ChemComm

Accepted Manuscript

This article can be cited before page numbers have been issued, to do this please use: J. Zhu, A. Bunescu, C. Piemontesi and Q. Wang, *Chem. Commun.*, 2013, DOI: 10.1039/C3CC46361C.

This is an *Accepted Manuscript*, which has been through the RSC Publishing peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, which is prior to technical editing, formatting and proof reading. This free service from RSC Publishing allows authors to make their results available to the community, in citable form, before publication of the edited article. This *Accepted Manuscript* will be replaced by the edited and formatted *Advance Article* as soon as this is available.

To cite this manuscript please use its permanent Digital Object Identifier (DOI®), which is identical for all formats of publication.

More information about *Accepted Manuscripts* can be found in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics contained in the manuscript submitted by the author(s) which may alter content, and that the standard **Terms & Conditions** and the **ethical guidelines** that apply to the journal are still applicable. In no event shall the RSC be held responsible for any errors or omissions in these *Accepted Manuscript* manuscripts or any consequences arising from the use of any information contained in them.

RSCPublishing

www.rsc.org/chemcomm Registered Charity Number 207890 Published on 10 September 2013. Downloaded by University of Missouri - St Louis on 11/09/2013 11:33:46.

www.rsc.org/xxxxxx

View Article Online DOI: 10.1039/C3CC46361C

Heteroannulation of Arynes with N-Aryl-α-Aminoketones for the Synthesis of Unsymmetrical N-Aryl-2,3-Disubstituted Indoles: An Aryne Twist of Bischler-Möhlau Indole Synthesis

45

Ala Bunescu,^a Cyril Piemontesi,^a Qian Wang^a and Jieping Zhu*^a

s Received (in XXX, XXX) Xth XXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX DOI: 10.1039/b000000x

Reaction of 2-(trimethylsilyl)aryl triflates 1 with N-aryl-αamino ketones 2 afforded N-aryl-2,3-disubstituted indoles in good to excellent yields with complete control of the 10 substitution patterns. This methodology allowed for the first time a one-step synthesis of unsymmetric 2,3-dialkyl substituted indoles in a regiospecific manner.

N-arylindoles are present in a large number of biologically and medicinally relevant compounds with proven utilities in ¹⁵ pharmacology, agrochemistry and material science.¹ Despite a large number of existing methodologies that have been developed over the past century,² methods allowing direct access to *N*-arylindoles³ remain scarce.

Scheme 1 Reaction of arynes with *N*-aryl-*a*-aminoketones to *N*-arylindoles

As a continuation of our research program aiming at developing efficient syntheses of indoles⁴ and indole-containing natural ²⁵ products,⁵ we became interested in developing a one-step synthesis of *N*-arylindoles by a new benzannulation reaction between arynes,^{6,7} generated in situ from 2-(trimethylsilyl)aryl triflates **1**, and *N*-aryl- α -aminoketones **2** (Scheme 1, eq 1).^{8,9} The advantage of the present transformation is that it should allow the

³⁰ regiospecific synthesis of 2,3-disubstituted indoles in contrast to the classic Bischler-Möhlau reaction, which inevitably afforded a mixture of two regioisomeric indoles (Scheme 1, eq 2).¹⁰ In

addition, it could provide a valuable solution to a one-step synthesis of unsymmetrical 2,3-dialkyl (non-methyl) substituted ³⁵ indoles, a longstanding and challenging problem in the field of indole synthesis.¹¹

Table 1 Optimizations of reaction conditions^a

Entry	Additive	Solvent	T (°C)	Yield ^e
1		CH CN	65	50
1		CH3CN	05	50
2		EtCN	65	61
3		<i>n</i> -PrCN	65	58
4		<i>i</i> -PrCN	65	62
5		t-BuCN	65	44
6	18-C-6 ^b	i-PrCN/DCE (1/4)	rt	$(72)^{f}$
7	18-C-6 ^b	<i>i</i> -PrCN	rt	(52) ^f
8	18-C-6 ^{b,c}	i-PrCN/DCE (1/4)	rt	$(65)^{f}$
9	$18-C-6^{b}$, $Cs_{2}CO_{3}^{d}$	i-PrCN/DCE (1/4)	rt	71(75)

⁴⁰ ^{*a*} All reactions were carried out under Ar using **2a** (1.0 equiv), **1a** (1.4 equiv), CsF (3.0 equiv), solvent (*c* 0.14 M); ^{*b*} 1.1 equiv of 18-C-6; ^{*c*} KF (3.0 equiv) was used as fluoride source; ^{*d*} 2.0 equiv of Cs₂CO₃; ^{*e*} Isolated yield; ^{*T*} Yield in parenthesis is calculated based on ¹H NMR spectrum using CH₂Br₂ as an internal standard; DCE = 1,2-dichloroethane.

