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Described herein is a highly enantioselective synthesis of fused 
piperidine and pyrrolidine derivatives with all-carbon 
stereogenic centers.  The enantioselective reductive amination 10 

from Cs-symmetric 1,3-dione derivatives proceeded in a highly 
stereoselective manner by taking advantage of the 
desymmetrization approach to afford fused heterocycles with 
contiguous stereogenic centers in good to excellent 
enantioselectivities (up to 98% ee). 15 

   Fused polycycles with all-carbon quaternary centers, e.g., 
Hajos-Parrish1 and Wieland-Miescher ketones,2 are important 
intermediates in the total synthesis of natural products.3  In 
this regard, much effort has been devoted to the development 
of a novel method for the construction of these types of 20 

skeletons. 
   Desymmetrization is an important tool for the construction 
of such kinds of congested frameworks under catalytic 
conditions.4  In the 1970s, Wiechert and co-workers,1a and 
Hajos and Parrish1b reported an (S)-proline-catalyzed 25 

asymmetric aldol reaction that furnished chiral 
cyclohexenones in excellent optical yield (93% ee).  The 
renaissance of organocatalysis in the early 2000s opened 
doors to novel types of amine organocatalysts (L-
prolinamide,5 β-amino acid derivatives,6 bimorpholine·TfOH 30 

salt,7 tripeptide,8 primary amine,9 cyclohexane diamine10), 
which realized excellent enantioselectivity in the asymmetric 
aldol reaction.  Both chiral amine derivatives (covalent bond 
control) and chiral Brønsted acids (non-covalent bond control) 
are viable catalytic systems in the reaction.  We reported a 35 

highly enantioselective synthesis of chiral fused 
cyclohexenones by chiral phosphoric acid catalyzed 
desymmetrization of 1,3-dione.11,12  These processes, although 
useful, mostly focused on the intramolecular aldol-type 
reaction; one exception was the work of Scheidt, in which the 40 

enantioselective synthesis of fused β-lactones by a chiral 
NHC-catalyzed nucleophilic addition/ester formation 
sequence was involved.13  A corresponding reaction involving 
reductive amination would be a promising tool for the 
construction of fused polyheterocycles.  Nevertheless, to the 45 

best of our knowledge, there is no precedent for the 
stereoselective construction of all-carbon quaternary centers 
by the symmetry breaking strategy based on the asymmetric 
imine formation (reductive amination).   
   We report herein a desymmetrization-type asymmetric 50 

reductive amination for the stereoselective construction of 

fused polyheterocycles with contiguous stereogenic centers.  
In this process, an all-carbon quaternary center at the ring 
junction and its adjacent tertiary stereogenic center were well 
controlled to afford fused piperidine and pyrrolidine 55 

derivatives with good to excellent enantioselectivities (up to 
98% ee). 
 

 
Scheme 1. Construction of fused heterocycles with contiguous 60 

stereogenic centers by symmetry breaking strategy. 

   An initial examination was conducted by using aldehyde 5a 
derived from 1,3-indandione, a precursor of planned 
secondary amine 1, as the starting material in order to 
streamline the tuning of the amine moiety.  When a mixture of 65 

5a, p-anisidine, Hantzsch ester 4 (R = t-Bu), and activated 
molecular sieves 4Å was heated to 50 °C in the presence of 10 
mol% of 3a [X = 2,4,6-(i-Pr)3C6H2],14 the sequential reductive 
amination reaction proceeded to afford 2aa in low chemical 
yield in the racemic form (20%, 2% ee).  In order to take 70 

advantage of the hydrogen bond between the catalyst and the 
hydroxy moiety, several hydroxyanilines were examined.  
Although desired adduct 2ab was not obtained with p-
hydroxyaniline, moderate but promising selectivity was 
observed in the case of m-hydroxyaniline (50% ee).  75 

Interestingly, the reductive amination/N,O-acetal formation 
sequence occurred instead of the expected sequential 
reductive amination to give acetal 6 with contiguous 
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Fig. 1 Examination of the amine moiety. 
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quaternary stereogenic centers by use of o-hydroxyaniline, 
although the selectivity was low (23% ee).15,16 
  Inspired by the results, we set out to screen the appropriate 
catalyst by use of m-hydroxyaniline (Table 1).  Entry 1 shows 
the result with 3a.  The use of catalyst 3b with 2,6-(i-Pr)2C6H4 5 

groups at 3,3’-positions resulted in moderate selectivity (57% 
ee, entry 2).  The enantioselectivity was increased to 68% ee 
when 3c having a cyclohexyl (Cy) group instead of an i-Pr 
group was used (entry 3).  Catalysts with an electron-
withdrawing group, such as 3d (X = 4-NO2C6H4) and 3e (X = 10 

