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ABSTRACT: Among defensive alkaloids isolated from ladybugs, 
the heterodimeric member chilocorine C possesses an alluring 
monomeric unit that combines quinolizidine and indolizidine 
substructures.  Indeed, the overall stereochemical disposition of 
its ring fusions is distinct from related natural products.  Herein, 
we show that a carefully orchestrated sequence with several 
chemoselective transformations, including a designed cascade that 
accomplishes 9 distinct chemical reactions in one pot, can 
smoothly forge that domain and ultimately enable a 15-step, 11-
pot enantiospecific synthesis of the natural product.  Mechanistic 
studies, DFT calculations, and the delineation of several other 
unsuccessful approaches highlight its unique elements.  

Over the past several decades, a number of alkaloids have 
been isolated and characterized from ladybugs of the Coccinelli-
dae genus.1  These structures include tricyclic alkaloids as well as 
more complex hexa- and heptacyclic members that have been 
termed as either homo- (as in 1, Scheme 1) or heterodimeric (2–4) 
based on the structural homology between their two respective 
major domains.2 All of these drawn compounds (1–4) have a con-
served 6/6/6-tricycle with consistent cis- and trans-ring fusions as 
indicated within the inset boxed structure.  Breaking this trend is 
chilocorine C (5), a compound obtained in minute quantities (0.6 
mg from 460 beetles) and structurally characterized by Meinwald 
in 1998.2d  Indeed, it possesses a saturated monomeric unit with a 
6/6/5 fusion that formally combines one quinolizidine and two 
indolizidine subunits.  While the overall patterning of its cis- and 
trans-ring fusions matches those of its 6/6/6 tricyclic counterparts, 
including the co-isolated and previously characterized natural 
products chilocorines A (3)2b and B (4),2c it possesses an overall 
stereochemical disposition that is, to the best of our knowledge, 
distinct among known natural products.  For example, while there 
are a few alkaloids with 6/6/5 systems,3 some of which are shown 
in Scheme 1 (63b,4 and 73ac), their 5-membered rings possess one 
cis- and one trans-fusion with their 6-membered neighbors; in 5, 
however, both of these fusions are cis.5 Herein, we show that forg-
ing this overall domain of chilocorine C is quite challenging and 
could only be achieved through a designed cascade conducted 
under carefully orchestrated conditions, terminating in a reversi-
ble Mannich reaction with a distinct nucleophile class.  This oper-
ation, coupled with further unique and chemoselective steps, af-
forded a 15-step, 11-pot6 enantiospecific synthesis of the title 
alkaloid from commercially available materials, reflecting the 
shortest pot effort for any related “dimeric” target.7  

Our overall approach to chilocorine C (5) is shown retrosyn-
thetically in Scheme 1.  Assuming that its one unassigned chiral 
center, denoted with a star in the original depiction, matched that 
of exochomine (2), a molecule we previously synthesized in 16-
steps,7b the two major domains could be connected through a simi-
lar terminating aldol/cyclization sequence. As such, with 8 in 
hand, we needed access to 9, a compound whose electrophilic 
aldehyde could hopefully be installed from iminium 10 through a 
Strecker reaction.  Unclear was the ease and stereoselectivity of 

that transformation that would be observed experimentally, given 
its stereochemical uniqueness discussed above, and the potential 
for addition from either face as indicated in the inset box.  Assum-
ing success, we hoped in turn that iminium ion 10 could arise in a 
single pot through a reductive cyclization cascade commencing 
from 11, itself prepared expeditiously from commercially availa-
ble 12 using the unique chemistry of nitrones.8  
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Scheme 1.  Structures of selected coccinellid alkaloid dimers (1-4) all bearing consistent 
ring fusions, the structure of chilocorine C (5) that possesses a unique ring fusion relative 
to other tricyclic alkaloids containing one five-membered ring (such as 6 and 7), and a 
retrosynthetic approach to access that unique stereochemical arrangement.
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Synthetic efforts commenced by using the carboxylic acid 
domain of 129 to effect a regiospecific formation of chiral nitrone 
13 as shown in Scheme 2.  This decarboxylative oxidation was 
ultimately achieved following extensive screening (see Support-
ing Information for more details) by adapting a literature proto-
col10 utilizing H2O2 and Na2WO4 in 74% yield on decagram scale.  
Next, an anti-diastereoselective nitrone variant of the  
Mukaiyama–Mannich reaction,11 using silylenol ether 14, afford-
ed the desired adduct and established two new chiral centers with 
7:1:1 dr [(8S,2R):(8R,2R):(8R,2S)]. Subsequent treatment with 
LiAlH4 achieved both reduction of the ester and TBS ether cleav-
age12 to afford 15 in 72% overall yield. Next, in order to introduce 
a second sidechain using nitrone chemistry, 15 was oxidized with 
IBX8a,13 to provide an 8:1 mixture of 16 and its ketonitrone isomer 
in near quantitative yield; no other condition screened was as 
regioselective.  The remaining carbon chain was then introduced 
via an exo-selective (3+2)-cycloaddition14 with ethyl vinyl ether 
that, when followed by in situ treatment with BzCl, afforded isox-
azolidine 11 with high 2,6-trans-diastereoselectivity (dr >10:1).  
Pleasingly, an X-ray crystal structure of its ketal-deprotected vari-
ant (17) confirmed its relative configuration.  

