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Abstract—2-Propynyl derivatives of N-methylaniline, phenol, benzenethiol, 2-pyridinethiol, 2-pyrimidine-
thiol, and 1,3-benzoxazole-2-thiol were synthesized. Under conditions of phase-transfer catalysis, phenyl
2-propyny! sulfide is converted into alenyl phenyl sulfide and phenyl 1-propynyl sulfide. The rearrangement
mechanism was studied by the AM1 quantum-chemical method.

Rearrangement of 1-alkynes into 2-alkynes was
usually effected in the systems KOH/EtOH [1, 2],
KOE/EtOH [3], t-BUOK/DMSO [4], and t-BuOK or
EtONa/Me,SO, [5]. As arule, the triple bond migra-
tion process is reversible. For example, 2-alkynes are
readily converted into 1-alkynes in the presence of
t-BuLi [6] or BuLi/Et,O [7]. However, both reactions
require a polar solvent or organolithium base to be
used. Ogawa et al. [8] described rearrangement of
2-propynyl sulfides into the corresponding allenes by
the action of potassium bis(trimethylsilyl)amide. Most
recently, Florio et al. [9] reported on the Wittig
rearrangement of 2-propynyl ethers in the presence of
butyllithium in THF. Kobychev et al. [10] performed
a quantum-chemical study of noncatalytic acetylene-
dlene rearrangement of the XCH,C=CH systems
where X = H, Me, NMe,, OMe, F, SMe.

The goa of our present study was to synthesize
2-propynyl and allenyl derivatives of aromatic and
heteroaromatic thiols, alcohols, and amines under
conditions of phase-transfer catalysis. The mechanism

of the rearrangement of phenyl 2-propynyl sulfide into
allenyl phenyl sulfide and phenyl 1-propynyl sulfide,
which occurs during the phase-transfer reaction,
was studied by the AM1 quantum-chemical method.
2-Propynyl(methyl)amino-, 2-propynyloxy-, and
2-propynylsulfanyl-substituted hetarenes were suc-
cessfully synthesized in a two-phase system liquid-
solid (Scheme 1, Table 1).

The akylation of benzenethiol (1) with 2-propynyl
bromide in the system solid K,CO5;-18-crown-6-
benzene at room temperature afforded a mixture of
phenyl 2-propynyl sulfide (VII, yield 86%) and
phenyl 1-propynyl sulfide (IX, yield 5%). By the
reaction of benzenethiol with 2-propynyl bromide in
the system KOH-18-crown-6-benzene at room tem-
perature (reaction time 1 h) we obtained terminal
acetylene VII in 52% yield. Phenyl 2-propynyl sulfide
(VI1) reacted with solid KOH under conditions of
phase-transfer catalysis, yielding 60% of allene VIII
and 40% of phenyl 1-propynyl sulfide (1X). Phenol
(1) failed to react with BrCH,C=CH in the system

ArXCH=C=CH, =—— ArXC=C—CH,

Scheme 1.
BrCH,C=CH
base, 18-crown-6
PhH, 20°C
ArXH ArXCH,C=CH
I-VI VII, X-XIV

VIII IX

I-111, VII-XI, Ar = phenyl; IV, XII, Ar = 2-pyridyl; V, XIIl, Ar = 2-pyrimidyl; VI, XIV, Ar = 2-benzoxazolyl;
I, IV=IX, XII-XIV, X = §; II, X, X = O; Ill, XI, X = NCH,.
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Table 1. Synthesis and mass spectra of alkynes VII-XIV

al.

Initial Ar X Base Reaction Product? Mass spectrum,
comp. no. time, h (yield, %) mwz (l,q, %)
I Ph S K,CO3 (2 equiv) 35 VII (86) 148 (M*, 36)
IX (5) 148 (M*, 100)

I Ph S KOH (2 equiv) 1 VIl (52) 148 (M™, 36)

I Ph S KOH (2 equiv) 24 VIl (60) 146 (M™, 27)
IX (40) 148 (M*, 100)

[ Ph O K,CO3 (2 equiv) 24 X 132 (M™, 36)
[ Ph O KOH (2 equiv) 7° X (44) 132 (M™, 36)
[l Ph N K,CO3 (2 equiv) 16 X1 (98) 145 (M*, 65)
[l Ph N KOH (2 equiv) 10 XI1¢ 145 (M™, 65)
v 2-Pyridyl S KOH (2 equiv) 0.25 XII (95) 149 (M*, 57)
Y 2-Pyrimidyl S KOH (2 equiv) 0.3 XIIT (100) 150 (M*, 98)
VI 2-Benzoxazolyl S KOH (2 equiv) 0.5 XIV (86) 189 (M*, 89)

& Compounds VII, VIII [5], X, and XI [11] have aready been reported.
® The reaction was initially accompanied by heat evolution; the mixture was then stirred for 5.5 h at room temperature and was heated

for 1 h at 50°C.
¢ The product was not isolated.