We began our investigation using 2-(trimethylsilyl)phenyl triflate (1a)¹² and 3-(phenylamino)butan-2-one (2a) as test substrates for evaluating reaction conditions (Table 1). Performing the reaction in acetonitrile at 65 °C in the presence of CsF afforded the ⁵⁰ desired indole **3a** in 50% yield accompanied by a significant amount of **3aa** (32%) and **3ab** (9%, Scheme 2). Mechanistically, nucleophilic addition of amine **2a** to the *in situ* generated benzyne **A** would lead to intermediate **B** from which, three different reactions could take place leading to the observed products. ⁵³ Indole **3a** resulted from the cyclization of **B** followed by dehydration of 3-hydroxyindoline **C** as we expected (pathway *a*). Aniline **3aa** could be produced by an intramolecular proton transfer of intermediate **B** (pathway *b*).¹³ This pathway, a side reaction to be avoided in our case, has been elegantly exploited ⁶⁰ for the synthesis of functionalized anilines.¹⁴ The formation of

This journal is © The Royal Society of Chemistry [year]

3ab was less evident and we assumed that it might go through the intermediate **D** resulting from the nucleophilic addition of tertiary amine **C** onto the benzyne **A**. Intramolecular proton transfer followed by β -elimination would then afford **3ab** (pathway c)¹⁵

- ⁵ To channel the reaction into the pathway *a*, an extensive survey of reaction conditions was carried out varying the fluoride sources (CsF, KF, TBAF), the solvents, the temperature, the reaction time, the bases, and the additives. Some representative results are presented in Table 1. Addition of crown ether enabled
- ¹⁰ the annulation to be realized at room temperature that effectively suppressed the formation of side product **3ab**. Overall, the optimized conditions consisted of performing the reaction in a solvent mixture (isopropionitrile/dichloroethane = 1/4) in the presence of CsF (3.0 equiv), Cs₂CO₃ (2.0 equiv) and 18-C-6 (1.1 ¹⁵ equiv) at room temperature (entry 9).¹⁶ Under these conditions, the indole **3a** was formed together with a variable amount of *N*phenyl-2,3-dimethyl-3-hydroxy indoline **C** (Scheme 2). However, the latter readily underwent dehydration upon purification on silica gel column chromatography to provide indole **3a** in 71% ²⁰ overall yield.

Published on 10 September 2013. Downloaded by University of Missouri - St Louis on 11/09/2013 11:33:46.

Scheme 2 Possible reaction pathways leading to 3a, 3aa and 3ab

The generality of this reaction was subsequently explored by varying electronic and steric properties of both 1 and 2 under the ²⁵ optimal conditions. Since the dehydration of 3-hydroxyindoline C was not spontaneous in some cases, the crude annulation product was first treated with silica gel in MeOH/CH₂Cl₂/AcOH (1/1/1, 40 °C) before purification. The results are summarized in Table 2. The effect of *N*-aryl substituents was studied first (see **3b-g**).

- ³⁰ Strong (OMe) and weak (Me) electron donating groups were tolerated in the *ortho* and *para* positions. The presence of an *ortho* substituent in the *N*-aryl group had a positive effect on the reaction outcome (**3a** vs **3e** vs **3g**). Weak electron withdrawing group (Br, **3f**) was well tolerated. However, strong electron-
- ³⁵ withdrawing group (NO₂) in *para* position reduced significantly the reaction efficiency furnishing **3b** in only 21% yield. The reduced nucleophilicity of the *p*-nitroaniline could account for this observation. Fortunately, by performing the reaction in EtCN at 65 °C in the absence of 18-C-6, **3b** can be isolated in 47%
- ⁴⁰ yield. Variation of substituents at position 2 and 3 of indole was next examined (**3h-3r**). It was noticed that the efficiency of the reaction increased as the size of the R¹ substituent increased (**3h**-

Table 2 Reaction Scope^a

⁵⁰ ^{*a*} All reactions were carried out under Ar using *N*-aryl-*α*-aminoketone **2** (0.21 mmol, 1.0 equiv), **1** (0.29 mmol, 1.4 equiv), CsF (0.63 mmol, 3.0 equiv), Cs₂CO₃ (0.42 mmol, 2.0 equiv), 18-C-6 (0.23 mmol, 1.1 equiv), *i*-PrCN/DCE (1/4) (1.5 mL, *c* 0.14 M) at RT for 2-6 h then MeOH/CH₂Cl₂/AcOH (1/1/1), silica gel, 40 °C; ^{*b*} EtCN (*c* 0.14 M), 65 °C; ^{55 c} the starting material was 2-methyl-5-(phenylamino)oct-7-en-4-one; ^{*d*} inseparable mixture; ^{*c*} the two compound were separated.

