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TheHenry (nitro-aldol) reaction is one of the most valuable
methods for carbon�carbon bond formation and its stereo-
chemical control continues to be a challenge for organic
chemists.[1±6] Specifically, an efficient synthesis of medicinally
important intermediates such as phenylnorstatine through a
diastereoselective catalytic (rare earth-Li-(R)-BINOL) asym-
metric nitro-aldol reaction of optically active �-amino alde-
hydes with nitromethane has been reported.[4] Tetrabutylam-
monium fluoride has been also used, albeit with less success.[5]

More recently, Corey and Zhang employed a rigid chiral
quaternary ammonium salt for this reaction, which leads to a
highly stereoselective synthesis of the HIV protease inhibitor
amprenavir.[6] More generally, nitro-aldol adducts provide
ready access to non-natural 3-amino-2-hydroxy acids and 1,3-
diamino-2-hydroxy units, which are substructures of medici-
nally important compounds.[7, 8] One of us previously demon-
strated that the Henry reaction is highly accelerated by
pressure.[9] However, to our knowledge, no attempts have ever
been made to perform a diastereoselective nitro-aldol reac-
tion without a catalyst.[10] We envisaged that the amino group
of optically active �-amino aldehydes might act as a base, and
that such aldehydes would react with nitromethane under
high pressure without a catalyst, thus offering a clean reaction
system. Herein, we report the first example of the diaster-
eoselective nitro-aldol reaction without any added catalyst.
N,N-Dibenzyl �-amino aldehydes 1 (Scheme 1) were chos-

en as a model substrate since they bear a free amino group
and are relatively stable. The adducts may serve as versatile
synthetic intermediates for the synthesis of non-natural

Scheme 1. Reaction of �-amino aldehydes 1 with nitroalkanes 2.
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3-amino-2-hydroxy acids. First, we examined the nitro-aldol
reaction of (S)-N,N-dibenzylphenylalaninal (1a) with nitro-
methane (2a) under high pressure without a catalyst. The
starting optically active �-amino aldehyde (1a) was prepared
from the corresponding (S)-phenylalanine in two steps
according to the procedure of Corey and Zhang.[6] Under
atmospheric pressure, 1a did not react with 2a (10 equiv) in
acetonitrile. However, to our delight, the reaction did occur at
8 kbar (room temperature, 12 h) to give a mixture of
diastereomers (2R,3S)-3a and (2S,3S)-epi-3a (83:17, 81%)
(Scheme 1). The mixture was purified by means of chroma-
tography on silica gel to give a pure sample of (2R,3S)-3a and
(2S,3S)-epi-3a. The major product (2R,3S)-3a was identified
by comparison with literature data (1H and 13C NMR
spectroscopy).[6] The correct choice of solvent is crucial for
an efficient diastereoselective nitro-aldol reaction (Table 1,
entries 1 ± 6). Among the solvents examined thus far, CH3CN
gave the best result; the yield of 3a decreased in the order
CH3CN�CH3NO2�MeOH�CHCl3�CH2Cl2� toluene,
whereas the diastereoselectivity of 3a decreased in the order
CH3CN�MeOH�CH3NO2�CHCl3. The optical purity was
�99% ee in CH3CN which indicates that no racemization
occurred during the reaction.[11] (S)-N-(tert-Butoxycarbonyl)-
phenylalaninal did not react with 2a at 8 kbar, presumably
because of the lower basicity of the amino group. The reaction
is quite general (e.g. Table 1, entries 7 ± 11). The pressure and
the amount of 2a did not significantly affect the diastereose-
lectivity, although the yields did increase under pressure.
Notably, very high diastereoselectivity was observed in the
reaction of 1a with 2-nitropropane (2c) (Table 1, entry 11).
The diastereoselective reaction of (R)-N,N-dibenzylphenyl-
alaninal (4) with 2a produced the corresponding anti nitro-
alcohol 5 as a single enantiomer. Thus there was also no
racemization in this case (Scheme 2).

Scheme 2. Reaction of (R)-N,N-dibenzylphenylalaninal (4) with 2a.

To elucidate a plausible mechanism (e.g. inter- or intra-
molecular), a control experiment was performed: the cross
nitro-aldol reaction of 1a (1.0 equiv) and 3-phenylpropanal
(4) (1.0 equiv) with 2a (1.0 equiv) was carried out under
pressure (8 kbar) at room temperature, and provided a
mixture of 3a and 5 in yields of 12 and 13%, respectively
(Scheme 3).

