## Organic & Biomolecular Chemistry

## COMMUNICATION



**Cite this:** Org. Biomol. Chem., 2015, **13**, 4418

Received 29th January 2015, Accepted 9th March 2015 DOI: 10.1039/c5ob00174a

www.rsc.org/obc

# Ti(IV)-catalyzed cascade synthesis of tetrahydrofuro[3,2-*d*]oxazole from arene-1,4-diones†

Gang Li, Li Li, Haihong Huang\* and Dali Yin\*

A tetrahydrofuro[3,2-d]oxazole scaffold was synthesized efficiently and stereoselectively. The tandem ionic hydrogenation, ketalization, and intramolecular cyclization of arene-1,4-diones with a combination of TiCl<sub>4</sub>/Et<sub>3</sub>SiH give facile access to tetrahydrofuro-[3,2-d]oxazole derivatives in good yields at room temperature.

Fused bicyclic oxygen-containing heterocycles are embodied in a wide range of natural products, modified sugar derivatives, and important bioactive molecules.<sup>1</sup> Among these heterocycles, the tetrahydrofuro[3,2-*d*]oxazole motif has been exploited as a versatile biomimetic synthetic precursor for the chemical syntheses of some rare sugars and antisense oligonucleotides.<sup>2,3</sup> It is reported that important groups of compounds with the tetrahydrofuro[3,2-*d*]oxazole skeleton are prodrugs of caspase inhibitors with apoptosis-regulating activity (Fig. 1).<sup>4</sup> However, there are very limited methods available to stereoselectively synthesize such scaffolds.<sup>5</sup> Most methodologies for the construction of this type of heterocycles

were from D-glucosamine. Therefore, the search for new synthetic strategies leading to these scaffolds from simple starting materials in a sustainable and atom-economical fashion is of continued interest of our group.

Recently, we developed a mild and efficient method for the synthesis of tetralins *via* sequential ionic hydrogenation and cyclization in the presence of TiCl<sub>4</sub> and Et<sub>3</sub>SiH from the substituted phenylpentane-1,4-dione substrates.<sup>6</sup> We believe that the same concept can be applied to the synthesis of other heterocycles. However, when NHAc and COOEt were incorporated into the C(3) position of 1-(4-phenoxyphenyl)pentane-1,4-dione (3), the treatment of substrate **1k** with titanium chloride and triethylsilane only afforded tetrahydrofuro[3,2-*d*]oxazole racemate **2k**, instead of the attempted product **5** (Scheme 1).

We did not find any other diastereomers except one pair of enantiomers indicated as 2k. In order to confirm the relative configuration, molecule 2k was converted into 6 which is a solid by  $NaBH_4/K_2HPO_4$  reduction (Scheme 2). The configur-



**Fig. 1** Representative examples of tetrahydrofuro[3,2-*d*]oxazole derivatives.







†Electronic supplementary information (ESI) available: Experimental details, compound characterization data and X-ray crystal structure data (CIF) for compound 6. CCDC 978589. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c5ob00174a



racemate 2k (oil)

racemate 6 (white solid)

 $\label{eq:scheme 2} \begin{array}{ll} \mbox{Reduction of $2$k in the presence of $NaBH_4/K_2HPO_4$ buffer.} \end{array}$ 



View Article Online

ation of the tetrahydrofuro[3,2-*d*]oxazole motif was confirmed by an X-ray crystal structure of **6** (CCDC 978589, Fig. 2). The X-ray analysis data demonstrate the exclusive formation of *cis*fused bicycles. The ring conjunction methyl and hydroxymethyl substituents were *syn*, as expected, and they were *anti* to the benzyl hydrogen. So we can draw the conclusion that compound **2k** also has the same relative configuration. This interesting result encouraged us to explore the conditions, scope and mechanism of this novel reaction.

We initiated our studies by choosing **1k** as the model substrate. First, we screened various Lewis acids, Brønsted acids, and solvents that might promote the heterocyclization. The results indicated that only TiCl<sub>4</sub> could promote the reaction to give racemate **2k**. The choice of solvents was also crucial for the reaction. The use of **1**,2-dichloroethane resulted in a moderate yield of products (Table **1**, entry **7**) and toluene gave a much lower yield (Table **1**, entry **8**). Dichloromethane was proved to be a good solvent for this reaction (Table **1**, entry **4**). To further optimize the reaction parameters, the combination of catalyst and reducing agent loading was screened. It was found that the increased ratio of TiCl<sub>4</sub> to Et<sub>3</sub>SiH resulted in higher yields of the product (Table **1**, entries **1**–4) while more than one equivalent of Et<sub>3</sub>SiH decreased the yield presumably



Fig. 2 X-ray crystal structure of 6.