Finally, substituted 2-(trimethylsilyl)aryl triflates 1 were examined. Electron rich and poor symmetric arynes all reacted
60 well with N-aryl α-aminoketones to furnish N-arylindoles in moderate to good yields (3s-w). As expected, a mixture of two regioisomers were produced (3x/3x', 3y/3y') when 3-methyl-2-(trimethylsilyl)phenyl triflate, and 4-methoxy-2-(trimethylsilyl)phenyl triflate were used as aryne precursors.
65 However, a single regioisomer 3z was produced with 3-methoxy-

2 | Journal Name, [year], [vol], 00-00

2-(trimethylsilyl)phenyl triflate in accordance with the literature precedents.¹⁸ An arylation product **3z'** (R = 3-methoxy phenyl, 17%) was also isolated resulting from the nucleophilic addition of **3z** (R = H) to benzyne in this case.

5 Conclusions

In summary, we developed a novel heteroannulation reaction between benzynes and *N*-aryl α -aminoketones for the synthesis of *N*-aryl-2,3-disubstituted indoles **3** with a wide application scope. The reaction allowed, for the first time, a one-step synthesis of ¹⁰ unsymmetrical 2,3-dialkyl (non methyl) substituted indoles with

complete control of regioseletivity. We thank EPFL (Switzerland), Swiss National Science Foundation (SNSF) and Swiss National Centres of Competence in Research (NCCR) for financial supports

15 Notes and references

^a Laboratory of Synthesis and Natural Products, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH 5304, 1015 Lausanne (Switzerland). Fax: +41 (0)21 693 97 40; Tel: +41 (0)21 693 97 42; E-mail:

20 jieping.zhu@epfl.ch

Published on 10 September 2013. Downloaded by University of Missouri - St Louis on 11/09/2013 11:33:46.

† Electronic Supplementary Information (ESI) available: Experimental procedures and characterization data. See DOI: 10.1039/b000000x/

- (a) *Indoles* (Ed.: R. J. Sundberg), Academic Press, London, **1996**; (b)
 M. Ishikura, K. Yamada, T. Abe, *Nat. Prod. Rep.*, 2010, **27**, 1630-1680.
- For recent reviews on the syntheses of indoles, see: (a) G. Zeni, R. C. Larock, *Chem. Rev.*, 2004, **104**, 2285 2310; (b) G. R. Humphrey, J. T. Kuethe, *Chem. Rev.*, 2006, **106**, 2875 2911; (c) L. Ackermann,
- Synlett, 2007, 507 526; (d) K. Krüger, A. Tillack, M. Beller, Adv. Synth. Catal., 2008, 350, 2153 2167; (e) S. Cacchi, G. Fabrizi, Chem. Rev., 2011, 111, PR215 PR283; (f) D. F. Taber, P. K. Tirunahari, Tetrahedron, 2011, 67, 7195 7210; (g) S. Cacchi, G. Fabrizi, A. Goggiamani, Org. React., 2012, 76, 281-534.
- ³⁵ 3 Selected examples of *N*-arylindole synthesis: For *N*-arylation strategy, see: (a) D. H. R. Barton, J. P. Finet, J. Khamsi, *Tetrahedron Lett.*, 1988, **29**, 1115-1118; (b) W. J. Smith III, J. S. Sawyer, *Tetrahedron Lett.*, 1996, **37**, 299-302; (c) G. Mann, J. F. Hartwig, M. S. Driver, C. Fernández-Rivas, *J. Am. Chem. Soc.*, 1998, **120**, 827-
- ⁴⁰ 828; (d) D. W. Old, M. C. Harris, S. L. Buchwald, Org. Lett., 2000,
 2, 1403-1406; (e) H. Zhang, Q. Cai, D. Ma, J. Org. Chem., 2005, 70,
 5164-5173; (f) M. Taillefer, N. Xia, A. Ouali, Angew. Chem., Int. Ed., 2007, 46, 934-936; For Fischer cyclization, see: (g) S. Wagaw,
 B. H. Yang, S. L. Buchwald, J. Am. Chem. Soc., 1999, 121, 10251-
- ⁴⁵ 10263. For transition metal-mediated tandem amination/cyclization, see: (h) L. Ackermann, Org. Lett., 2005, **7**, 439-442; (i) Y.-Q. Fang, M. Lautens, Org. Lett., 2005, **7**, 3549-3552; (j) M. C. Willis, G. N. Brace, T. J. K. Findlay, I. P. Holmes, Adv. Synth. Catal., 2006, **348**, 851-856; (k) Y. Liang, T. Meng, H.-J. Zhang, Z. Xi, Synlett, 2011,
- 50 911-914; For oxidative cyclization of *N*-arylenamines, see: (I) Q. Yan, J. Luo, D. Zhang-Negrerie, H. Li, X. Qi, K. Zhao, *J. Org. Chem.*, 2011, **76**, 8690-8697.
- 4 (a) Y. X. Jia, J. Zhu, J. Org. Chem., 2006, 71, 7826-7834; (b) B. Yao,
 Q. Wang, J. Zhu, Angew. Chem. Int. Ed., 2012, 51, 5170-5174; (c) B.
- Yao, Q. Wang, J. Zhu, Angew.Chem. Int. Ed., 2012, 51, 12311-12315; (d) A. Bunescu, Q. Wang, J. Zhu, Synthesis, 2012, 44, 3811-3814.
- 5 (a) Z. H. Wang, M. Bois-Choussy, Y. X. Jia, J. Zhu, Angew. Chem. Int. Ed., 2010, 49, 2018-2022; (b) T. Gerfaud, C. Xie, L. Neuville, J.
- Zhu, Angew. Chem. Int. Ed., 2011, 50, 3954-3957; (c) T. Buyck, Q. Wang, J. Zhu, Org. Lett., 2012, 14, 1338-1341; (d) Z. Xu, Q. Wang, J. Zhu, Angew. Chem. Int. Ed., 2013, 52, 3272-3276.
- For reviews on aryne chemistry, see: (a) H. H. Wenk, M. Winkler,
 W. Sander, Angew. Chem. Int. Ed., 2003, 42, 502-528; (b) D. Peña, 135

