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Hydrogenation of imines catalysed by ruthenium(II)
complexes based on lutidine-derived CNC pincer
ligands†
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The preparation of new Ru(II) complexes incorporating fac-coordi-

nated lutidine-derived CNC ligands is reported. These derivatives

are selectively deprotonated by tBuOK at one of the methylene

arms of the pincer, leading to catalytically active species in the

hydrogenation of imines.

Lutidine-derived pincer complexes have become a prominent
class of derivatives in organometallic chemistry.1 In these com-
plexes, pyridine dearomatisation occurs upon deprotonation
of the acidic –CH2– arms, leading to species that are capable
of bond activation by a metal–ligand cooperative mechanism.
With respect to the flanking donor groups of the pincer, atten-
tion has been largely paid to phosphorous derivatives of type
PNX (P = phosphine, X = phosphine or a hemilabile N-donor
ligand). Of particular importance, group 8 (Ru, Fe) catalysts
based on PNX ligands or their deprotonated analogues have
provided good levels of activity in the hydrogenation of a
variety of polar functionalities, including ketones, esters,
amides, ureas, formates, carbamates, and organic carbonates.2

In addition, replacement of P-donors in PNX–Ru complexes by
more electron-donating N-heterocyclic carbene (NHC) ligands
has recently been reported. Thus, Ru pincer complexes incor-
porating CNN ligands with a hemilabile amine or pyridine
fragment have been described.3,4 Some of these derivatives are
active catalysts in the hydrogenation of non-activated esters, in
some cases outperforming their phosphine counterparts.3

Alternatively, examples of ruthenium complexes of CNC

ligands are scarce, and only derivatives of type Ru(CNC)(CO)
ClH based on meridionally coordinated CNC ligands with 2,6-
diisopropylphenyl and mesityl wingtips have been reported.4

In this communication, we present the synthesis and struc-
tural characterisation of new Ru complexes 3 containing
fac-coordinated bis-N-heterocyclic carbene CNC ligands. Further-
more, application of these complexes in the hydrogenation of
various imines is reported.

Synthesis of new bis-imidazolium salts 1 has been effected
by refluxing acetonitrile or THF solutions of the corresponding
2,6-bis(halomethyl)pyridine and 1-substituted 1H-imidazole in
a 1 : 2 ratio.5 Initial experiments directed to the synthesis of
ruthenium complexes incorporating CNC ligands derived from
1 were performed by the reaction of the imidazolium salt 1a
(Br) with different Ru precursors (RuHCl(PPh3)3, RuCl2(PPh3)3,
RuHCl(CO)(PPh3)3, RuH2(CO)(PPh3)3) in the presence of a
base. This approach, however, leads to an inseparable mixture
of products, and an alternative procedure based on N-hetero-
cyclic carbene transfer with Ag–NHC complexes was con-
sidered.6 The reaction of bis-imidazolium salts 1 with 1 equiv.
of Ag2O in CH2Cl2 at room temperature results in the clean for-
mation of bimetallic silver complexes 2 (Scheme 1).5 These
derivatives were found to be adequate for CNC ligand transfer
to RuHCl(CO)(PPh3)3. Thus, complexes 3a(Cl) and 3b(Cl) were
conveniently prepared from the appropriate silver reagent 2
and RuHCl(CO)(PPh3)3 in THF at 55 °C. Similarly, complexes
3a(BF4) and 3c(Br) were synthesised by the reaction of the cor-
responding bromide derivatives 2a(Br) and 2c(Br) with RuHCl
(CO)(PPh3)3 followed by treatment with NaBF4 and NaBr,
respectively. Finally, synthesis of 3,5-xilyl-substituted 3d(Cl)
was more conveniently carried out in CH2Cl2 at room
temperature.

Complexes 3 have been fully characterized, and their NMR
data reveal very similar features for all complexes of the series.
For example, the 31P{1H} NMR spectrum of 3a(Cl) shows a
singlet at 42.4 ppm. Furthermore, 1H and 13C{1H} NMR
spectra reflect the non-equivalence of the two halves of the
CNC ligand. In the 1H NMR spectrum of 3a(Cl), the hydrido
ligand gives rise to a doublet at −7.38 ppm (JHP = 30.4 Hz),
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while methylene protons of the CNC ligand produce four
different doublet signals in the range 4.1–5.7 ppm. The 13C
{1H} NMR spectrum shows one doublet signal for each C2

carbon atom of the NHC fragment at 180.4 (JCP = 81 Hz, trans
to PPh3) and 187.9 (JCP = 8 Hz, trans to H), whereas the carbo-
nyl ligand signal appears at 209 ppm as a doublet (JCP = 15
Hz). These data are consistent with an unprecedented fac
coordination mode of the CNC ligand, in which one NHC frag-
ment is placed trans to the hydrido ligand and the other is
trans to PPh3.