 
We next sought to convert 11 into iminium 10, a task requir-

ing an initial N–O cleavage to introduce a β-aminoaldehyde moie-
ty. However, given the sensitive nature and general instability of 
such functionality,15 we expected that this event likely had to be 
coupled with an aldol condensation in a one-pot operation to pre-
vent decomposition, thus requiring acidic conditions to enable the 
requisite events to proceed in a cascade fashion.  Following exten-
sive screening and optimization (see SI),16 we found that 
Mo(CO)6

17 alone proved capable of rising to the occasion, afford-
ing the means to achieve the full sequence.  Thus, following dis-
solution of 11 in a 4:1 mixture of MeCN/H2O and sequential 
treatment with Mo(CO)6 (1.5 equiv) and TFA (2.5 equiv) at 0 °C,  
the contents were heated to reflux for 8 h to effect conversion to 
19 via 4 distinct chemical events: ketal cleavage, acetal hydroly-
sis, N–O bond cleavage, and iminium formation.  In this process, 
17, 18, and 19 were observed by NMR analysis, and 17 and 18 
were also isolable. Further addition of TFA, dilution with ben-

zene, and heating at reflux for 3 h under azeotropic conditions 
achieved both enamine formation and aldol condensation to forge 
20.  A terminating conjugate reduction in the same pot then gen-
erated 10 in 70% yield, completing a 7-step, 6-pot synthesis from 
12.18  Pleasingly, this final 7-operation cascade could be conduct-
ed with no decrease in yield on 3 g scale.  

With iminium salt 10 in hand, we proceeded to install the at-
oms needed to forge the key aza-quaternary center and complete 
the unique tricyclic domain of chilocorine C.  As denoted in 
Scheme 3, a Strecker reaction using KCN proceeded to afford a 
mixture of nitriles 28 and 33 with 8:1 dr, initially of unknown 
configuration.  We became concerned, however, that the incorrect 
diastereomer had been formed preferentially when subsequent 
efforts to reduce this newly installed functionality with an array of 
aluminum-based hydrides [including LiAlH4, Red-Al®, 
(EtO)2AlH, and DIBAL-H] led to decyanation with the corre-
sponding saturated amine being a major product.  In addition, we 
found that unlike the parent exochomine-related analog, both 10 
and 28 readily participated in the addition of organometallic rea-
gents (preceeded by decyanation with 28),19 producing a single 
diastereomer in each case. Eventually, material suitable for X-ray 
crystallographic diffraction was obtained from the HCl salt of 29 
(acquired by the addition of allylzinc to 10) confirming that the 
kinetic product for these additions was the trans-fused diastere-
omer 27,20 thus reflecting the skeleton of alkaloid (–)-205B and 
crepidine (6 and 7, cf. Scheme 1).    

 

Given this information, we attempted to shift the equilibrium 
of the Strecker reaction through numerous variations in reaction 
conditions as well as additional substrate modifications (not 
shown); these efforts were unsuccessful.  As a result, we won-
dered if Mannich-type additions, processes which are reversible, 
could offer a solution.  Gratifyingly, we discovered that 1,3-
dicarbonyl compounds such as 21 and 22, can, in fact, favor for-
mation of the desired diastereomer.  For example, when 10 react-
ed with 21 (in the form of its potassium salt)21 in MeOH, it readily 
formed the corresponding zwitterionic product with an initial dr 
of 1:1 that reached an equilibrium dr of 8:1 favoring the desired 
cis-fused isomer 32 upon standing.22  Unfortunately, the synthetic 
utility of these addition products was found to be rather limited, as 
they were not readily able to be converted into the desired alde-
hyde.  As such, other derivatives of malonic acid were considered, 

b) 14, ZnI2
CO2H

Me

N
H

a) H2O2, 
    Na2WO4

N
O

Me

OEt

N
H

Me

Me
O

O
OH

OH

N

Me

O

Me
EtO

HH
OBz

O

O
N

H

Me

Me
O

O
O

OH

OTBS

OEt
Me

O

O 14 (1 step)

N

Me

O

Me
RO

HH
OBz

O

f) Mo(CO)6, 
   TFA, H2O,
   CH3CN

[10 g scale]

(70% overall)
[3 g scale]

12 15

1611

13

(enamine 
formation; aldol
condensation)