- D. Pérez, E. Guitián, Angew. Chem. Int. Ed., 2006, 45, 3579-3581;
 (c) R. Sanz, Org. Prep. Proced. Int., 2008, 40, 215-291; (d) S. M. Bronner, A. E. Goetz, N. K. Garg, Synlett, 2011, 2599/iidi/04ti(h) Shifike Bhojgude, A. T. Biju, Angew. Chem. Int. DOI: 2010339/CBCC0463812 (f) H. Yoshida, K. Takaki, Synlett, 2012, 23, 1725-1732; (g) C. M.
- Gampe, E. M. Carreira, Angew. Chem. Int. Ed., 2012, 51, 3766-3778;
 (h) P. M. Tadross, B. M. Stoltz, Chem. Rev., 2012, 112, 3550-3577;
 (i) A. V. Dubrovskiy, N. A. Markina, R. C. Larock, Org. Biomol. Chem., 2013, 11, 191-218.
- For recent selected examples: (a) A. E. Goetz, N. K. Garg, Nat.
 Chem., 2013, 5, 54-60; (b) S. Chakrabarty, I. Chatterjee, L. Tebben,
 A. Studer, Angew. Chem. Int. Ed., 2013, 52, 2968-2971; (c) C. E.
 Hendrick, S. L. McDonald, Q. Wang, Org. Lett. 2013, 15, 3444-3447; (d) T. Ikawa, A. Takagi, M. Goto, Y. Aoyama, Y. Ishikawa, Y.
 Itoh, S. Fujii, H. Tokiwa, S. Akai, J. Org. Chem., 2013, 78, 2965-
- 2983; (e) N. Saito, K.-i. Nakamura, S. Shibano, S. Ide, M. Minami, Y. Sato, Org. Lett., 2013, 15, 386-389; (f) F. Sha, H. Shen, X.-Y.
 Wu, Eur. J. Org. Chem., 2013, 2537-2540; (g) D. Stephens, Y.
 Zhang, M. Cormier, G. Chavez, H. Arman, O. V. Larionov, Chem.
 Commun., 2013, 49, 6558-6560; (h) Y. Sumida, T. Kato, T. Hosoya,
 Org. Lett., 2013, 15, 2806-2809; (i) Y. Zeng, L. Zhang, Y. Zhao, C.
- Ni, J. Zhao, J. Hu, J. Am. Chem. Soc., 2013, **13**5, 2955-2958.
- 8 There are few examples of indole synthesis using benzyne chemistry, see: (a) D. McAusland, S. Seo, D. G. Pintori, J. Finlayson, M. F. Greaney, *Org. Lett.*, 2011, 13, 3667-3669; (b) D. Hong, Z. Chen, X.
- Lin, Y. Wang, Org. Lett., 2010, 12, 4608-4611. For indoline synthesis, see: C. D. Gilmore, K. M. Allan, B. M. Stoltz, J. Am. Chem. Soc., 2008, 130, 1558-1559.
- 9 Reaction of α-aminoesters with benzynes, see: (a) K. Okuma, N. Matsunaga, N. Nagahora, K. Shioji, Y. Yokomori, *Chem. Commun.*,
- 2011, 47, 5822-5824; Reaction of *o*-aminobenzoates with benzynes, see: (b) J. Zhao, R. C. Larock, *J. Org. Chem.*, 2007, 72, 583-588; Reaction of 2-aminoarylketones with benzynes, see: (c) D. C. Rogness, R.C. Larock, *J. Org. Chem.*, 2010, 75, 2289-2295
- (a) A. Bischler, H. Brion, *Ber. Dtsch. Chem. Ges.*, 1892, 25, 2860–2879;
