Transition Metal-Catalyzed Oxidations. 11 [1]

Para-Selective Chlorination and Bromination of Phenols with *tert*-Butyl Hydroperoxide and TiX(O*i*Pr)₃

Karsten Krohn, Hagen Rieger, Klaus Steingröver, and Ingeborg Vinke

Paderborn, Universität-GH, FB 13- Fachbereich Chemie und Chemietechnik

Received October 20th, 1998

Dedicated to Prof. W. Pritzkow on the Occasion of his 70th Anniversary

Keywords: Bromine, Chlorine, Oxidations, Titanium, Peroxides, Phenol

Abstract. Mononuclear phenols 1–4 are chlorinated or brominated with high *para*-selectivity and in good yields to the

Selectivity is a major goal in modern synthetic chemistry [2]. This goal is relatively difficult to achieve in some electrophilic aromatic substitutions especially in the halogenation of phenols. Mixtures of ortho- and para-substitution products are usually formed which are often difficult to separate. We now report on surprisingly clean chlorinations and brominations with interesting para-position selectivity in the reactions of phenols with tert-butyl hydroperoxide (TBHP) in the presence of halogenated transitionmetal alkoxides such as $TiX(OiPr)_3$ (X = Cl or Br; for a review on TBHP oxidations see [3]). The halogenating power of the $TiX_n(OiPr)_m/TBHP$ system and the selectivities involved have not yet been systematically investigated. Pertrifluoroacetic acid is known to generate hypochlorite ions in the reaction with TiCl₄ that chlorinate phenol (1) with moderate ortho-selectivity (56:22) [4]. A reverse, but also very poor para-selectivity (67.5:25) is obtained when meta-chloroperbenzoic acid is used in presence of HCl [5].

Our preliminary chlorination experiments of 2-methylphenol (2) in dichloromethane at room temperature with TiCl(O*i*Pr)₃/TBHP gave low yields but an interesting *para*selectivity encouraging further studies. The reaction was finally (see Experimental for details) conducted in THF at $-30 \degree C$ with 0.1 molar solutions of the phenols **1–3**. Increasing the chlorine content of the titanium catalyst or the addition of lithium or magnesium chloride did not improve

the conversions that were in the range of 90-95% by GC analysis after 20 h of reaction time at -30 °C. The corresponding *para*-chlorination products **5**, **7** and **9** were the only products detected by GC analysis; the isolated yields were 62, 58, and 47%, respectively [6]. For comparison, the most successful reagents for regioselective *para*-chlorination are listed in Table 1. With exception of a recent procedure of Hirano *et al.* [7] using sodium chlorite and a manganese(III)-salen complex in the chlorination of anisol some *ortho*-chlorination products (3 – 8.7%) were always formed in the described procedures.

Next, we turned our attention to the bromination of the phenols 1-4. Initially, we observed that bromination products

Table 1 Selection of reagents for para-selective chlorination of phenol 1

	-			
Reagent	Ratio ortho/para	Dichloro product (%)	Yield para (%)	
chlorodimethylsulfonium chloride [8]	3:97	_	84	
N-chlorotriethylammonium chloride [9]	3:97	_	97 ^b)	
<i>N</i> -chloropyridinium chloride [9]	3:97	_	95 ^b)	
SO_2Cl_2 , cat.: Ph ₂ S, AlCl ₃ [10]	8.7:91.3	_	89 ^b)	
2,3,4,4,5,6-hexachlorocyclohexa-2,5-dienone [11]	5.6 : 94.4 ^a)	10 ^a)	85 ^a)	
sodium chlorite, cat.: (salene)-mangan(III)-complex [7]	- ^a)	0 a)	98 ^a)	

^a) selectivity for the chlorination of anisol; ^b) based on chlorination equivalent

were formed when lithium bromide was added to the TiCl(OiPr)₃/TBHP system. To exclude the simultaneous formation of chlorides, we later used TiBr(OiPr)₃ that was prepared by mixing TiBr₄ with three parts of Ti(OiPr)₄ similarly as described for TiCl(OiPr)₃. The reaction of 1–4 was conducted at -40 °C in THF, and Table 2 shows the results of the GC analysis comprising all reaction products. It must be mentioned that naphthol did not give clean halogenation products due to oxygenations described earlier [12]. The parabromination products of 6, 8, 10, and 11 were formed in high yields and selectivity (86-92%) with only small amounts of starting material (3-8%), dibromination products (2-8%) or very little ortho-product (3%, only one case). These results are comparable with the best known reagents for selective para-bromination compiled in Table 3. It should be stressed that in the procedure described here, readily available commercial reagents are used and environmentally safe (TiO₂) side products are formed.