Table 1 Optimization of reaction conditions<sup>a</sup>

| NHAC<br>EtOOC O              | TiCl <sub>4</sub> / Et <sub>3</sub> SiH<br>Solvent , rt<br>Ar (balloon)                                                                                                                                                                                                                                                       | H<br>racemate 2                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Catalyst<br>(equiv.)         | Reductant<br>(equiv.)                                                                                                                                                                                                                                                                                                         | Solvent                                                                                                | Yield <sup>b</sup> (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $TiCl_{4}(1.1)$              | Et <sub>3</sub> SiH (1.1)                                                                                                                                                                                                                                                                                                     | $CH_2Cl_2$                                                                                             | NR <sup>c</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $\operatorname{TiCl}_4(2.1)$ | $Et_3SiH(1.1)$                                                                                                                                                                                                                                                                                                                | $CH_2Cl_2$                                                                                             | 65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $TiCl_4(3.1)$                | $Et_3SiH(1.1)$                                                                                                                                                                                                                                                                                                                | $CH_2Cl_2$                                                                                             | 74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $TiCl_4$ (3.8)               | $Et_3SiH(1.1)$                                                                                                                                                                                                                                                                                                                | $CH_2Cl_2$                                                                                             | 81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $TiCl_4(3.8)$                | $Et_3SiH(2.1)$                                                                                                                                                                                                                                                                                                                | $CH_2Cl_2$                                                                                             | 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $TiCl_4(3.8)$                | $Et_3SiH(3.8)$                                                                                                                                                                                                                                                                                                                | $CH_2Cl_2$                                                                                             | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $TiCl_4(3.8)$                | $Et_3SiH(1.1)$                                                                                                                                                                                                                                                                                                                | ClCH <sub>2</sub> CH <sub>2</sub> Cl                                                                   | 68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $TiCl_4(3.8)$                | $Et_3SiH(1.1)$                                                                                                                                                                                                                                                                                                                | Toluene                                                                                                | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $TiCl_4$ (3.8)               | $Et_3SiH(1.1)$                                                                                                                                                                                                                                                                                                                | CH <sub>3</sub> CN                                                                                     | NR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $TiCl_4$ (3.8)               | $Et_3SiH(1.1)$                                                                                                                                                                                                                                                                                                                | THF                                                                                                    | NR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                              | Catalyst<br>(equiv.)<br>TiCl <sub>4</sub> (1.1)<br>TiCl <sub>4</sub> (2.1)<br>TiCl <sub>4</sub> (3.1)<br>TiCl <sub>4</sub> (3.8)<br>TiCl <sub>4</sub> (3.8) | $\begin{array}{c} \begin{array}{c} & \begin{array}{c} & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ $ | $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \end{array} \end{array} \\ \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \end{array} \\ \begin{array}{c} \\ \\ \end{array} \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ $ |

<sup>*a*</sup> All reactions were performed at room temperature under an argon atmosphere for 4 h with 0.5 mmol of **1k**, the indicated amount of  $TiCl_4$  and  $Et_3SiH$  in 5.0 mL of the indicated solvent. <sup>*b*</sup> Isolated yields. <sup>*c*</sup> No reaction.

due to the over reduction of other functional groups (Table 1, entries 4–6).

Encouraged by this promising result, a series of arene-1,4dione substrates, prepared by the method described in Scheme 3, were used to investigate the scope of the method for tetrahydrofuro[3,2-*d*]oxazole skeleton formation. Intermediate **8** was prepared from ethyl acetoacetate/propionylacetate 7 *via* nitrosation, reduction and acylation. However, the reaction of aroylation did not occur when R<sub>1</sub> groups were aryl or aromatic heterocyclic substituents. Subsequent replacement of the bromide group of **9** with **8** gave substrate **1**.

To our delight, the arene-1,4-dione substrate 1 smoothly underwent heterocyclization to afford tetrahydrofuro[3,2-d]oxazole racemate 2 in good yields and a series of functional groups including fluoro, chloro, bromo, methoxyl, trifluoromethyl, and phenoxyl on the aryl ring were well tolerated under the optimal reaction conditions (2a-2t in Table 2). It was noticed that the substrates containing electron-donating groups, such as alkyl, methoxy, and phenoxy, in general gave higher yields (2b-2d, 2h, 2k-2o, 2q-2t), while electron deficient substrates with trifluoromethyl and halogen substituents gave lower yields (2e-2g, 2i). Moreover, heterocyclic substrates could also react with TiCl4 and Et3SiH to smoothly afford the expected products in good yields (2j, 2p). However, for substrates bearing strong electron-withdrawing groups, such as nitro, cyano, and pyridyl, no reaction occurred in the presence of TiCl<sub>4</sub> and Et<sub>3</sub>SiH under the optimized conditions. Furthermore, we examined the heterocyclization of arene-1,4dione containing substitutions on alkyl counterparts  $(\mathbf{R}_1, \mathbf{R}_2)$ . Various substrates containing an ethyl group reacted smoothly to provide the desired tetrahydrofuro[3,2-d]oxazoles (2n-2t, respectively) in good yields. The above results indicate the generality of the method in preparing tetrahydrofuro[3,2-d]oxazoles in this new and highly efficient way.

