

Communication

Asymmetric Copper Hydride-Catalyzed Markovnikov Hydrosilylation of Vinylarenes and Vinyl Heterocycles

Michael William Gribble, Michael T. Pirnot, Jeffrey S Bandar, Richard Y. Liu, and Stephen L. Buchwald

J. Am. Chem. Soc., Just Accepted Manuscript • DOI: 10.1021/jacs.6b13029 • Publication Date (Web): 24 Jan 2017

Downloaded from http://pubs.acs.org on January 24, 2017

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

Journal of the American Chemical Society is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

7 8

9 10

11

12 13

14 15 16

17 18

19

20

21

22

23 24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39 40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59 60

Asymmetric Copper Hydride-Catalyzed Markovnikov Hydrosilylation of Vinylarenes and Vinyl Heterocycles

Michael W. Gribble Jr, Michael T. Pirnot,[†] Jeffrey S. Bandar,[†] Richard Y. Liu, and Stephen L. Buchwald*

Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States

Supporting Information Placeholder

ABSTRACT: We report a highly enantioselective CuHcatalyzed Markovnikov hydrosilylation of vinylarenes and vinyl heterocycles. This method has a broad scope and enables both the synthesis of isolable silanes and the conversion of crude products to chiral alcohols. DFT calculations support a mechanism proceeding by hydrocupration followed by σ -bond metathesis with a hydrosilane.

Chiral silanes undergo a number of useful transformations^{1a,b} and possess more desirable toxicological and environmental characteristics than many related maingroup reagents.^{2a,b} However, they can be difficult to prepare due to the scarcity of broadly applicable methods for the construction of C(sp³)-Si bonds in functionalized molecules.^{3a,b} This limitation also discourages the pursuit of silane drug-candidates, despite the promise organosilicon compounds hold for a variety of therapeutic applications.^{3a-c} Since functionalized alkylsilanes are additionally important to many modern materials and industrial processes,^{4a,b} selective new C–Si bondforming reactions have the potential to be enabling technologies for researchers across a wide range of disciplines.

Late transition metal-catalyzed olefin hydrosilylation (Figure 1, a) is one of the core synthetic transformations of organosilicon chemistry.^{4b,c} The archetypal Pt-catalyzed variant^{4b} is among the highest-volume industrial applications of homogenous catalysis,^{4b,5c,i} and the need to replace Pt in this role with more abundant metals has spurred the discovery of many anti-Markovnikov hydrosilylation catalysts based on iron,^{5a-f} cobalt^{5g-j}, and nickel.^{5k-q} In contrast, Markovnikov olefin hydrosilylation catalysts are uncommon, and the synthetic capabilities of the reactions are presently limited.^{5e,6} Hayashi's discovery that Pd-MOP complexes catalyze highly enantioselective Markovnikov hydrosilylation with trichlorosilane^{7a-e} was a milestone achievement in asymmetric catalysis.⁸ While this reaction is of exceptional fundamental importance, its reported scope is limited; in particular, we are aware of no applications of this methodology to the hydrosilylation of heterocyclic or appreci-

Figure 1. ^{*a*}Metal-catalyzed hydrosilylation of olefins; ^{*b*}Pd-catalyzed asymmetric Markovnikov hydrosilylation of

vinylarenes; ^{*c,d*}CuH-catalyzed asymmetric hydrosilylation of styrenes; ^{*e*}Proposed mechanism for the hydrosilylation.

Table 1. Optimization of the CuH-catalyzed Hydrosilylation of Styrene.

$4.0\% \operatorname{Cu(OAc)}_2$ $4.4\% (S,S)-Ph-BPE$ silane (n equiv.) $40 \degree C, \text{ solvent, time}$ $4.0\% \operatorname{Cu(OAc)}_2$ Me					Ph Ph Ph Ph Ph Ph Ph Ph Ph Ph	
entry	silane	n	solvent (0.5 M)	time (d)	product (%) ^b	ee (%)°
1	Ph ₂ SiH ₂	3.0	THF	2	86	79
2	Ph_2SiH_2	3.0	dioxane	2	92	82
3	Ph_2SiH_2	3.0	MTBE	2	92	88
4	Ph_2SiH_2	1.2	THF	5	24	70
5	Ph ₂ SiH ₂	1.2	2-Me-THF	5	17	72
6	Ph ₂ SiH ₂	1.2	toluene	5	23	76
7	Ph_2SiH_2	3.6	none	2	79	94
8 ^d	PhSiH ₃	3.0	THE	2	91 ^e	96
9	Me ₂ PhSiH	3.0	THF	2	-	nd
10	Me(EtO) ₂ SiH	3.0	THF	2	-	nd

