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Visible light sensitization of benzoyl azides: cascade cyclization 
toward oxindoles via a non‐nitrene pathway  

Dattatraya B. Bagal, Sung‐Woo Park, Hyun‐Ji Song* and Sukbok Chang*

Visible light sensitization of benzoyl azides was examined in 
reaction with N-phenylmethacrylamides to afford biologically 
important oxindoles and spirooxindoles via a cascade cyclization 
under mild reaction conditions. Mechansitic studies suggested a 
non-nitrene pathway, where triplet benzoyl azides act as the 
reactive intermediate. 

Ubiquity of aminated molecules in natural products and synthetic 
materials allured generations of organic chemists to develop 
efficient amination methodologies.1 Utilizing acyl azides as an 
efficient and environment-friendly amino source has long been 
pursued because the only stoichiometric by-product is N2. 
However, thermal or photochemical activation of acyl azides 
often leads to unwanted by-products such as isocyanates (via the 
Curtius rearrangement)2 and solvent adducts of acyl nitrenes (via 
N2 dissociation of activated acyl azides). 

Recently, mild and selective activation of carbonyl azides 
was achieved by the visible light triplet sensitization. In 2015, 
König and coworkers reported amidation of electron-rich 
heteroarenes in reaction with benzoyl azides (Scheme 1a).3 
Importantly, undesired reactions of neutral acyl nitrene were 
effectively inhibited by generating nitrenium species through the 
combined transfer of triplet energy and proton. Yoon and 
coworkers’ study of olefin aziridination with triplet 
carbethoxynitrenes is also a compelling illustration of the 
efficacy of visible light triplet sensitization for the mild and 
selective activation of carbonyl azides (Scheme 1b).4 However, 
in both studies, photosensitization of benzoyl azide still gave rise 
to either undesired products (König’s study without H3PO4)3 or 

much diminished reaction efficiency (Yoon’s study with benzoyl 
azide).4  

Continuing our efforts on the C-H amidation reactions,5 we 
envisioned that the diradical character of triplet acyl azides could 
be deployed for developing a versatile synthetic methodology. 
Considerably long lifetime6 and low quantum yields in the 
decomposition of triplet benzoyl azide7 were especially 
noteworthy for realizing our hypothesis. Visible light 
photocatalysis8 was chosen as a tool for the mild and selective 
energy transfer. For the reaction substrate, N-
phenylmethacrylamides were selected based on their well-
documented reactivity as an excellent radical acceptor, thus 
furnishing biologically relevant oxindole products (Scheme 1c).9 

 

Scheme 1 Visible light activation of carbonyl azides 
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The prospective photocatalytic reaction of 1a and 2a were 
scrutinized with visible light irradiation applied by 20 W 
household compact fluorescent lamp (CFL) (Table 1). 
Photocatalyst optimization unveiled the highest reactivity with 
[Ir{dF(CF3)ppy}2(dtbbpy)]PF6 which has the highest singlet-
triplet energy difference (EST = 60.8 kcal/mol) and the longest 
triplet excited-state lifetime (τ= 2300 ns) among those tested.8a 
From the solvent screening, acetonitrile turned out to be most 
effective. The most notable observation with various solvents 
was the absence of by-products typically derived from 
isocyanate or acyl nitrene. In fact, no ylides were detected from 
reactions in DMSO,10 and pyridine.11 Likewise, 1,3,4-oxadiazole 
was not formed in acetonitrile.7a, 12 In addition, no O-H insertion 
product was observed in a reaction using methanol solvent,7c, 13 
while a significant amount (47%) of benzamide by-product was 
attributed to the hydrogen atom abstraction by triplet benzoyl 
azide7c from methanol.14 All of these results clearly indicate that 
the generation of benzoyl nitrene as the reactive intermediate can 
be excluded at the present stage. 