Table 2. 'H NMR spectra of compounds VII-XIV in CDCl3, 3, ppm (J, Hz) (relative to HMDS)

Comp. no. Ar XR CH3 =CH XCH, =CH, XCH= Ar

Vi Ph SCH,C=CH - 222 t 359 d - - 7.2-7.5m
(J=25)| (J=25)

VIII Ph SCH=C=CH, - - - 497 d 594 t 735 m

(J=62)| J=6.2)

X Ph SC=CCH;, 208 s - - - - 7.34 m

X Ph OCH,C=CH - 250 t 467 d - - 6.98 m,

=21 | =21 729 m

Xl Ph N(CH,C=CH)CH; | 295 s | 215t 4.03 d - - 6.82 m,

J=23)| I=23) 7.26 m

X1l 2-Pyridyl SCH,C=CH - 218 t 395 d - - 7.00 m,

(J=26) | (J=26) 7.18 m,

750 m,

844 m

X1l 2-Pyrimidyl SCH,C=CH - 218 t 4.00 d - - 6.98 m,

(J=26) | (J=26) 851 m

XV 2-Benzoxazolyl | SCH,C=CH - 230 t 407 d - - 7.26 m,

(J=28)| (J=28) 7.45 m,

7.62 m

solid K,CO4;-18-crown-6-benzene. Phenyl 2-propynyl
ether (X) was synthesized in 44% yield in the system
BrCH,C=CH-solid KOH-18-crown-6-benzene. The
reaction of N-methylaniline (I11) with 2-propynyl
bromide in the system K,CO;(or KOH)-18-crown-6—-
benzene gave 98% of N-methyl-N-(2-propynyl)aniline
(X1) as the only product. 2-Propynyl hetaryl sulfides

XI1-X1V were readily obtained in 86-100% yield
from the corresponding thiols by treatment with
BrCH,C=CH in the system KOH-18-crown-6-ben-
zene at room temperature (reaction time 15-30 min).
Prolonged reaction of alkynes XI1-XIV with KOH
leads to tarring of the mixture. Spectral parameters of
compounds VII1-X1V are given in Tables 1-3.
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Table 3. 13C NMR spectra of compounds VII-XIV in CDCI3, &, ppm
Comp. no. Ar XR C=C XCH, Ard
VI Ph SCH,C=CH 7151 (=CH), 2255 126.95 (CP)
79.82 (CH,C=) 128.97 (C™M
130.06 (C°)
134.95 (C)
Vi Ph SCH=C=CH, - 78.74 (=CH,) 126.45 (CP)
85.89 (XCH=) | 128.30 (C°)
128.93 (CM)
135.61 (C)
209.35 (=C=)P
IX Ph SC=CCHj, 5.19 (=CCHy,), - 125.88 (C°)
63.86 (=CCHy), 126.11 (CP)
95.25 (XC=) 129.04 (C™)
133.60 (C)
X Ph OCH,C=CH 75.41 (=CH), 55.69 114.87 (C°)
78.61 (CH,C=) 121.54 (CP)
129.45 (C™)
157.51 (C)
XI Ph N(CH,C=CH)CH, | 3854 (=CCHy), 42.44 114.25 (C°)
71.96 (=CH), 118.30 (CP)
79.28 (CH,C=) 129.08 (C™)
148.99 (C)
Xl 2-Pyridyl SCH,C=CH 70.42 (=CH), 18.16 119.85 (C°),
80.06 (=C) 122.00 (C3),
136.09 (CY,
149.52 (CH),
157.05 (C?)
X111 2-Pyrimidy! SCH,C=CH 70.38 (=CH), 19.15 116.77 (Cd),
79.49 (=C) 157.28 (C* C9),
170 (C?)
X1V 2-Benzoxazolyl | SCH,C=CH 72.38 (=CH), 20.66 109.99 (C9),
77.86 (=C) 118.67 (C°),
124.15 (C),
124.40 (CY,
141.74 (C'9),
152.00 (C%9),
162.99 (C?)

& The ring carbon signals were assigned according to [12].
® The ring carbon signals were assigned according to [13].

The isomerization of phenyl 2-propynyl sulfide
into phenyl 1-propynyl sulfide under conditions of
phase-transfer catalysis was examined by the AM1
semiempirical quantum-chemical method [14, 15].
The mechanism of the process is shown in Scheme 2.
18-Crown-6 as phase-transfer catalyst ensures transfer
of K" OH™ into the organic phase. According to the
results of our calculations, the first reaction stage,
deprotonation of PhSH, requires no activation energy.