^{*a*}Unless otherwise noted, reactions were conducted on 0.5 mmol scale; ^{*b*}Unless otherwise noted, yields were determined by GC with dodecane internal standard; ^{*c*}Determined by chiral HPLC; ^{*d*}0.2 mmol scale; ^{*e*}Isolated yield.

ably Lewis-basic olefins, presumably because they are incompatible with the sensitive trichlorosilyl group.

Our group has recently developed several functional group-tolerant Markovnikov hydrofunctionalization reactions that proceed through electrophilic interception of alkylcopper intermediates generated by asymmetric hydrocupration of vinylarenes^{9a-e} with an active chiral copper hydride catalyst (I, Figure 1, e, step i). We reasoned that an asymmetric Markovnikov hydrosilylation could be achieved if the alkylcopper species II (Fig 1, e) could undergo stereoretentive transmetallation with a hydrosilane (Fig 1, e, step ii).^{10,11a,b} The hypothesized transformation would constitute an attractive alternative to Pd catalysis if it could provide isolable silanes and silanederivatives with high generality using readily available catalyst precursors. However, to our knowledge, copper-catalyzed olefin hydrosilylation has not been described in the primary literature,¹² despite pervasive use of hydrosilane reductants in copper hydride catalysis.^{9a,13a-c} This observation suggested that the proposed metathesis step could be challenging and that competitive side reactions might present challenges.

With styrene as our model substrate, we observed clean formation of the desired Markovnikov hydrosilylation product using either PhSiH₃ or Ph₂SiH₂, but the enantioselectivity obtained with Ph₂SiH₂ was modest (Table 1, entry 1). The selectivity with Ph₂SiH₂ varied with change in the solvent, although without an obvious correlation with solvent properties. Reducing the concentration of silane was deleterious for enantioselectivity, whereas conducting the reaction neat resulted in excellent levels of asymmetric induction (Table 1, entries 4 and 7). These observations suggest that rapid trapping of the alkylcopper intermediate by the silane may be a **Table 2. Hydrosilylation of Vinylarenes.**

^{*a*}Unless otherwise noted, yields and enantiomeric excesses are the averages for two runs; ^{*b*}Reaction was conducted with 2.0 mol% Cu(OAc)₂ and 2.2 mol% (*S*,*S*)-Ph-BPE; ^{*c*}Reaction mixture was stirred in a 40 °C oil bath; ^{*d*}Reaction was conducted at ambient temperature; ^{*e*}1.5 equiv. silane were used; ^{*f*}Enantiomeric excesses were determined for the respective silanol derivatives; ¹⁴ ^{*g*}Extrema are the results from two experiments. ¹⁴

key factor for obtaining high levels of enantioselectivity, particularly since the hydrocupration step is known to be highly enantioselective^{9a-e} in a variety of solvents. This notion was further supported by the observation that the more reactive PhSiH₃ underwent hydrosilylation in 96% ee even in THF solution (Table 1, entry 8).

With the goal of generating easily isolable products, we chose to use Ph_2SiH_2 in our exploration of the vinylarene scope. The results of these studies are presented in Table 2. The hydrosilylation occurred in high yield and with good to excellent enantioselectivity with substrates containing either electron-withdrawing or electron-donating groups and accommodated substituents at any of the three positions on the aryl ring. The highest levels of enantioselectivity were obtained with π - donor substituents at either the *para*- or *ortho*-positions (e.g., examples **2** and **9**, Table 2). Electron-withdrawing groups were tolerated at the *meta*-position, and we noted 1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

^{*a*}Yields and enantiomeric excess values are averages from two runs; ^{*b*}Isolated yield pertains to the regioisomer mixture; ^{*c*}NMR yield pertains to the major regioisomer; ^{*d*}2.0 equiv. silane used; ^{*e*}MTBE used as the solvent; ^{*f*}Reaction run for 36 h.

that conducting the reaction at room temperature benefited the selectivity in those cases. Certain functional groups, such as the nitro group and halogens other than fluorine, were incompatible with the reaction, as were sterically demanding *ortho*-substituents. Underscoring the utility of the protocol, we conducted a reaction on 10 mmol scale without significant loss of yield or enantioselectivity (eq 1).

