• ARTICLES • • SPECIAL ISSUE • C-H bond activation doi: 10.1007/s11426-015-5376-z

Copper-catalyzed direct acyloxylation of C(sp²)–H bonds with Benzoic acids

Sheng Zhao, Fa-Jie Chen, Bin Liu & Bing-Feng Shi*

Department of Chemistry, Zhejiang University, Hangzhou 310027, China

Received November 29, 2014; accepted December 23, 2014

A copper-catalyzed acyloxylation of $C(sp_2)$ -H bond with sterically bulky benzoic acids was achieved. This protocol is compatible with a broad range of functional groups and could proceed in gram scale, providing an efficient and practical protocol for the synthesis of aryl esters.

copper, C-H activation, acyloxylation, ester, bidentate

1 Introduction

Over the past decades, transition metal catalyzed C-H functionalization has received great interest for the expeditious synthesis of organic molecules [1-6]. Within this reaction category, the use of first-row transition metals would be beneficial compared with relatively expensive second- and third-row transition metals [7]. In particular, the direct oxygenation of C-H bonds mediated by first-row transition metals, such as copper, has been extensively investigated (Scheme 1) [8]. In 2006, Yu et al. [9] reported a copper(II) -cata-lyzed acetoxylation and hydroxylation of 2-arylpyridine using O_2 as terminal oxidant. Subsequently, Cheng *et* al. [10] developed the copper-catalyzed acyloxylation of 2-arylpyridine with anhydride. Lei et al. [11,12] has also shown that copper-catalyzed oxidation of electron-deficient arenes is possible. Recently, Daugulis et al. [13] and Song et al. [14] developed the copper-catalyzed etherification of arenes with alcohols using different bidentate directing groups. More recently, our group developed a copper mediated C-H hydroxylation of arenes using our newly developed PIP auxiliary [15]. Besides, Kanai [16] and Ge [17] groups have reported copper-catalyzed C(sp³)-H acetoxyla-

Scheme 1 Copper-catalyzed C-H acyloxylation.

tion by using a combination of stoichiometric amounts of copper and silver salts. Despite of these significant advancements, copper-catalyzed acyloxylation of unactivated C–H bonds with benzoic acids has never been achieved.

⁽a) Previous work $R + + HOAc/Ac_{2}O + HOAc/Ac_{2}O + Ref. [9] + R + + OAc/Ac_{2}O + Ref. [9] + R + + OAc/Ac_{2}O + Ref. [9] + R + + OAc/Ac_{2}O + Ref. [10] + OAc/Ac_{2}O + OAc + OAC$

^{*}Corresponding author (email: bfshi@zju.edu.cn)

[©] Science China Press and Springer-Verlag Berlin Heidelberg 2015

Esters play an important role in bioactive natural products, pharmaceuticals and organic synthesis. In addition, esters are of great importance either as protecting groups of carboxylic acids and alcohols or building blocks for further transformation. Traditional strategies towards esters depend on the reactions between the corresponding alcohols and carboxylic acid derivates such as carboxylic halides and anhydrides. Recently, transition-metal catalyzed esterifications, such as oxidative esterification of aldehydes, oxidative esterification of alcohols with alkanes, esterification of alcohols through oxidative carbonylation, and acyloxylation of C-H bonds, have emerged as efficient and viable synthetic alternatives to the traditional way [18]. To continue our interest in direct functionalization of unactivated C-H bonds, we herein reported a copper-catalyzed acyloxylation of aryl $C(sp^2)$ -H with benzoic acids by employing our newly developed PIP directing group [19,20].

2 Experimental

2.1 General experimental section

N,*N*-dimethylformamide was dried by CaH₂, distilled under reduced pressure and stored under nitrogen. The other materials and solvents were purchased from Adamas-beta and other commercial suppliers and used without additional purification. NMR spectra were recorded on a Bruke Avance (Germany) operating for ¹H NMR at 400 MHz, and ¹³C NMR at 100 MHz using TMS as internal standard. Chemical shifts were given relative to CDCl₃ (7.26 ppm for ¹H NMR, 77.16 ppm for ¹³C NMR). The following abbreviations (or combinations thereof) were used to explain multiplicities: s=singlet, d=doublet, t=triplet, m=multiplet, br= broad. Mass spectroscopy data of the products were collected on an HRMS-TOF.