Table 1 Optimization of the reaction conditions 

 

Entry  Photocatalyst  Solvent  Yield (%)a,b 

1  [Cu(dap)2]Cl  CH3CN  0 

2  [Ru(bpy)3]Cl2  CH3CN  0 

3  [Ir(dtbbpy)(ppy)2]PF6  CH3CN  11 

4  fac‐Ir(ppy)3  CH3CN  42 

5  [Ir{dF(CF3)ppy}2(dtbbpy)]PF6 CH3CN  79 

6  [Ir{dF(CF3)ppy}2(dtbbpy)]PF6  DMSO  69 

7  [Ir{dF(CF3)ppy}2(dtbbpy)]PF6  DMF  42 

8c  [Ir{dF(CF3)ppy}2(dtbbpy)]PF6  MeOH  50 

9  [Ir{dF(CF3)ppy}2(dtbbpy)]PF6  pyridine  56 

10  [Ir{dF(CF3)ppy}2(dtbbpy)]PF6  CH2Cl2  74 

11d  [Ir{dF(CF3)ppy}2(dtbbpy)]PF6 CH3CN  96 

Changes from entry 11 

12  No photocatalyst or light at 25 oC  0 

13  No light at 60 oC  0 

14  with NEt3 or EtN(i‐Pr)2 (3 equiv.)  0 

15  with Hantzsch ester (3 equiv.)  0 

16  with TEMPO (3 equiv.) or O2 (1 atm)  0 

a 1a (0.2 mmol), 2a (0.3 mmol), photocatalyst (2.5 mol %), solvent (1.5 mL), Ar 
atmosphere, visible light irradiation with 20 W CFL at 25 oC for 24 h. b Determined 
by 1H-NMR analysis using 1,1,2,2,-tetrachloroethane as an internal standard. c 47% 
of 4-methoxybenzamide was obtained as side product. d Reaction for 36 h at 25 oC. 

Under the optimized reaction conditions, we explored the 
scope of N-arylmethacrylamides (1) and benzoyl azides (2) 
(Table 2). Both electron-donating and electron-withdrawing 
groups on the benzoyl azides were compatible, thus furnishing 
the corresponding oxindole products equally in good to excellent 
yields (3a–3j).15 Importantly, a broad range of functional groups 
such as halo (3d–3e), ester (3f), or cyano (3h) were well tolerated. 
Benzoyl azides bearing multiple substituents at sites other than 
the para-position were also highly facile in the current 
transformation (3i–3j). Electronic and steric effects of 
substituents on the N-arylmethacrylamides were also studied. 
For N-substituents, ethyl (3k), benzyl (3l) and phenyl (3m) were 
tested to reveal good reactivity. Also, methacrylamides with 
various phenyl ring substituents underwent the current 
cyclization without difficulty to afford the desired products in 
good to moderate yields (3n–3v).  

While a molecular scaffold of spirooxindoles is embedded in 
a number of biologically active natural alkaloids, its 
straightforward synthesis has been a highly challenging task.16 
We envisioned that our present method can be extended to the 
synthesis of spirooxindoles by using cyclic α,β-unsaturated 
amides (4, Table 3). Indeed, various substituted benzoyl azides 
(2) were readily reacted with 4 to furnish spirooxindoles (5a–
5k).15 Surprisingly, all spirooxindoles products were obtained as 
single diastereomers and this stereoselectivity is attributed to the 
sterically much favoured reaction on the convex-face of 4 
(Figure 1). 

Table 2 Scope of benzoyl azides and N‐arylmethacrylamidesa  

 

a 1 (0.2 mmol), 2 (0.3 mmol), photocatalyst (2.5 mol %), CH3CN (1.5 mL), Ar 
atmosphere, visible light irradiation with 20 W CFL at 25 oC for 36 h. All yields 
refer to isolated products (3a-3v) by column chromatography. 
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Table 3 Substrate scope for aminated spirooxindolesa 

 

a 4 (0.2 mmol), 2 (0.3 mmol), photocatalyst (2.5 mol %), CH3CN (1.5 mL), Ar 
atmosphere, visible light irradiation with 20 W CFL at 25 oC for 36 h. All yields 
refer to isolated products (5a-5k) by column chromatography. 