Table 3 illustrates that a variety of vinyl heterocycles proved to be viable substrates for the reaction. Silanes **11** and **12** (Table 3, A) were formed with high enantioselectivity, whereas a less electronically biased heterocycle gave product with modest asymmetric induction (example **13**, Table 3, A). These results mirrored the enantioselectivity trends evident in Table 2 and those

Figure 2. DFT model for copper-catalyzed hydrosilylation of styrene (L = DCyPE). M06/6-311+G(d,p) SDD/SMD(THF)//B3LYP/6-31G(d)-SDD Gibbs free energy values displayed in kcal/mol. Corresponding PBE0/6-311+G(d,p)-SDD/SMD(THF)//B3LYP/6-31G(d)-SDD values shown in brackets. Key bond distances shown in units of Å. Carbon-bonded hydrogen atoms are omitted for clarity.

our group has observed in the CuH-catalyzed hydroamination of vinylarenes.^{9e}

A crystal structure of 14 (Table 3, A) showed the absolute stereochemistry of the major enantiomer to be (S), which is consistent with the mechanism shown in Figure 1, e.^{9c,d} However, we noted that several entries in Tables 1 and 2 exhibited lower ee's than were obtained in previously reported reactions thought to proceed by the same hydrocupration step.^{9c,d} We considered two mechanistic hypotheses that might account for these discrepancies: one posits a racemization step occurring after hydrocupration (i.e., affecting intermediate II of Figure 1, e); the second invokes gradual formation of an undesired catalytically active species that undergoes hydrocupration with poor selectivity in the presence of certain substrates. In either case, one would expect that accelerating the transmetallation (Figure 1, e, step ii), e.g., by employing the more reactive PhSiH₃, would result in higher enantioselectivity. PhSiH₃ would also be ideal for derivatization attempts using crude products, since it could be easily evaporated beforehand. Hydrosilylation with PhSiH₃ occurred in <12 h at room temperature in most examples, and we were able to perform Tamao oxidations¹⁵ on the crude products by incorporating EDTA into the reaction mixtures (Table 3, B), which suppresses copper-catalyzed disproportionation of hydrogen peroxide. The enantioinduction obtained with PhSiH₃ was indeed broadly superior to that observed with Ph₂SiH₂ and further appeared to be less sensitive to

substrate electronic bias (compare 16, 17 [Table 3, B] and 13 [Table 3, A]).

To sharpen our mechanistic hypothesis,¹⁶ we performed DFT calculations on the CuH-catalyzed hydrosilvlation of stvrene with PhSiH₃ using bis(dicyclohexylphosphino)ethane (DCyPE) as the model ligand (Figure 2). After hydrocupration, we located a σ -complex C upon interaction of copper with phenylsilane. From here, σ -bond metathesis may proceed irreversibly through a thermally accessible fourmembered transition state TS-C (+30.9 or +35.8 kcal/mol relative to **B**). The net reaction is energetically favorable (A vs. D).

In summary, we have developed a broadly applicable base-metal-catalyzed asymmetric hydrosilylation that provides access to bench-stable silanes and chiral alcohol derivatives. The method uses mild conditions, employs commerically available catalyst-precursors, and enables the functionalization of a variety of medicinally relevant heterocyclic olefins. While our mechanistic hypotheses remain speculative at this time, we believe they provide a useful framework for rationalizing the observed selectivity trends. We also believe that a thorough mechanistic investiation will be of value to our group's ongoing efforts to develop new CuH-catalyzed transformations.

ASSOCIATED CONTENT

Supporting Information. The Supporting Information is available free of charge on the ACS Publications website. Experimental procedures and characterization data for all compounds (PDF, CIF)

AUTHOR INFORMATION

Corresponding Author

*Email: sbuchwal@mit.edu

Author Contribution

 $\ensuremath{^{+}\text{M.T.P.}}$ and J.S.B. made equal contributions to this work.

Notes

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59 60 The authors declare no competing financial interests.