2,4-(CF3)2C6H3), slightly improved the chemical yields (33% 
and 37%, respectively), but the selectivity dropped to less 
than 20% ee (entries 4 and 5).  Fortunately, 3f with 9-anthryl 
groups exhibited good catalytic activity from the viewpoint of 
both chemical yield and enantioselectivity; 2ac was obtained 15 

in 50% yield with 77% ee (entry 6).  Although the 
enantioselectivity was slightly improved by use of  molecular 
sieves 3Å in place of molecular sieves 4Å, lowering the 
reaction temperature to 0 °C was the most effective way to 
increase the enantioselectivity.  Desired compound 2ac was 20 

obtained in 93% ee, albeit in the decreased chemical yield 
(34%, entry 8).17  

 
Table 1 Screening for catalysts and reaction conditions.a 

 25 

entry catalyst (X) yield (%) ee (%)b 
1 2,4,6-(i-Pr)3C6H2 (3a) 24 50 
2 2,6-(i-Pr)3C6H3 (3b) 19 57 
3 2,4,6-Cy3C6H2 (3c) 30 68 
4 4-NO2C6H4 (3d) 33 6 
5 2,4-(CF3)2C6H3  (3e) 37 19 
6 9-anthryl (3f) 50 77 
7c 9-anthryl (3f) 56 79 
8c, d 9-anthryl (3f) 34 93 
a Unless otherwise noted, all reactions were performed with 0.10 
mmol of aldehyde 5a, 0.30 mmol of 4, 0.11 mmol of m-
hydroxyaniline, and 10 mol% of 3 in toluene (2.0 mL) at 50 °C. b 
Enantiomeric excess was determined with a chiral stationary 
phase. c MS3Å was employed instead of MS4Å.  d At 0 °C. 30 

 
   With the optimum reaction conditions in hand, we subjected 
secondary amine 1a to the optimum reaction conditions as 
planned.  Gratifyingly, the desired reaction proceeded 
smoothly to afford 2ac in higher chemical yield without 35 

sacrificing enantioselectivity (87%, 94% ee).  Although the 
precise reason for the dramatic improvement of the chemical 
yield has yet to be clarified, the formation of a pyridinium salt 
between phosphoric acid and Hantzsch pyridine might be 
responsible for the decrease of the catalytic activity.18 40 

   The substrate scope of this reaction is illustrated in Figure 2.  
Examination of the substituent at 2-position suggested that the 
reactivity was strongly influenced by the steric bulkiness of 

the substituent.  Although Et-substituted product 2b was 
obtained with 83% ee, an elevated temperature (50 °C) was 45 

required to realize the moderate chemical yield (52%).  A 
bulkier benzyl substrate afforded adduct 2c in only 18% yield, 
albeit with good enantioselectivity (79% ee).  No desired 
adduct 2d was obtained in the case of the Ph-substituted 
substrate even if the reaction was performed at 80 °C.  On the 50 

other hand, the substituent on the aromatic ring did not have a 
detrimental effect on both chemical yield and 
enantioselectivity; 5,6-dichloro-substituted analogue 2e was 
obtained in 87% yield with 98% ee. 
   Further investigation suggested that this methodology was 55 

also applicable to the stereoselective synthesis of a 5-5 fused 
skeleton by simple modification of the catalyst (3c: X = 2,4,6-
Cy3C6H2).  Contrary to the 5-6 fused system, the 5-membered 
ring formation reaction proceeded smoothly to afford the 
corresponding adducts (7a–d) in moderate to good chemical 60 

yields with good to excellent enantioselectivities (86–92% ee).  

  The absolute configuration of 2ac was unambiguously 
established by single-crystal X-ray analysis of the 
corresponding p-bromobenzoate (See SI for details),19 and 
those of others shown in Table 1 and Figure 2 were surmised 65 

by analogy. 

   
Fig. 2 Substrate scope of intramolecular reductive amination. 

   The hydrogen bond between the catalyst and the substrate 
(m-hydroxyphenyl moiety) is expected to be responsible for 70 

both of the high reactivity and the high selectivity, as 
observed in the chiral phosphoric acid catalyzed asymmetric 
reactions reported so far (Scheme 2).20  The sequential 
reductive amination with masked aniline (m-anisidine) 
resulted in a low chemical yield and a considerably low 75 

selectivity (23%, 8% ee at 50 °C; cf. 56%, 79% ee in 2ac).  
This result suggests that the desired desymmetrization-type 
asymmetric reductive amination proceeded via a medium-
sized cyclic transition state in which hydrogen bonding 
between the phenolic O–H moiety and phosphoryl oxygen, 80 

and activation of the carbonyl group by a Brønsted acid were 
involved.  
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Scheme 2. Importance of bifunctionality of the chiral phosphoric acid and 
the proposed transition state model. 

     In summary, we have developed a highly enantioselective 
synthesis of fused piperidine and pyrrolidine derivatives with 5 

all-carbon stereogenic centers by chiral phosphoric acid 
catalyzed symmetry breaking.  Using this method, several 
important substructures, such as 5-6 and 5-5 fused 
polyheterocycles with contiguous stereogenic centers, were 
synthesized with good to excellent enantioselectivities (up to 10 

98% ee).  Further investigations of its application to natural 
product synthesis are under way in our laboratory. 
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