The reason of the high para-selectivity was unclear, and we performed a few experiments to rule out some mechanistic alternatives. Although the redox potential is relatively unfavourable, it cannot be excluded that electrophilic chlorine species in particular hypochlorite or tert-butyl hypochlorite are generated from TBHP and the titanium catalyst [20]. Therefore, sodium hypochlorite and tert-butyl hypochlorite were treated with phenol (1) and the products carefully analyzed by GC. The results are summarized in Table 4. They clearly demonstrate that ortho-chlorophenol is formed predominantly with these reagents. However, it is possible that *para*-selectivity is caused by steric shielding of the phenolic ortho-positions after ligand exchange with the titanium alkoxide to form the phenolate. Accordingly, tertbutyl hypochlorite in combination with $Ti(OiPr)_4$ or the sterically even more bulky $Zr(OtBu)_4$ was treated with phenol. In fact, the amount of the para-product especially in the presence of Zr(OtBu)₄ increased showing that steric shielding of the ortho-positions may be of some importance. However, the ratio of nearly 1:1 is far away from that observed with the TiCl(O*i*Pr)₃/TBHP or the related TiBr(O*i*Pr)₃/TBHP systems (see Tables 1 and 3) and steric shielding by formation of the titanium phenolate is not solely responsible for the observed

Table 2	Bromination	of the	phenols	1 - 4
---------	-------------	--------	---------	-------

para-selectivity. It should be noted in this connection that electron-rich phenol ethers are also halogenated by the system but without the position selectivity typical for the investigated phenols.

We thank the Deutsche Forschungsgemeinschaft for financial support of this work.

Experimental

For general methods and instrumentation see [21].

Preparation of Chloro- and Bromotitanium Triisopropoxides [14]

A solution of Ti(O*i*Pr)₄ (2.132 g, 7.5 mmol) in dry CH₂Cl₂ (10 ml) was treated at 0 °C with TiCl₄ (0.474 g, 2.5 mmol) or TiBr₄ (0.919 g, 2.5 mmol) in dry CH₂Cl₂ (10 ml). The solutions were then allowed to warm to room temperature, and stirring was continued for 24 h. The 1 molar solutions can be used for one month if stored at 4 °C.

Chlorination of Phenols (General Procedure)

A solution of the phenols 1 - 4 (1 mmol) in dry THF (10 ml) was treated with TiCl(OiPr)₃ (1 mmol, 1 mol/l in CH₂Cl₂). The solution turned orange and was stirred 30 min and cooled to -30 °C. A solution of TBHP (0.86 ml, 3 mmol, 3.5 mol/L in CH₂Cl₂) was then added dropwise within 5 min. The yellow mixture was stirred for 20 h at room temperature, quenched by addition 10% H₂SO₄ (10 ml), and the phases were separated. The aqueous phase was extracted twice with CH₂Cl₂ (each 5 ml), the combined organic phases washed twice with 10% H_2SO_4 (each 5 ml), dried (MgSO₄), and the solvent was evaporated at reduced pressure. The crude product was analyzed by GC (starting temperature 80 °C, heating rate 5 °C/min to 160 °C, then 10 °C/min). The products were purified by column chromatography (CH_2Cl_2/n -hexane 10:1) and characterized by NMR and *m.p.*; for yields see Table 1; *m.p.* **5**: 41 °C (Lit. [22] 43–44 °C) **7**: *m.p.* 43–44 °C (Lit. [23] *m.p.* 48.5–49 °C); **9**: *m.p.* 61–62 °C (Lit. [23] : *m.p.* 65– 68 °C).