ACKNOWLEDGMENT

The National Institutes of Health under award number GM46059 supported research reported in this publication. M.T.P. and J.S.B. thank the National Institutes of Health for postdoctoral fellowships (1F32GM113311 [M.T.P], GM112197 [J.S.B.]). We thank Dr. Yi-Ming Wang (MIT) for advice on the preparation of this manuscript, Jonathan Becker (MIT) for X-ray crystallographic analysis, and the National Institutes of Health for a supplemental grant for the purchase of supercritical fluid chromatography (SFC) equipment (GM058160-17S1).

REFERENCES

(1) (a) Chan, T. H.; Wang, D. Chem. Rev. 1992, 92, 995-1006. (b)
Fleming, I., Barbero, A., Walter, D. Chem. Rev. 1997, 97, 2063-2192.
(2) (a) Denmark, S. E.; Ambrosi, A. Org. Proc. Res. Dev. 2015, 19, 982-994. (b) Nakao, Y.; Hiyama, T. Chem. Soc. Rev. 2011, 40, 4893-4901.

(3) (a) Min, G. K.; Hernández, D.; Skrydstrup, T. *Acc. Chem. Res.* **2013**, *46*, 457-470. (b) Bo, Y.; Singh, S. Duong, H. Q.; Cao, C.; Sieburth, S. M. *Org. Lett.* **2011**, *13*, 1787-1789. (c) Franz, A. K.; Wilson, S. O. *J. Med. Chem.* **2013**, 56, 388-405.

(4) (a) See volumes III–VI of Organosilicon Chemistry: From Molecules to Materials; Auner, N., Weis, J., Eds.; Wiley-VCH: Weinheim, Germany, 1996 (III), 2000 (IV), 2004 (V), 2005 (VI). (b) Troegel, D.; Stohrer, J. *Coord. Chem. Rev.* **2011**, *255*, 1440-1459 (c) Nakajima, Y.; Shimada, S. *RSC Adv.* **2015**, *5*, 20603-20616.

(5) (a) Nesmeyanov, A. N.; Freidlina, R. K. Chukovskaya, E. C.; Petrova, R. G.; Belyavksy, A. B. Tetrahedron, 1962, 17, 61-68. (b) Bart, S. C.; Lobkovsky, E.; Chirik, P. J. J. Am. Chem. Soc. 2004, 126, 13794-13807. (c) Tondreau, A. M.; Atienza, C. C. H.; Weller, K. J.; Nye, S. A.; Lewis, K. M.; Delis, J. G. P.; Chirik, P. J. Science, 2012, 335, 567-570. (d) Chen, J.; Cheng, B.; Cao, M.; Lu, Z. Angew. Chem. Int. Ed. 2015, 54, 4661-4664. (e) Du, X.; Zhang, Y.; Peng, D.; Huang, Z. Angew. Chem. Int. Ed. 2016, 55, 6671-6675. (f) Noda, D.; Tahara, A.; Sunada, Y.; Nagashima, H. J. Am. Chem. Soc. 2016, 138, 2480-2483. (g) Harrod, J. F.; Chalk, A. J. J. Am. Chem. Soc. 1965, 87, 1133. (h) Mo, Z.; Liu, Y.; Deng, L. Angew. Chem. Int. Ed. 2013, 52, 10845-10849. (i) Chen, C.; Hecht, M. B.; Kavara, A.; Brennessel, W. W.; Mercado, B. Q. Weix, D. J.; Holland, P. L. J. Am. Chem. Soc. 2015, 137, 13244-13247. (j) Schuster, C. H.; Diao, T.; Pappas, I.; Chirik, P. J. ACS Catal. 2016, 6, 2632-2638. (k) Chen, Y.; Sui-Seng, C.; Boucher, S.; Zargarian, D. Organometallics, 2005, 24, 149-155. (l) Lipschutz, M. I.; Tilley, T. D. Chem. Commun. 2012, 48, 7146-7148. (m) Kuznetsov, A.; Gevorgyan, V. Org. Lett. 2012, 14, 914-917. (n) Kuznetsov, A.; Onishi, Y.; Inamoto, Y.; Gevorgyan, V. Org. Lett. 2013, 15, 2498-2501. (o) Buslov, I.; Becouse, J.; Mazza, S.; Montandan-Clerc, M.; Hu, X. Angew. Chem. Int. Ed. 2015, 54, 14523-14526. (p) Pappas, I.; Treacy, S.; Chirik, P. J. ACS Catal. 2016, 6, 4105-4109. (q) Nakajima, Y.; Sato, K.; Shimada, S. Chem. Rec. 2016, 16, 2379-2387.