(conjugate
reduction)

(74%) c) LiAlH4

17: R = Et [X-ray]
18: R = H TFA

(72% overall )

d) IBX

e)

(68% overall)
then BzCl

10

N
H

Me

H

OBz
CF3CO2

20
a Reagents and conditions: a) H2O2 (3.0 equiv), K3PO4 (1.2 equiv), Na2WO4•2H2O (0.1 equiv), 
Et4NCl (0.1 equiv), CH2Cl2/H2O, 5 °C to 23 °C, 1.5 h, 74%; (b) 14 (1.2 equiv), ZnI2 (0.2 equiv), 
CH2Cl2, -78 °C to 23 °C, 9 h; (c) LiAlH4 (4.0 equiv), THF, 66 °C, 3 h, 72% for 2 steps; (d) IBX 
(1.1 equiv), MgSO4 (3.0 equiv), CH2Cl2, -20 °C to 23 °C, 1.5 h; (e) ethyl vinyl ether (10.0 equiv), 
toluene, 55 °C, 17 h; then concentrate; then BzCl (1.0 equiv), 4-DMAP (0.1 equiv), Et3N (3.0 
equiv), CH2Cl2, 0 °C to 23 °C, 2 h, 68%; (f) Mo(CO)6 (1.5 equiv), TFA (2.0 equiv), CH3CN/H2O 
(4:1), 0 °C to 90 °C, 8 h; TFA (5.0 equiv), 90 °C, 0.5 h; benzene, Dean-Stark, 90 °C, 3 h, 70%. 
IBX = 2-iodoxybenzoic acid; 4-DMAP = 4-dimethylaminopyridine; TFA = trifluoroacetic acid.

Scheme 2.  Expeditious preparation of key iminium intermediate 10  fueled by a cascade sequence.a

N
H

Me

H

OBz
CF3CO2

N
H

Me

Me

H

OBz

19

O
CF3CO2

(ketal and
acetal

cleavage;
N-O bond 
cleavage;
iminium

formation)

2

8

Nu dr 
(32:27/25)

ΔΔG0
298K 

kcal/mol
(32-27/25)a

CN 1:8 2.1

21 8:1 -1.5

22 7:1 -1.5

23 5:1 1.1

N

H
Me

H

OBz

H Nu
nOe

(28: Nu = CN)

..TFA

O O

O

Me Me

O

Nu

OO

fast
addition

N-inversion

CN
O

O

(29: Nu = allyl)
(30: Nu = CH2CN)

N
H

Me

H

OBz
CF3CO2

10

21 23

22

H

N
Me

Nu

OBz
32

Scheme 3.  Studies in adding nucleophiles into key iminium intermediate 10  in service of delivering 
structures of type 32. Free energy values (ΔG0

298K) were calculated within ideal gas/1-D hindered 
rotor/harmonic oscillator model using DFT with PW6B95-D3/def2-TZVPPD//IEFPCM/B97-D/6-31+G(d,p) 
method (see SI for details).

[X-ray for 29•HCl]

26

25

H

HMe

H

OBz

N Nu

24

27

ring flip

N

Me
H

Nu

..

OBz31

ring flip

(33: Nu = CN)
(34: Nu = CH2CN)

..

N
H

Me

H

OBz
Nu

NCCH2ZnBr
allylZnBr
allylMgBr

Nucleophiles

slow addition
and N-inversion

CN

32 27

H

N

OBz H
H

H

Nu

..

nOe

H

N

OBz H

H
H

Nu

..Me

cis-fused trans-fused

N
H

Me

H

OBz
Nu

Page 2 of 7

ACS Paragon Plus Environment

Journal of the American Chemical Society

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

and eventually it was found that a decarboxylative Mannich reac-
tion with the mono-salts of malonates23 could promote the desired 
outcome.  For example, potassium cyanoacetate 23 was able to 
provide a 1:1 ratio of 34 to 30 when the reaction was performed in 
refluxing 1,4-dioxane,23c while switching to a protic solvent such 
as i-PrOH boosted the dr to 5:1 favoring the desired 34. In ac-
cordance with literature precedent,23d the addition precedes decar-
boxylation based on MS analysis of the crude reaction mixture.  