Substrate	ortho-Product (%)	para-Product (%)	Dibrominated product (%)	Starting material (%)
phenol (1)	3	88	6	3
2-methylphenol (2)	-	92	3.5	4.5
3-methylphenol (3)	-	90	2	8
2-methoxyphenol (4)	_	86	8	6

Table 3	Selected	reagents	for s	selective	para-bromination	of	phenol 1
10010 0	Derected	reagenes	IOI L	5010001100	para oronniación	U 1	phonor x

Reagent	Ratio ortho/para	Dibrominated product (%)	Yield para (%)
2,4-diamino-1,3-thiazol hydrotribromide [13]	1:3	_	83
tetrabutylammonium tribromide [14]	-		93
bis(dimethylacetamid) hydrotribromide [15]	-	2.5	92
4,4-dibrom-3-methylpyrazol-5-one [16]	7.6 : 92.4	3	94
benzyltrimethylammonium tribromide [17] ^{a)}	8:92	traces	
bromodimethylsulfonium bromide [18]	3:97	_	85
N-bromsuccinimid/DMF [18]	-	_	70
hexabromocyclopentadiene [19]	-	_	80

^a) bound on a polymeric matrix

Reagent	ortho-product (%)	para-product (%)	dichloro product (%)
sodium hypochlorite	77	18	5
tert-butyl hypochlorite	60	38	2
<i>tert</i> -butyl hypochlorite/Ti(O <i>i</i> Pr) ₄	53	46	1
tert-butyl hypochlorite/Zr(OtBu) ₄	49	49	2

 Table 4 Comparison of the selectivity of hypochlorites in the reaction with phenol 1

tert-butyl hydroperoxide; regioselectivity

Bromination of Phenols (General Procedure)

A solution of the phenol (1 mmol) in THF (10 ml) was treated with TiBr(OiPr)₃ (1 ml, 1 mol) and stirred 30 min at room temperature. A solution of TBHP (0.57 ml, 2 mmol, 3.5 mol/l in CH_2Cl_2) at -40 °C was then added within 5 min. The cooling bath was removed after 2 h at -40 °C, and stirring was continued for 30 min. The orange mixture was quenched by addition of 10% H₂SO₄ (10 ml), and the aqueous phase was extracted twice with CH₂Cl₂ (each 7.5 ml). The combined organic phases were extracted three times with 5% NaOH (each 5 ml), the aqueous phase was acidified to pH 2 with 10% H_2SO_4 and then extracted three times with CH_2Cl_2 (each 5 ml). The combined organic phases were dried ($MgSO_4$), and the solvent was evaporated at reduced pressure. The crude products were analyzed by GC (see Table 3); the pure bromides were obtained by filtration through a batch of silica gel and crystallization. 6: (75%) m.p. 62 °C (Lit. [24] m.p. 66.4 °C); 8: (73%) *m.p.* 34–35 °C (Lit. [25] *m.p.* 35–36 °C); **10**: (78%) *m.p.* 61 °C (Lit. [18] *m.p.* 60–61 °C); **11**: (80%) *m.p.* 58 °C (Lit. [25] *m.p.* 61–62 °C).

Chlorination of Phenols with Sodium Hypochlorite

A solution of the phenol (1 mmol) in CH_2Cl_2 (10 ml) was treated at 0 °C with an aqueous solution of sodium hypochlorite (5 ml, 11 mmol). The resulting emulsion was stirred 4 h at room temperature. The organic phase was washed twice with 10% H₂SO₄ (5 ml), dried (MgSO₄), and the solvent was evaporated at reduced pressure. The crude oily residues were analyzed by GC (comparison with authentic samples; ratio of *ortho*- to *para* products see Table 4).

Chlorination of Phenol (1) with tert-Butyl Hypochlorite

A solution of phenol (1) (1 mmol) in CH_2Cl_2 (10 ml) was treated at 0 °C with *tert*-butyl hypochlorite [26] in CH_2Cl_2 (2 ml, 2.5 ml, 0.8 mol/L). The mixture was allowed to warm to room temperature and was stirred for 24 h. The solution was then extracted three times with 10% NaOH (each 5 ml), acidified to pH 2 and again extracted three times with CH_2Cl_2 (each 5 ml). The solvent was evaporated at reduced pressure and the *ortho* to *para* ratio analyzed by GC.

