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Light-enabled, AlCl3-catalyzed regioselective intramolecular 
nucleophilic addition of non-nucleophilic alkyl to alkyne
Yanbin Zhang,a Ruiwen Jin,a Guangxing Panb and Hao Guo*a,b 

Light-enabled, AlCl3-catalyzed regioselective intramolecular 
nucleophilic cyclization of alkyne using non-nucleophilic alkyl as the 
nucleophile was reported. Upon photoexcitation, o-alkylphenyl 
alkynyl ketones can be transferred into (E)-photoenols. Thus, a 
nucleophilic methylene is formed from the non-nucleophilic alkyl. 
AlCl3 catalyst can stabilize (E)-photoenol intermediate and facilitate 
further intramolecular nucleophilic cyclization. DFT calculations 
indicated that the AlCl3-catalyzed cyclization is the regioselectivity 
determining step.

Nucleophilic addition of alkyne is one of the well-studied 
reactions,1 as it provides a convenient way to synthesize 
functionalized alkenes. The general activation mode is 
summerized in Scheme 1A. The alkyne moiety normally requires 
the coordination with Lewis acid or π acid to increase its 
electrophicility.2 Upon activation, a suitable nucleophile can 
attack the alkyne, forming an alkene intermediates. This is 
normally the rate-determining step (RDS) of the whole 
reaction.3 Finally, quenching by electrophiles gives the 
corresponding multi-substituted alkene products. Nucleophile 
plays an essential role in this reaction process. Nucleophiles can 
be generally divided into three types: (1) σ type, like NaBH4, 
lithium reagents, Grignard reagents, etc.; (2) π type, like enol 
ethers, alkenes, aromatic rings, etc.; (3) lone pair electron type, 
like ROH, RNH2, RSH, etc.4 Alkyls are not considered as a 
nucleophile compared with those typical examples due to its 
lack of any nucleophilic atoms. To the best of our knowledge, 
alkyls have not been reported as a nucleophile in the addition 
to alkynes.

Organic photoreactions normally proceed via excited state 
of reactants,5 which shows different reactivity toward thermal 
reactions at ground state. One example is the photochemistry 
of o-alkylaromatic ketones (Scheme 1B).6 At the ground state, 
the pKa of the benzylic proton of the substrate is about 27 
(referenced by phenyl(o-tolyl)methanone), indicating the 
benzylic H is non-acidic.7 Thus, the benzyl group can be 
rationalized to be a rather weak nucleophile. At the 
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Scheme 1 Nucleophilic addition of alkynes.

photoexcited state of o-alkylaromatic ketones, 1,5-H transfer 
occur via the triplet hyperface. Further rotation and 
intersystem-crossing (ISC) results in the (E)-photoenols.8 Thus, 
the non-nucleophilic benzylic C(sp3) is transformed into a 
nucleophilic C(sp2), which has been proved useful in many 
classic enol type reactions.9 Our previous study also showed 
that the similar strategy could achieve 6π-photocyclization of 
non-6π substrates.10 With continued interest in photo-induced 
cyclization reactions, we questioned whether this photoenol 
can be used in more challenging nucleophilic addition to 
alkynes. Specifically, if o-alkylphenyl alkynyl ketones are 
employed as potential substrates, the in situ generated 
photoenols may attack the activated alkyne (Scheme 1C). 
Herein, we wish to report our recent results in AlCl3-catalyzed 
regio- and stereoselective intramolecular nucleophilic 
cyclization of o-alkylaromatic alkynyl ketones.

The initial attempt was carried out using o-tolyl 4-
methoxyphenylacetylenyl ketone (1a) as the model substrate. A 
series of Lewis acids were tested and AlCl3 gave 12% yield of 5-
exo-dig product (2a) (Table 1, entries 1-4). Notably, 6-endo-dig 
product (3a) was also formed. The regioselectivity of 2a and 3a 
was 12:1 for AlCl3 (Table 1, entry 4). Considering the high 
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regioselectivity, AlCl3 was chosen as the optimal catalyst. 
Solvent screening revealed that 1,4-dioxane gave the highest 
regioselectivity and a promising yield (Table 1, entries 4-9). To 
further accelerate the 5-exo-dig cyclization, higher 
temperatures were tested (Table 1, entries 10-12). The reaction 
at 60 oC showed higher yield than that of room temperature 
(Table 1, entry 10). Further raising the temperature to 80 oC 
resulted in 88% yield and >20:1 regioselectivity (Table 1, entry 
11). At a higher reaction temperature of 100 oC, the yield slightly 
decreased (Table 1, entry 12). Decreasing the catalyst loading to 
5 mol% gave 92% of 2a with excellent regioselectivity (Table 1, 
entry 13). Notably, only (E)-product was formed in the above 
reactions, showing the high stereoselectivity of the conversion. 
Control experiments without AlCl3 showed that 2a can be 
formed by simple heating, but with a lower efficiency and 
poorer regioselectivity (Table 1, entry 14). Further mechanistic 
studies indicated that AlCl3 could stabilize the (E)-photoenol 
intermediate and facilitate the nucleophilic addition to form 2a, 
and unexpected reaction pathway could be inhibited (vide 
infra). Light was proved to be essential for the formation of 2a 
(Table 1, entry 15). Thus, conditions of entry 13 (1 and 5 mol% 
of AlCl3 in 1,4-dioxane (0.02 M) irradiated by purple LED under 
argon atmosphere at 80 oC for 72 h) was chosen as the 
optimized conditions for further studies.