In order to quantify these results and to potentially explain the 
observed reactivity, we computed free energy differences between 
each pair of isomers using DFT (for the full details, see SI).  As 
can be seen from the inset table in Scheme 3, the trends for the 
preference in the major diastereomer for the addition of the cya-
nide anion and 21–22 correlate well with the estimated ΔG0

298K 
values.  Furthermore, the most stable conformation for the major 
aminonitrile isomer 28 was found to have an antiperiplanar ar-
rangement between the lone pair and CN group (drawn here as 
conformation 25 and confirmed by nOe experiments).  This find-
ing helps to explain the reactivity of 28 towards aluminum-based 
hydrides, since decyanation is a common pathway for strained 
antiperiplanar aminonitriles.24 However, the difference in free 
energies computed for the two possible addition products of 23 to 
10 (prior to decarboxylation), favor the trans isomer 
[ΔΔG0

298K(cis-trans) = 1.1 kcal/mol], suggesting kinetic control. 
The investigation of the potential energy surface for the two pos-
sible pathways with DFT revealed several key features that may 
provide an explanation for the observed selectivity. First, the bar-
riers for the Mannich reaction differ significantly (ΔH‡

0K = 4.7 
kcal/mol), with the pathway leading to trans-fused isomer 26 
having the lower barrier.20 Most important was the finding that the 
rate-limiting transition state is decarboxylation, rather than the 
Mannich reaction. Thus, the kinetics of the reaction are most like-
ly controlled by the Curtin–Hammett principle.25 With the energy 
of the decarboxylation transition state for the cis-pathway being 
lower than that of the trans-pathway (ΔH‡

0K = 1.4 kcal/mol), the 
cis-fused isomer 34 is predicted to be the major product, in ac-
cordance with experimental results.26 

Having established access to the desired diastereomer, we 
found that we could successfully integrate the addi-
tion/decarboxylation step (i.e. 10 to 34) into the full cascade with-
out any compromise in stereoselectivity. Therefore, 34 could be 
obtained from 11 in a single-pot, 2-step operation that combined 9 
distinct reactions in 47% yield (Scheme 4).27  Seeking now to 
couple the two halves of chilocorine C, we sought to convert the 
nitrile of 34 into the aldehyde of 9.  To this end, hydration of 34 
with 3528 quantitatively afforded the corresponding carboxamide; 
however, the following Hofmann rearrangement turned out to be 
quite capricious. For example, under neutral conditions with any 
IIII source,29 the major and/or exclusive isolated product was 
aminimide 37,30 hence, an acid additive was needed to suppress 
the nucleophilicity of the tertiary nitrogen.  Additionally, we 
found that conducting the reaction under anhydrous conditions 
produced substantial amounts of urea 38.29c After extensive opti-
mization, the use of Koser’s reagent29bc in aqueous MeCN with p-
TsOH•H2O as an additive provided reproducible and scalable 
results, producing 36 in 65% yield on gram scale. Finally, while 
several efforts31 were made to oxidize the primary amine, we 
found that a modified protocol31b with dehydroascorbic acid (39) 
could afford 9 in good yield (60%). 

With a route to 9 now secured, we proceeded to couple the 
two fragments (8 and 9) following our reported sequence;7b these 
processes worked well, with minor modifications effected in some 
cases to achieve improved yields.  Most critical among those was 

the final elements of the route: MeLi addition, dehydration, and 
thioacetal deprotection. Pleasingly, initial screens showed that the 
conditions used for the first two operations could also accomplish 
removal of the Bz protecting group at the same time.  However, 
the final thioacetal deprotection with PhI(OAc)2

32 proceeded with 
a disappointingly low yield (20% here; 31% for exochomine). 
Eventually, we found a DMSO/HCl protocol33 could promote a 
very clean and chemoselective thioacetal removal in high yield 
(86%). In order to reduce the isolation of highly sensitive inter-
mediates, the MeLi addition/dehydration reaction was ultimately 
combined with the DMSO-promoted thioacetal removal protocol, 
which, after purification, provided chilocorine C•HCl (5•HCl) in a 
42% isolated yield. The spectral data for 5•HCl matched that of 
the natural sample,2d noting that both its 1H and 13C chemical 
shifts displayed a dependence on concentration,34 with only rela-
tively concentrated solutions matching the reported chemical 
shifts (see SI).35,36  An X-ray structure of 5•HCl was also obtained. 

 

In conclusion, we have completed the first total synthesis of 
chilocorine C via a highly convergent strategy. Our approach 
featured a series of chemo- and stereoselective reactions using the 
power of nitrones to attach key carbon sidechains and stereocen-
ters in advance of the critical 9 chemical event reaction cascade 
that enabled construction of the unique 6/6/5-saturated tricycle of 
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the target.  The final reaction of that cascade included the for-
mation of the key aza-quaternary stereocenter via a Mannich reac-
tion/decarboxylation sequence with 23, with computational analy-
sis affording mechanistic insights on the reactivity of iminium 10. 
Finally, a series of carefully orchestrated reactions converted 34 
into 9, and was followed by a further optimized sequence to com-
plete the synthesis of chilocorine C in just 15-steps (11-pots) from 
commercially available starting materials, while also assigning a 
previously unknown chiral center.  That brevity and general 
scalability, with more than half of the steps performed on gram-
scale, should provide efficient access to other indolizidine, quino-
lizidine, and pyrrole alkaloids as well as reaction parameters suit-
able for other problems of significance. 
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