7 The CO stretch bands in the IR spectrum of
complexes 3 appear in the range 1919–1934 cm−1.

Further confirmation of the structure of coordinated CNC
ligands in complexes 3 was obtained from a study by single-
crystal X-ray diffraction of 3a(BF4) (Fig. 1). This complex, in the
solid state, consists of a distorted octahedral structure contain-
ing the CNC pincer coordinated in a fac configuration
(C2(NHC)–Ru–C2(NHC) = 101.3(8)°), while the CO is placed
trans to the pyridine nitrogen atom of the pincer system.
Complex 3a(BF4) is chiral by virtue of the stereogenic center
present in the Ru atom. Both six-membered ruthenacycles

involving the NHC and pyridine donors adopt boat-like confor-
mations defined by dihedral angles C(5)–N(1)–Ru(1)–C(14) and
C(1)–N(1)–Ru(1)–C(8) of 25.9(15)° and −47.3(15)°, respectively.
In addition, Ru–C2(NHC) distances (2.117 Å, trans to H;
2.084 Å, trans to PPh3) fall in the range of previously reported
values,3 and reflects the expected larger trans influence of the
hydrido ligand.

Treatment of complexes 3a(Cl) and 3d(Cl) with tBuOK in
THF-d8 cleanly gives derivatives 4a and 4d, respectively
(Scheme 2). These compounds are rather unstable and decom-
pose in solution at room temperature in a few hours. In the
31P{1H} NMR spectrum, complex 4a exhibits a singlet at
47.9 ppm. The hydrido ligand gives rise to a doublet at
−7.32 ppm (JHP = 23.0 Hz) in the 1H NMR spectrum, while the
vinylic proton appears as a singlet at 4.77 ppm. More interest-
ingly, the pyridine proton signals show significant upfield
shifts as a consequence of pyridine dearomatisation, appear-
ing in the range 4.6–5.5 ppm. In the 13C{1H} NMR spectrum,
the carbonyl ligand produces a doublet at 210.6 ppm (JCP = 14
Hz), and the C2–NHC carbon atoms appear as doublets at
181.2 ppm (JCP = 9 Hz) and 187.4 ppm (JCP = 96 Hz). Similar
spectroscopic data have been found for 4d. These values are in
accord with a facially coordinated CNC ligand. In addition,
intense cross-peak signals between the vinylic proton and the
C2 of the NHC fragment coordinated cis to PPh3 have been
observed in the 1H-13C HMBC experiment, indicative of a selec-
tive deprotonation of the methylene arm of the NHC fragment
coordinated trans to the hydride.

The catalytic behaviour of complexes 3 in the hydrogen-
ation of imines has been examined. In the presence of tBuOK,
complexes 3 catalyse the hydrogenation of N-

Scheme 1 Synthesis of silver (2a–d) and ruthenium (3a–d) complexes of CNC ligands.

Fig. 1 ORTEP drawing at 30% ellipsoid probability of the cationic component
of complex 3a(BF4). Hydrogen atoms, except for the hydrido ligand, have been
omitted for clarity. Selected bond lengths [Å] and angles [°]: Ru(1)–N(1)
2.233(16); Ru(1)–C(8) 2.084(19); Ru(1)–C(14) 2.117(19); Ru(1)–C(20) 1.79(2);
C(8)–Ru(1)–C(14) 101.3(8); N(1)–Ru(1)–C(20) 173.3(8); C(8)–Ru(1)–N(1) 80.8(7);
C(14)–Ru(1)–N(1) 87.7(7); C(8)–Ru(1)–C(20) 92.6(9); C(14)–Ru(1)–C(20) 94.9(9);
N(1)–Ru(1)–P(1) 92.1(4). Scheme 2 Synthesis of 4a and 4d.
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benzylideneaniline under 5 bar of H2 at 70 °C in 2-methyltetra-
hydrofuran, using an S/C/B ratio of 1000/1/10 (Table 1, entries
1–4). In the series, complex 3b(Cl) leads to the more active cata-
lyst. Next, we sought to probe the scope of the reaction, and
thus various N-aryl and N-alkyl aldimines were examined. Sub-
strates bearing electron-releasing substituents are also reduced
with high activities (entry 5), whereas the presence of strongly
electron-withdrawing substituents in both aryl groups signifi-
cantly reduces the reactivity (entries 6 and 7). Also, an N-benzyl
aldimine was hydrogenated more slowly than the analogous
N-phenyl imine (entry 8). Finally, complex 3b(Cl) also catalyses
the hydrogenation of a series of N-aryl ketimines with high
turnover frequencies, independently of the electronic charac-
teristics of the aryl substituents (entries 9–15).

Conclusions

In summary, new ruthenium complexes 3 incorporating
neutral CNC ligands have been prepared and structurally
characterised. Contrary to the previously observed mer geome-
try of coordinated CNC ligands, complexes 3 exhibit a fac
coordination mode for the pincer, which might be relevant for
the design of novel chiral catalysts based on structurally
similar terdentate ligands. Upon reaction with tBuOK, selective
deprotonation at one of the methylene arms of the CNC ligand
occurs, leading to dearomatisation of the pyridine ring.
Finally, complexes 3 provide significant levels of catalytic
activity in the hydrogenation of a variety of imines. This rep-
resents, to the best of our knowledge, the first application of
Ru complexes containing dearomatised lutidine-derived pincer
ligands in the important hydrogenation of CvN bonds.8 Inves-
tigations directed to obtaining further insight into the mech-
anism of the imine hydrogenation, as well as the use of
complexes 3 in other catalytic processes are being pursued.
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