2.2 General procedures for the preparation of starting materials

Method A:

$$\begin{array}{c} O \\ H \\ \hline \\ OH \end{array} \xrightarrow{(1) \text{ SOCl}_2, \text{ reflux, } 2 \text{ h}} O \\ \hline \\ 2) \text{ Et}_3 N, \text{ PIP-NH}_2, \text{ DCM, r.t.} \end{array} \xrightarrow{(0)} PIP$$

A solution of acid (5 mmol) in SOCl₂ (5 mL) was refluxed for 2 h and cooled to r.t.. The excess of SOCl₂ was removed under vacuum to give the corresponding acid chloride. The acid chloride was then re-dissolved in 5 mL anhydrous CH₂Cl₂ and added dropwise to a 20 mL anhydrous CH₂Cl₂ solution containing PIP-NH₂ (5 mmol) and Et₃N (10 mmol) at 0 °C. After stirring for 6 h at r.t., the resulting mixture was washed with brine, dried over MgSO₄, filtered and concentrated under reduced pressure. The residue was purified by flash chromatography to give the desired product. Method B:

$$\begin{array}{c} O \\ R_1 \\ OH \end{array} \xrightarrow{EDCI, HOBT, DMF} \begin{array}{c} O \\ PIP-NH_2 \end{array} \xrightarrow{O} \\ R_1 \\ H \end{array} \xrightarrow{O} PIP$$

A mixture of amine (5 mmol), acid (5 mmol), 3-(ethyliminomethyleneamino)-N,N-dimethyl-propan-1-amine (EDCI, 5.5 mmol) and HOBT (5.5 mmol) in anhydrous N,Ndimethylformamide (DMF, 20 mL) was stirred at room temperature overnight. Water was added and the mixture was extracted with diethyl ether. The combined organic layer was washed with brine, dried over MgSO₄, filtered and concentrated under reduced pressure. The residue was purified by flash chromatography to give the desired product. Method C:

$$R_{1} \xrightarrow{O} OH \xrightarrow{1) \text{ NMM, } CICO_{2}^{'Bu}} OH \xrightarrow{O} PIP$$

$$2) \text{ NMM, } PIPNH_{2}, r.t.$$

To a round bottom flask was added the acid (5 mmol) and anhydrous CH_2Cl_2 (20 mL). Then the flask was submerged in an ice bath, *N*-methylmorpholine (6 mmol) was added via syringe and the solution stirred for 15 min. Isobutylchloroformate (5.5 mmol) was added dropwise over 20 min. After that, 20 mL anhydrous CH_2Cl_2 solution containing PIP–NH₂ (5 mmol) and *N*-methylmorpholine (NMM, 5 mmol) was added to the solution, After stirring for 6 h at ambient temperature, the resulting mixture was washed with sat. Na₂CO₃, and brine, dried over MgSO₄, filtered and concentrated under reduced pressure. The residue was purified by flash chromatography to give the desired product.

2.2.1 *N*-(2-(pyridin-2-yl)propan-2-yl)benzamide (1a)

The title compound **1a** was prepared according to the general procedure (Method A). ¹H NMR (400 MHz, CDCl₃) δ 8.86 (s, 1H), 8.56 (ddd, *J*=4.8, 1.6, 0.8 Hz, 1H), 7.92–7.90 (m, 2H), 7.75 (td, *J*=8.0, 2.0 Hz, 1H), 7.50–7.43 (m, 4H), 7.23 (ddd, *J*=7.6, 4.8, 0.8 Hz, 1H), 1.88 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 166.35, 164.83, 147.70, 137.35, 136.15, 131.17, 128.55, 127.11, 122.06, 119.67, 56.76, 27.63. HRMS (EI-TOF) calcd for C₁₅H₁₆N₂O (M⁺): 240.1263, found: 240.1259.

2.2.2 2-Fluoro-*N*-(2-(pyridin-2-yl)propan-2-yl)benzamide (1b)

The title compound **1b** was prepared according to the general procedure (Method A). ¹H NMR (400 MHz, CDCl₃) δ 8.85 (d, *J*=11.0 Hz, 1H), 8.56 (d, *J*=4.4 Hz, 1H), 8.06 (td, *J*=8.0, 1.6 Hz, 1H), 7.73 (td, *J*=7.6, 1.6 Hz, 1H), 7.49–7.40 (m, 2H), 7.25–7.17 (m, 2H), 7.14 (dd, *J*=11.6, 8.0 Hz, 1H), 1.88 (s, 6H).¹³C NMR (100 MHz, CDCl₃) δ 164.63, 162.38 (d, *J*_{C-F}=3.1 Hz), 160.77 (d, *J*_{C-F}=247.1 Hz), 148.01, 137.14, 132.88 (d, *J*_{C-F}=9.1 Hz), 131.86, 124.66 (d, *J*_{C-F}=3.3 Hz), 122.88 (d, *J*_{C-F}=12.2 Hz), 121.96, 119.55, 116.14 (d, *J*_{C-F}=24.7 Hz), 57.66, 27.80. HRMS (EI-TOF) calcd for C₁₅H₁₅FN₂O (M⁺): 258.1168, found: 258.1165.