With optimized conditions in hand, the substrate scope of 
this reaction was next examined (Scheme 2). The substrate 
scope on R1 group was first studied. Aryl groups at R1 were tried. 
Strong electron-donating groups (EDGs) substituted aryl, such 
as methoxy (2a) and acetoxy (2b), showed good reactivity. Aryl 
groups with weak EDGs, such as tert-butyl (2c) and methyl (2d), 
were also tolerated in this reaction. Substrates with 4-F (2f), 4-

Table 1 Screening of the conditionsa

O

Ar

OH

2a
5-exo-dig

1a

O

+

3a
6-endo-dig

Ar

Purple LED
LA, T oC, Solvent (0.02 M)

Ar, 72 h
Ar

5 6
Ar = OMe

E

Entry LA (mol%) Solvent T (oC) 2a (%) 2a:3a
1 La(OTf)3 (10) THF rt 15 (6)b 2:1
2 Zn(OTf)2 (10) THF rt 12 (6)b 3:1
3 Sc(OTf)3 (10) THF rt 6 (16)b 6:1
4 AlCl3 (10) THF rt 12 (31)b 12:1
5 AlCl3 (10) EA rt 23 (26)b 3:1
6 AlCl3 (10) CH3CN rt 24 (43)b 5:1
7 AlCl3 (10) DCM rt 17 (36)b 6:1
8 AlCl3 (10) Toluene rt 47 (6)b 9:1
9 AlCl3 (10) 1,4-dioxane rt 45 (40)b >20:1

10 AlCl3 (10) 1,4-dioxane 60 64 >20:1
11 AlCl3 (10) 1,4-dioxane 80 88 >20:1
12 AlCl3 (10) 1,4-dioxane 100 82 (7)b >20:1
13 AlCl3 (5) 1,4-dioxane 80 92 (90)c >20:1
14 -- 1,4-dioxane 80 65 5:1
15d AlCl3 (5) 1,4-dioxane 80 n.r. (85)b --

a A solution of 1a (0.2 mmol) and LA in anhydrous solvent (10 mL) was irradiated 
by purple LED under argon atmosphere for 72 h. Yield, recovery, regio- and 
stereoselectivity was determined by 1H NMR analysis (400 MHz) of the crude 
reaction mixture, using CH2Br2 (0.2 mmol) as the internal standard; b Recovery of 
1a; c Isolated yield of 2a; d Dark reaction. n.r. = no reaction.

Cl (2g) and 4-Br (2h) aryl also gave good yields. Strong electron-
withdrawing groups (EWGs), like methoxycarbonyl (2i), formyl 
(2j) and trifluormethyl (2k), at the aryl group slightly decreased 
the yields. To further expand the scope at R1, function groups 
other than aryl were also tried. TMS-bearing substrate 2l gave a 
moderate yield, probably due to the reactive nature of TMS 
under Lewis acidic conditions. Alkyl groups, like n-butyl (2m), 
cyclopropyl (2n) and cyclohexyl (2o), were also tried and gave 
good yields. Next, modifications at R2 were explored. Strong 
EDG (2l and 2m), weak EDG (2n) and halogen (2o and 2p) at R2 
did not affect the reaction. Substrates with modifications on 
both R1 & R2 were also synthesized and tried. Di-EDG (2q), 
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Scheme 2 Substrate scope.
Conditions: 1 and 5 mol% of AlCl3 in 1,4-dioxane (0.02 M) irradiated by purple LED 
under argon atmosphere at 80 oC for 72 h. Isolated yield was reported. The E:Z 
ratio was calculated by isolated yield.
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EDG/EWG (2r-t), EWG/EDG (2u) and tri-substituted (2v) 
reactants worked well. Notably, neither (Z)- nor 6-endo-dig 
products were detected for the substrates tested above, which 
highlighted the high regio- and stereoselectivity when R3 = H.11 
Finally, the scope of R3 was studied. Ethyl (2aa & 2ad), isopropyl 
(2ab & 2ae) and benzyl (2ac) were installed at ortho position 
forming the corresponding products in excellent yields. 
However, with the increasing of the steric hindrance, the E:Z 
ratio decreased to ca. 1:1.12