To further study the substrate-controlled stereoselectivity of this reaction, chiral separation of racemate **1k** on a Chiralcel AD-H column was employed to provide the chiral starting material (*S*)- and (*R*)-**1k**. The absolute configuration was confirmed by circular dichroism spectra. Both (*S*)-**1k** and (*R*)-**1k** could be smoothly converted to the corresponding chiral **2k**, respectively, with over 99% ee and dr > 99:1 (Scheme 4).

A plausible mechanism to rationalize this transformation is illustrated in Scheme 5. There are four carbonyls in the substrate (S)-1a. The real catalyst–reactant complex is not easy to be captured. The complexation of benzyl carbonyl and acetyl-



Scheme 3 Synthesis of arene-1,4-dione substrates 1.



<sup>*a*</sup> Reaction conditions: arene-1,4-dione 1 (0.5 mmol), TiCl<sub>4</sub> (1.91 mmol), Et<sub>3</sub>SiH (0.55 mmol), CH<sub>2</sub>Cl<sub>2</sub> (5 mL) at room temperature under an argon atmosphere for 4 h. <sup>*b*</sup> Isolated yield.

amino with titanium was finally proposed to form a stable sixmembered cyclic half-chair intermediate. Large group COOEt and Ac(NH) were more stable in equatorial orientation. The reductant  $Et_3SiH$  preferentially attacked on the less-encumbered side of the plane. According to this proposal, the benzyl



Scheme 4 Substrate-controlled stereoselective synthesis of chiral 2k.





carbonyl of (*S*)-**1a** was firstly stereoselectively reduced to afford intermediate **A**, promoted by  $\text{TiCl}_4$  using ionic hydrogenation. Then the ketalization intramolecularly led to the formation of intermediate **B**, whereas intermediate **B** could be easily converted to intermediate **C** by strong Lewis acid according to the literature.<sup>7</sup> Finally, the neighboring acetamido group led to a protonated oxazoline which could be deprotonated by the triethylsilanolate anion to afford the desired product (+)-**2a**.

#### Conclusions

In conclusion, an efficient and versatile method for the construction of a tetrahydrofuro[3,2-*d*]oxazole scaffold has been developed. Starting from easily accessible arene-1,4-diones, these heterocycles are stereoselectively formed in a cascade of ionic hydrogenation, ketalization, and intramolecular cyclization at room temperature. The efficiency and substrate scope of this reaction have been demonstrated by the formation of a wide range of functionalized tetrahydrofuro[3,2-*d*]oxazoles. Mild conditions, high efficiency, and simple procedure render this cascade reaction an attractive method in preparing tetrahydrofuro[3,2-*d*]oxazoles. Extension of the present reaction toward the synthesis of related heterocyclic moieties and detailed mechanistic investigations are currently in progress in our laboratory.

#### Acknowledgements

We thank the National Research Center for Analysis of Drugs and Metabolites for NMR and IR analysis. We thank the Center of Pharmaceutical Polymorphs for X-ray analysis. We also thank Prof. Shizhi Chen, Dr. Xiaojian Wang and Dr. Yanan Wang in our institute for helpful discussions.

### Notes and references

- H. Chen, R. X. Tan, Z. L. Liu, Y. Zhang and L. Yang, *J. Nat. Prod.*, 1996, **59**, 668; R. E. Minto and C. A. Townsend, *Chem. Rev.*, 1997, **97**, 2537; R. Dureau, L. Legentil, R. Daniellou and V. Ferrières, *J. Org. Chem.*, 2012, 77, 1301; Y. Cai, C. C. Ling and D. R. Bundle, *J. Org. Chem.*, 2009, **74**, 580; P. G. Williams, R. N. Asolkar, T. Kondratyuk, J. M. Pezzuto, P. R. Jensen and W. J. Fenical, *Nat. Prod.*, 2007, **70**, 83; S. Chen, F. Ren, S. Niu, X. Liu and Y. J. Che, *Nat. Prod.*, 2014, 77, 9.
- 2 Y. Cai, C. C. Ling and D. R. Bundle, *Org. Lett.*, 2005, 7, 4021;
  Z. L. Zhan, F. X. Ren and Y. M. Zhao, *Carbohydr. Res.*, 2010, 345, 315.
- 3 E. Urban and C. R. Noe, *Farmaco*, 2003, 58, 243.
- 4 J. D. Charrier, S. J. Durrant, J. Studley, L. Lawes and P. Weber, *Bioorg. Med. Chem. Lett.*, 2012, **22**, 485.
- 5 T. M. Meulemans, G. A. Stork, F. Z. Macaev, B. J. M. Jansen and A. de Groot, *J. Org. Chem.*, 1999, 64, 9178;
  D. R. Williams, C. M. Rojas and S. L. Bogen, *J. Org. Chem.*, 1999, 64, 736; A. Avenoza, J. H. Busto, C. Cativiela and J. M. Peregrina, *Tetrahedron Lett.*, 2002, 43, 4167.
- 6 G. Li, Q. Xiao, C. Li, X. Wang and D. Yin, *Tetrahedron Lett.*, 2011, **52**, 6827.
- 7 H. Mack, J. V. Basabe and R. Brossmer, *Carbohydr. Res.*, 1988, **175**, 311.