The heat of formation of PhS™ and water is equal to
—82.4 kcal/mol. The complex [H,0---K]" reacts
with 2-propynyl bromide to afford the carbocation
[H-Br---CH,—C=CH]" (AH = -69.1 kcal/mol).
Phenyl 2-propynyl sulfide (VI1) is formed by reaction
of PhS™ ion with H-Br-.-CH,—C=CH]" (AH =
-181.1 kcal/mol). Deprotonation of akyne VII yields
[PhSCHC=CH]~ (AH = -71.5 kcal/mol) (see figure,
b). In the initial state, the distance between the oxygen
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Scheme 2.
PhsH DS
18-crown-6
18-crown-6 -82.4 ! _
PhSC=C—CHj; Kk - BrCH,C=CH
o i f.l '
—69.1 I:3r
CH,C=CH
H —HBr
{8-crown-6-K -0, HO---K-18-crown-6 { —181.1
H PhSCH,C=CH
[PhSC=C=CH,]” S
H
18-crown-6 H-O* .
"‘ K"'OH K [PhSCHC=CH]
€ 1 8:‘crown—6
(")jr 18-crown-6 /949 o
o

18—Cr0§§7n—6

atom of the hydroxy group and hydrogen atom on C°
is 3.5 A (see figure, a). This process is energetically
more favorable than abstraction of the terminal proton
from the acetylenic moiety (AH = -40.9 kcal/moal).
The subsequent proton transfer from the complex
[H,O---K]* to the termina carbon atom (C, see
figure, c; the distance bentween the C! atom and the
corresponding proton in the complex is 2.76 A) is
characterized by a AH value of —249.2 kcal/mol, and
it leads to formation of allenyl phenyl sulfide (VIII)
(see figure, d). Allene VIII then reacts with OH™,
yielding [PhSC=C=CH,]” (AH = -74.4 kcal/mol)
Proton transfer to the terminal carbon atom C! gives

Table 4. Calculated charges on the X and C-C3 atoms

in 2-propynyl derivatives of benzenethiol, phenol, and
N-methylaniline (compounds VII, X, and XI)
H
|3 2 1
X—Cl—CECH
o
Comp. « Charge, au.
no. X ct c? c?
VIl |S 0.237 | -0.182 | -0.182 | -0.184
X o -0.204 | -0.172 | -0.210 | 0.087
XI NCH; | -0.234 | -0.198 | -0.207 | 0.048

PhSCH=C=CH,
OH VIII

phenyl 1-propynyl sulfide (1X) (AH = -253.6 kcal x

mol™1). A similar reaction heat (~242.9 kcal/mal) is
typical of protonation of the C* atom in the carbanion
[PhSC=C=CH,]", which leads to alene VIII. The
rearrangement of phenyl 2-propynyl sulfide (VII)
gave a mixture of allenyl phenyl sulfide (VIII, 60%)
and phenyl 1-propynyl sulfide (1X, 40%).

The above rearrangement does not occur with
phenyl 2-propynyl ether (X) and N-methyl-N-(2-prop-
ynyDaniline (X1). This may be explained in terms of
different electronegativities of the nitrogen, oxygen,
and sulfur atoms. Table 4 contains the calculated
charges on the N, O, S, and C® atoms in compounds
VII, X, and XI.

EXPERIMENTAL

The *H and ®*C NMR spectra were recorded on
a Varian 200 Mercury spectrometer (200 and 50 MHz,
respectively) using CDClj; as solvent and hexamethyl-
disiloxane as internal reference. The mass spectra
(70 eV) were run on an HP 6890 GC-MS system.
GLC analysis was performed on a Chrom-5 chromato-
graph equipped with a flame-ionization detector (glass
column, 1.2 mx3 mm, packed with 5% of OV-101
on Chromosorb W-HP, 80-100 mesh; carrier gas
nitrogen, flow rate 60 ml/min; oven temperature was
varied from 180 to 250°C, depending on the composi-
tion of the reaction mixture). Thiols, phenol, and
18-crown-6 were commercial reagents (from Acros)
and were used without additional purification.
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AM1 simulation of the rearrangement of phenyl 2-propynyl sulfide into alenyl phenyl sulfide; the distances are given in A;
for better clearness, the potassium-oxygen distance in the structures of KOH and [H,O---K]" is elongated relative to the

calculated value.

2-Propynyl bromide and N-methylaniline were dis-
tilled prior to use.

Reaction of thiols, phenol, and N-methylaniline
with 2-propynyl bromide. 2-Propynyl bromide,
1.33 ml (15 mmol), was added to a suspension of
10 mmol of substrate 1-VI, 0.264 g (1 mmol) of
18-crown-6, and 20 mmol of powdered K,CO; or
KOH in 20 ml of toluene. The mixture was stirred
for 0.25-24 h at room temperature, filtered through
a layer of silica gel, and evaporated to isolate com-
pounds VII-1X and XI. Product X was purified by
vacuum digtillation, bp 84-86°C (10 mm). Com-
pounds X11-XIV were purified by column chromatog-
raphy using toluene-hexane mixtures (at various
ratios) as eluent. The reaction conditions and spectral
parameters of akynes VII-XIV are collected in
Tables 1-3.

Quantum-chemical calculations. Semiempirical
quantum-chemical calculations were performed with
the use of MOPAC 6 software (AM1 Hamiltonian)
[11, 12]. The equilibrium geometric parameters were
determined by full optimization using PRECISE
keyword. Insofar as MOPAC 6 lacks parametrization
for potassium atom, a “sparkle” pseudospecies was
used instead. Supporting information (Cartesian coor-
dinates of all initial and optimized structures) is
available from the author (Dr. chem. M. Fleisher
<misha@osi.lv>).
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