(6) During the preparation of our manuscript, the Lu group described an alternative approach to the synthesis of chiral benzylic silanes by Co-catalyzed alkyne hydrosilylation followed by *in situ* enantioselective hydrogenation. See: Guo, J.; Shen, X. Lu, Z. *Angew. Chem. Int. Ed.* **2017**, *56*, 615-618.

(7) (a) Han, J. W.; Hayashi, T. *Tetrahedron: Asymmetry*, **2014**, *25*, 479-484. (b) Uozumi, Y.; Hayashi, T. *J. Am. Chem. Soc.* **1991**, *113*, 9887-9888. (c) Kitayama, K.; Uozumi, Y.; Hayashi, T. *J. Chem. Soc., Chem. Commun.* **1995**, 1533-1534. (d) Hayashi, T.; Hirate, S.; Kitayama, K.; Tsuji, H.; Torii, A.; Uozumi, Y. *J. Org. Chem.* **2001**, *66*, 1441-1449. Also see: (e) Jensen, J. F.; Svendsen, B. Y.; la Cour, T. V.; Pedersen, H. L.; Johannsen, M. *J. Am. Chem. Soc.* **2002**, *124*, 4558-4559.

(8) The Nishiyama group has described a rhodium-catalyzed asymmetric synthesis of bench-stable silanes, but the regioselectivity of this reaction is modest in many cases: Naito, T.; Yoneda, T.; Ito, J-I.; Nishiyama, H. *Synlett* **2012**, *23*, 2957-2960.

(9) See, e.g.: (a) Pirnot, M. T.; Wang, Y-M.; Buchwald, S. L. Angew. Chem. Int. Ed. 2016, 55, 48-57. (b) Bandar, J. S.; Ascic, E.; Buchwald, S. L. J. Am. Chem. Soc. 2016, 138, 5821-5824. (c) Wang, Y-M.; Buchwald, S. L. J. Am. Chem. Soc. 2016, 5024-5027. (d) Yang, Y.; Perry, I. B.; Buchwald, S. L. J. Am. Chem. Soc. 2016, 138, 9787-9790. (e) Bandar, J. S.; Pirnot, M. T.; Buchwald, S. L. J. Am. Chem. Soc. 2015, 137, 14812-14818.

(10) Marks has proposed this mechanism for a lanthanide-catalyzed hydrosilylation of styrenes. Fu, P-F; Brard, L.; Li, Y.; Marks, T. J. *J. Am. Chem. Soc.* **1995**, *117*, 7157-7168. Also see ref. 5(k).

(11) For a mechanistically analogous Cu-catalyzed hydroboration, see: (a) Noh, D.; Chea, H.; Ju, J.; Yun, J. *Angew. Chem. Int. Ed.* **2009**, *48*, 6062-6064. (b) Noh, D.; Yoon, S. K.; Won, J.; Lee, J. Y.; Yun, J. *Chem. Asian J.* **2011**, *6*, 1967-1969.

Journal of the American Chemical Society

(12) Dow Corning holds a patent claiming certain copper-based catalysts for the hydrosilylation of olefins. Brandstadt, K.; Cook, S.; Nguyen, B. T.; Surgenor, A.; Taylor, R.; Tzou, M-S. Copper Containing Hydrosilylation Catalysts and Compositions Containing the Catalysts. WO 2013043792 A, March 28, 2013.
(13) See, e.g., (a) Deschamp, J.; Chuzel, O.; Hannedouche, J.; Riant,

O. Angew. Chem. Int. Ed. 2006, 45, 1292-1297. (b) Rendler, S. Oes-

treich, M. Angew. Chem. Int. Ed. 2007, 46, 498-504. (c) Deutsch, C.; Krause, N.; Lipshutz, B. H. Chem. Rev. 2008, 108, 2916-2927.

(14) See supporting information.

(15) Tamao, K.; Ishida, N.; Tanaka, T.; Kumada, M. Organometallics, **1983**, *2*, 1694-1696.

(16) For a discussion of metal-catalyed hydrosilylation mechansims, see refs. 4(b) and 4(c).

60