Scheme 3. Cross nitro-aldol reaction of (S)-N,N-dibenzylphenylalaninal
(1a) and 3-phenylpropanal (4) with 2a.

A plausible mechanism for this reaction involves the initial
reaction of the base 1a with 2a to give a carbanion.
Nucleophilic attack of the carbanion at the formyl carbon
atom from the Re face gave predominantly the 2R,3S
nitroalcohol, in agreement with the Felkin ±Anh model
(Scheme 4). This was further supported by the fact that the
reaction of sterically hindered 2-nitropropane (2c) with 1a
was highly diastereoselective (Table 1, entry 11).

Scheme 4. Plausible mechanism for nitro-aldol reaction without catalyst.

In conclusion, we have presented the first diastereoselective
nitro-aldol reaction without a catalyst. Although the diaster-
eoselectivities do not rival those of reactions that require

Table 1. Diastereoselective nitro-aldol reaction of �-amino aldehydes 1 with nitroalkanes 2 without catalyst under high pressure.[a]

Entry Aldehyde Nitroalkane Solvent Product Yield [%][b] 3/epi-3 ee (3) [%]

1 1a 2a CH3CN 3a 81 83:17[c] � 99
2 1a 2a CH3NO2 3a 69 74:26 98
3 1a 2a CH3OH 3a 29 78:22 96
4 1a 2a CHCl3 3a 27 71:29 89
5 1a 2a CH2Cl2 3a 3 ±[d]

6 1a 2a toluene 3a trace ±[d]

7 1a 2b CH3CN 3b 78 59:25:9:7[c]

8 1b 2a CH3CN 3d 67 71:29[c] 99
9 1c 2a CH3CN 3e 66 (11) 89:11[e] 96[f]

3e 79[g] 86:14[e] 96[f]

10 1d 2a CH3CN 3 f 70 73:27[e] 90[f]

3 f 83 (4)[h] 85:15[e] 91[f]

11 1a 2c CH3CN 3c 68 (17) 99:� 1 92

[a] Reaction conditions: 1 (0.2 mmol), 2 (2.0 mmol), solvent (3 mL), 8 kbar, 12 h, room temperature. [b] Yield of isolated product, based on 1. Values in
parentheses are the amounts of 1 recovered (%). [c] Separable by chromatography. [d] Not determined. [e] The ratio was determined by means of 13C NMR
spectroscopy. [f] The ee value was not accurate because of partial overlap of peaks in chiral HPLC analysis. [g] Reaction time: 24 h. [h] Reaction conditions:
1d (0.4 mmol), 2a (4.0 mmol), acetonitrile (2.7 mL), 8 kbar, 12 h, room temperature.
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Construction principles : Consider the hypothetical ladder
polymer 1-™[�]-ladderane.∫[1, 2] A formal [2�2] cyclorever-
sion would lead to 2 in which a local ™defect,∫ consisting of
two parallel � bonds, is formed. Cope rearrangement via a
boatlike transition structure would give 2�, which is, of course,
equivalent to 2 (Scheme 1). Continued indefinitely, this
process would lead to a pair of double bonds running down
the polymer chain.

highly sophisticated catalysts,[4, 6] the experimental procedure
is extremely simple, because there is no need to quench the
catalyst (see Experimental Section). Partial racemization that
would result from using a catalyst is avoided. Furthermore,
the use of toxic and expensive catalysts that are difficult to
prepare is not necessary. This strategy, that is, pressure-
mediated substrate-catalyzed reactions might also be amena-
ble to other reactions (Michael, Mannich, Baylis ±Hillman),
which are accelerated by pressure.[12] Further work along
these lines is in progress.

Experimental Section

3a : A solution 1a (66 mg, 0.2 mmol) and 2a (108 �L, 2.0 mmol) in
acetonitrile (3 mL) was placed in a sealed Teflon vessel. The reaction
mixture was stirred at room temperature under atmospheric pressure until
most of 1a had dissolved (5 min). The tube was placed in a high-pressure
reactor, and pressurized to 8 kbar at 25 �C. After 12 h, the pressure was
released, and the reaction mixture was transferred from the Teflon vessel
into a flask. The solvent was removed under reduced pressure. The crude
products were purified by means of column chromatography (SiO2,
hexane/Et2O 10:1) to give the anti isomer 3a (52 mg, 67%) and the syn
isomer (11 mg, 14%) (total yield 81%, anti/syn 83:17). The enantiomeric
excess was determined by means of HPLC analysis on DAICEL
CHIRALCEL OJ.
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