 (b) A. Bischler, P. Firemann, *Ber. Dtsch. Chem. Ges.*, 1893, 26, 1336–1349;
 (c) C. J. Moody and E. Swann, *Synlett*, 1998, 135–136;
 (d) M. Tokunaga, M. Ota, M.-A. Haga, Y. Wakatsuki, *Tetrahedron Lett.*, 2001, 42, 3865-3868;
 (e) K. Pchalek, A. W. Jones, M. M. T. Wekking, D. S. Black, *Tetrahedron*, 2005, 61, 77-82;
 (f) Y. Vara, E. Aldaba, A. Arrieta, J. L. Pizarro, M. I. Arriortua, F. P. Cossio, *Org. Biomol. Chem.*, 2008, 6, 1763-1772.
- 11 Ref 4b and (a) M. P. Huestis, L. Chan, D. R. Stuart, K. Fagnou, Angew. Chem. Int. Ed., 2011, 50, 1338-1341; Recent variant on Fischer indole synthesis, see: (b) F. Zhan, G. Liang, Angew. Chem. Int. Ed., 2012, 51, 1266-1269.
 - 12 (a) Y. Himeshima, T. Sonoda, H. Kobayashi, *Chem. Lett.*, 1983, 1211-1214; For a minireview on benzyne generation, see: (b) T. Kitamura, *Aust. J. Chem.*, 2010, **63**, 987-1001.
- 13 D. G. Pintori, M. F. Greaney, Org. Lett., 2010, 12, 168-171.
- ¹¹⁵ 14 (a) Z. Liu, R. C. Larock, Org. Lett., 2003, 5, 4673-4675; (b) T. Ikawa, T. Nishiyama, T. Shigeta, S. Mohri, S. Morita, S.-I. Takayanagi, Y. Terauchi, Y. Morikawa, A. Takagi, Y. Ishikawa, S. Fujii, Y. Kita, S. Akai, Angew. Chem. Int. Ed., 2011, 50, 5674-5677; (c) T. Pirali, F. Zhang, A. H. Miller, J. L. Head, D. McAusland, M. F. Greaney, Angew. Chem. Int. Ed., 2012, 51, 1006-1009.
- 15 Tertiary amides and tertiary amines are known to react with benzynes, see for examples: (a) H. Yoshida, E. Shirakawa, Y. Honda, T. Hiyama, *Angew. Chem. Int. Ed.*, 2002, 41, 3247-3249; (b) A. A. Cant, G. H. V. Bertrand, J. L. Henderson, L. Roberts, M. F. Greaney, *Angew. Chem. Int. Ed.*, 2009, 48, 5199-5202.
 - 16 Effect of nitrile solvent, see: T. Gerfaud, L. Neuville, J. Zhu, Angew. Chem. Int. Ed., 2009, 48, 572-577.
 - 17 *N*-Alkyl or *N*-unsubstituted α -aminoketones are unstable under the standard reaction conditions.
- 130 18 (a) H. Yoshida, H. Fukushima, T. Morishita, J. Ohshita, A. Kunai, *Tetrahedron*, 2007, 63, 4793-4805; (b) E. Yoshioka, H. Miyabe, *Tetrahedron*, 2012, 68, 179-189.

This journal is © The Royal Society of Chemistry [year]

Scheme for TOC

5

A new indole synthesis was developed allowing preparation of unsymmetrical 2,3-dialkyl substituted *N*-aryl indoles in one-step with complete regio control.

View Article Online DOI: 10.1039/C3CC46361C