After the substrate scope investigation, mechanistic studies 
were next carried out. UV-Vis spectrum indicated that AlCl3 
could enhance the absorption of 1a, but led to no appreciable 
wavelength change (for the spectrum, see Figure S1). Thus, 
upon the light irradiation, AlCl3-1a complex is more likely to 
absorb light to be excited than the un-coordinated 1a. Next, DFT 
calculations of the intermediates and transition states energies 
were computed, and the results were shown in Scheme 3. First, 
the AlCl3-coordinated (E)-photoenol (5) showed lower energy (-
2.6 kcal/mol) than the uncoordinated (E)-photoenol. This result 
indicated that the AlCl3 not only serves as a Lewis acid to 
activate the alkyne, but also stabilizes the (E)-photoenol 
intermediate. This calculated energetic result also met the 
experimental observation without AlCl3 catalyst (Table 1, entry 
14). As the unstabilized (E)-photoenol might undergo 
unexpected decomposition leading to lower yield, AlCl3 could 
prevent (E)-photoenol from decomposition and facilitate the 
following cyclization to give higher yield. Next, the transition 
state energy surfaces were calculated to explain the 
regioselectivity between 5-exo-dig product and 6-endo-dig 
product. Compared with 6-endo-dig pathway, 5-exo-dig 
pathway has a much lower activation energy (ΔΔG = -7.7 
kcal/mol). The conformation of AlCl3-coordinated (E)-photoenol 
(5) is also more similar with 5-exo-dig transition state (TS-5) 

than 6-endo-dig transition state (TS-6). Both energy barrier and 
the conformation indicated TS-5 is the favored transition state 
than TS-6. Thus the regioselectivity originates from this 
cyclization process, leading to the 5-exo-dig product 2 as the 
predominant product.

Deuterium labeling and KIE experiments were also carried 
out to understand the H atom transfer process in this reaction. 
1a-d3 was synthesized and subjected to the standard 
conditions. 62% of 2a-d was formed with 26% of 1a-d3 
recovered. 1H NMR analysis indicated that the deuterium in 2a-
d located at both benzylic position and alkenyl position (Scheme 
4). The D at alkene strongly suggested that an intramolecular 
protolysis occurred in the reaction process. The deuterium 
content difference between benzylic position and alkenyl 
position might be due to the intermolecular protolysis process, 
which could bring H to the alkene position. 26% of 1a-d3 was 
recovered with 82% deuterated incorporation. The deuterium 
content loss (both in recovered 1a-d3 and benzylic position of 
2a-d) could be reasoned in H-D exchange in 1,4-biradical 
intermediate and (Z)-photoenol (vide infra) with solvent or 
moisture in the solvent. (for detailed discussion, see Figure S3 
in ESI)8b, 13 This could also be an evidence for occurrence of 
Norrish Type II process of 1a.10 Kinetic isotopic experiment 
showed kH/kD = 1.3, indicating that H abstraction process is not 
the rate-determining step.

With the information above and literature precedent, a 
possible reaction pathway was proposed in Scheme 5. 
Coordination of AlCl3 to the alkyne moiety of 1 gives complex 
3.2a, b Then, the photoexcitation and ISC of 3 results in 3* (T1). 
1,5-Hydrogen transfer affords 1,4-biradical 4 as the key 
intermediate. 4 undergoes rotation and ISC affording AlCl3- 
coordianted (E)-photoenol 5.8b With the activation of AlCl3,

G (kcal/mol)

5-exo-dig 6-endo-dig

(E)-photoenol-AlCl3 (5)

TS-5

5

(E)-photoenol

TS-6

Int-5

Int-6

0.0

-2.6

-1.4

-49.4

6.3

-57.1
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Scheme 3 DFT calculations of the energy surface.
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intramolecular nucleophilic addition of 5 yields 5-exo-dig 
intermediate 6 with high regioselectivity. Subsequent inter- or 
intramolecular protolysis of 6 finally yields 2. On the other hand, 
the direct ISC of 1,4-biradical 4 forms (Z)-photoenol. The (Z)-
photoenol is conformationally-favored for another 1,5-H shift 
to return to the starting complex 3.8b The H-D exchange of the 
hydroxyl in 1,4-biradical 4 and (Z)-photoenol accounts for the 
deuterium loss in deuterium labelling experiments.

In conclusion, we successfully achieved a regioselective 
intramolecular nucleophilic addition of a non-nucleophilic 
carbon to alkyne. With the irradiation of purple LED, the non-
nucleophilic methyl in o-alkylphenyl alkynyl ketones were 
transferred into a nucleophilic (E)-photoenol. Under the 
catalysis of AlCl3, intramolecular nucleophilic cyclization 
occurred with high regioselectivity. Mechanistic studies 
indicated that AlCl3 showed triple functions: enhancing 
absorption, stabilizing (Z)-photoenol and increasing selectivity. 
Further photophysics studies and application of the strategy are 
ongoing in our group.
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