was used as
the alkene substrate. d1 (0.4 mmol) and ZrCp2HCl (0.8 mmol) were
used. eGeneral reaction conditions: 1 (0.44 mmol) and ZrCp2HCl
(0.4 mmol) were reacted in THF (0.5 mL) at 50 °C. After 5 h, the
resulting solution was added to a solution of 7a (0.2 mmol) and CrCl2
(0.04 mmol). The mixture was stirred at room temperature under
blue LED irradiation for 20 h. Yield was isolated yield.
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introduction of a methyl substituent at a meta- or para-position
did not affect the results (11z, 11aa). The reaction of aliphatic
aldehydes also proceeded in the presence of 30 mol % of CrCl2
(11ab, 11ac). The reaction conditions were applicable to a
ketone substrate (11ad), although the yield was low.
We then studied functionalized substrates to assess the

functional group tolerance (Scheme 3). Alkenes from natural
products, eugenol, linalool, estrone, and quinine were
competent substrates (11ae−11ah). The reaction proceeded
in the presence of phenol, tertiary alcohol, tertiary amine, and
pyridine moieties. Hydrozirconation selectively proceeded at a
terminal CC double bond in the presence of a sterically
hindered trisubstituted CC double bond (11af). Citronellal
reacted with allylbenzene to afford the product 11ai in 45%
yield. Drug-conjugated aldehydes provided the corresponding
products in 67% and 50% yield (11aj, 11ak), respectively.
These results demonstrated the high functional group
compatibility and chemoselectivity of this method.

Finally, we demonstrated the applicability of this method to
an enantioselective variant (Scheme 4). When the carbazole-
based bisoxazoline ligand7b,19 was evaluated for the reaction
between 7a and 1a, product 11a was obtained in 71% ee.13

This preliminary result demonstrated, at least in principle, the

Scheme 2. Substrate Scope of Aldehydesa

aGeneral reaction conditions: 1a (0.44 mmol) and ZrCp2HCl (0.4
mmol) were reacted in THF (0.5 mL) at room temperature. After 30
min, the resulting solution was added to a solution of 7 (0.2 mmol)
and CrCl2 (0.04 mmol) in THF (1.5 mL). The mixture was stirred at
room temperature under blue LED irradiation for 20 h. Yield was
isolated yield. bCrCl2 (0.06 mmol) was used. cNMR yield.

Scheme 3. Application to Functionalized Substratea

aGeneral reaction conditions: 1 (0.44 mmol) and ZrCp2HCl (0.4
mmol) were reacted in THF (0.5 mL) at room temperature. After 30
min, the resulting solution was added to a solution of 7 (0.2 mmol)
and CrCl2 (0.04 mmol) in THF (1.5 mL). The mixture was stirred at
room temperature under blue LED irradiation for 20 h. Yield was
isolated yield. b1 (0.4 mmol) and ZrCp2HCl (0.8 mmol) were used.
cCrCl2 (0.06 mmol) was used.

Scheme 4. Preliminary Result of Asymmetric Reaction
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feasibility of an enantioselective protocol based on this
method. Further improvement of the reaction efficiency is
ongoing.
In conclusion, we developed a linear-selective alkylation of

aldehydes using a chromium catalyst and alkylzirconium
reagents generated in situ through the hydrozirconation of
alkenes. The reaction proceeded under mild conditions at
ambient temperature and visible-light irradiation. Linear-
alkylated products were selectively obtained from both
terminal and internal alkenes. The high chemoselectivity of
this reaction makes it applicable to functionalized substrates,
including nonprotected hydroxy groups.
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