Chlorination of Phenol (1) with *tert*-Butyl Hypochlorite in Presence of $Ti(OiPr)_4$ or $Zr(OtBu)_4$

The phenols were equilibrated for 30 min at room temperature in CH_2Cl_2 (10 ml) with 1 mmol with $Ti(OiPr)_4$ or $Zr(OtBu)_4$. The reactions were then performed as described above and the *ortho* to *para* ratios analyzed by GC (ratio see Table 4).

References

- [1] Part 10: K. Krohn, J. Küpke, Eur. J. Org. Chem. 1997, 679
- [2] Selectivity, a Goal for Synthetic Efficiency (Edit.: W. Bart-
- mann; B. M. Trost), Verlag Chemie, Weinheim 1983[3] K. Krohn, Synthesis 1997, 1115
- [4] G. K. Chip, J. S. Grossert, Can. J. Chem. 1972, 50, 1233
- [5] K. H. Chung, H. J. Kim, H. R. Kim, E. K. Ryu, Synth. Commun. 1990, 20, 2991
- [6] Some loss occurred during workup.
- [7] M. Hirano, S. Yakabe, H. Monobe, T. Morimoto, Can. J. Chem. **1997**, 75, 1905
- [8] G. A. Olah, L. Ohannesian, M, Arvanaghi, Synthesis 1986, 868
- [9] J. R. L. Smith, L. C McKeer, J. M. Taylor, J. Chem. Soc., Perkin Trans. II 1987, 1533
- [10] W. D. Watson, J. Org Chem. 1985, 50, 2145
- [11] A. Guy. M. Lemaire, J.-P. Guette, Tetrahedron 1982, 2339
- [12] K. Krohn, H. Rieger, K. Khanbabaee, Chem. Ber. 1989, 122, 2323
- [13] L. Forlani, Synthesis 1980, 487
- [14] S. Kajigaeshi, T. Kakinami, T. Okamoto, H. Nakumura, M, Fujikawa, Bull. Chem. Soc. Jpn. **1987**, 60, 4187
- [15] V. A. Mikkhailov, V. A. Savelova, M. Y. Rodygin, Russ. J. Org. Chem. **1993**, 29, 1868
- [16] S. H. Mashraqui, C. D. Mudaliar, H. Hariharasubrahmanian, Tretrahedron Lett. 1997, 38, 4865
- [17] K. Smith, D. M. James, I. Matthews, M. R. Bye, J. Chem. Soc., Perkin Trans.1 1992, 1877
- [18] R. H. Mitchell, Y.-H. Lai, R. V. Williams, J. Org. Chem. 1979, 44, 4733
- [19] B. Fuchs, Y. Belsky, E. Tartakovsky, J. Zizuashvili, S. Weinman, J. Chem. Soc., Chem. Commun. 1982, 778
- [20] We thank Prof. E. Pritzkow for drawing our attention to that possibility.
- [21] K. Krohn, A. Michel, U. Flörke, H.-J. Aust, S. Draeger, B. Schulz, Liebigs Ann. Chem. 1994, 1093
- [22] G. Norwitz, N. Nataro, P. N. Keliher, Anal. Chem. 1986, 58, 639
- [23] M. Fujio, Bull. Chem. Soc. Jpn. 1975, 48, 2127
- [24] A. Schoenberg. R. F. Heck, J. Am. Chem. Soc. 1974, 96, 7761
- [25] J. Delobelle, M. Fetizon, Bull. Soc. Chem. Fr. 1961, 1900
- [26] C. Walling, J. A. McGuinness, J. Am. Chem. Soc. 1969, 91, 2053

Address for correspondence: Prof. K. Krohn Fachbereich Chemie und Chemietechnik der Univ.-GH Paderborn Warburger Str. 100 D-33098 Paderborn FAX: internat. code (0) 5251-60-3245 E-mail: kk@chemie.uni-paderborn.de