 

Figure 1 Origin of the observed diastereoselectivity 

Based on the observations in Table 1 and Scheme 2b–2c, we 
proposed the reaction pathway as illustrated in Scheme 2a. The 
first step would be the triplet energy transfer from the excited 
photocatalyst to benzoyl azide to generate the triplet benzoyl 
azide (IM1). Next, bimolecular reaction between IM1 and 1 
must precede N2 dissociation (path A) because none of the 
benzoyl nitrene-derived side products (oxadiazole7a, 12 and 
aziridine6, 7c) was detected. The resulting diradical intermediate17 
(IM2) may undergo N2 release and cascade cyclization leading 
to a cyclohexadienyl radical intermediate9 (IM4). Finally, an 
intramolecular 1,4-hydrogen atom transfer (1,4-HAT)18 will 
bring out the product (3) with concomitant rearomatization.19   

Scheme 2 Mechanistic aspects of the photocatalytic reaction 

The energy transfer to benzoyl azide was supported by the 
Stern-Volmer quenching experiment20 and photocatalytic 
reactions with the hydrogen atom donor (Scheme 2b). While N-
arylmethacrylamide remained completely unreacted under the 
optimized photocatalytic conditions with and without the 
hydrogen atom donor, 4-chlorobenzoyl azide efficiently reacted 
with the hydrogen atom donor to afford the corresponding 
benzamide in quantitative yield. The reversibility of triplet 
sensitization and deactivation of benzoyl azide (Scheme 2a) 
could be inferred from the complete recovery of unreacted 
benzoyl azide in the reaction without the hydrogen atom donor 
(Scheme 2b). 
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While the stability of the excited azide might be seen counter-
intuitive, there are multiple previous studies implying the 
stability of triplet-sensitized azides. In many cases, quantum 
yields for the decomposition of triplet-sensitized azides were 
very low and the non-zero conversion had been attributed to the 
inadvertent direct irradiation from high energy UV light 
sources.7, 21 Also, non-nitrene reaction mechanism had been 
proposed for the intermolecular reactions of triplet-sensitized 
azides with molecular oxygen22 or hydrogen atom donors.7c 

The final step, hydrogen atom transfer, had been examined 
with a 1:1 mixture of deuterated and non-deuterated N-
arylmethacrylamide subjected to the photocatalytic reaction with 
benzoyl azide (Scheme 2c). As a result, no H/D scrambling was 
observed, indicating an intramolecular hydrogen atom transfer in 
the last step. In an experiment with repeated on-off cycling of 
visible light irradiation, a complete quenching of reactivity was 
observed in the absence of light.20 Although this result may not 
be a definitive evidence in excluding a radical chain pathway, 
any chain propagation process, if there is, must be short-lived.23 

In conclusion, we have developed a mild and efficient 
synthetic route to biologically important oxindole and 
spirooxindole scaffolds enabled by the visible light 
photocatalytic reaction of benzoyl azides and N-
arylmethacrylamides. A triplet energy transfer process was 
proposed to operate by visible light photocatalysis with 
[Ir{dF(CF3)ppy}2(dtbbpy)]PF6. The cyclization proceeds 
smoothly over a broad range of substrates and reactants without 
involving a competitive decomposition side pathway. The 
observed stability and reactivity of the presumed reactive 
intermediate, triplet benzoyl azides, would be a promise for 
further synthetic studies of acyl azides. 

This research was supported by the Institute for Basic 
Science (IBS-R010-D1) in the Republic of Korea. The authors 
are thankful to Dr. Jung Hee Yoon (IBS) and Dr. Ha Jin Lee (the 
Western Seoul Center of Korea Basic Science Institute) for XRD 
crystallographic analysis. 
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