2.2.3 2-Chloro-*N*-(2-(pyridin-2-yl)propan-2-yl)benzamide (1c)

The title compound **1c** was prepared according to the general procedure (Method A). ¹H NMR (400 MHz, CDCl₃) δ 8.49 (d, *J*=4.2 Hz, 1H), 8.36 (s, 1H), 7.73 (td, *J*=7.8, 1.8 Hz, 1H), 7.63 (dd, *J*=7.2, 2.0 Hz, 1H), 7.47 (d, *J*=8.0 Hz, 1H), 7.41 (dd, *J*=7.6, 1.6 Hz, 1H), 7.36–7.28 (m, 2H), 7.19 (ddd, *J*=7.4, 4.8, 0.8 Hz, 1H), 1.90 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 165.94, 164.34, 147.75, 137.15, 130.89, 130.24, 129.75, 127.02, 122.04, 119.58, 57.63, 27.64.

2.2.4 *N*-(2-(pyridin-2-yl)propan-2-yl)-2-(trifluoromethyl) benzamide (**1d**)

The title compound **1d** was prepared according to the general procedure (Method B). ¹H NMR (400 MHz, CDCl₃) δ 8.44–8.42 (m, 1H), 8.30 (s, 1H), 7.75–7.68 (m, 2H), 7.60–7.58 (m, 2H), 7.51 (t, *J*=6.8 Hz, 1H), 7.45 (dd, *J*=8.0, 0.8 Hz, 1H), 7.20–7.16 (m, 1H), 1.88 (d, *J*=2.4 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 166.97, 164.15, 147.57, 137.46 (q, *J*_{C-F}=2.0 Hz), 137.33, 132.03, 129.41, 128.67, 127.67 (q, *J*_{C-F}=31.7 Hz), 126.41 (q, *J*_{C-F}=5.0 Hz), 123.91 (q, *J*_{C-F}=272.1 Hz), 122.09, 119.56, 57.42, 27.21; HRMS (EI-TOF) calcd for C₁₆H₁₅F₃N₂O (M⁺): 308.1136, found: 308.1133.

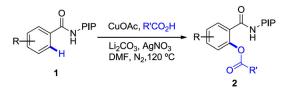
2.2.5 3-Methoxy-*N*-(2-(pyridin-2-yl)propan-2-yl)benzamide (1e)

The title compound **1e** was prepared according to the general procedure (Method B).¹H NMR (400 MHz, CDCl₃) δ 8.81 (s, 1H), 8.56 (dd, *J*=4.8, 0.4 Hz, 1H), 7.75 (td, *J*=7.6, 1.6 Hz, 1H), 7.50–7.42 (m, 3H), 7.35 (t, *J*=8.0 Hz, 1H), 7.23 (ddd, *J*=7.6, 4.8, 0.8 Hz, 1H), 7.04–7.02 (m, 1H), 3.86 (s, 3H), 1.88 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 166.15, 164.61, 159.82, 147.60, 137.43, 137.36, 129.41, 122.01, 119.62, 118.92, 117.47, 112.30, 56.71, 55.41, 27.55; HRMS (EI-TOF) calcd for C₁₆H₁₈N₂O₂ (M⁺): 270.1368, found: 270.1371.

2.2.6 3-Methyl-*N*-(2-(pyridin-2-yl)propan-2-yl)benzamide (**1g**)

The title compound **1g** was prepared according to the general procedure (Method A).¹H NMR (400 MHz, CDCl₃): δ 8.73 (s, 1H), 8.57 (d, *J*=4.8 Hz, 1H), 7.77–7.72 (m, 2H), 7.68 (d, *J*=7.2 Hz, 1H), 7.47 (d, *J*=8.0 Hz,1H), 7.35–7.29 (m, 2H), 7.22 (dd, *J*=7.2, 4.8 Hz, 1H) 2.42 (s, 3H), 1.88 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 166.61, 164.88,147.33, 138.29, 137.32, 136.06, 131.86, 128.38, 127.89, 124.04, 122.00, 119.66, 56.77, 27.65, 21.49; HRMS (EI-TOF) calcd for C₁₆H₁₈N₂O (M⁺): 254.1419, found: 254.1418.

2.2.7 Methyl 4-((2-(pyridin-2-yl)propan-2-yl)carbamoyl) benzoate (**1h**)


The title compound **1h** was prepared according to the general procedure (Method C). ¹H NMR (400 MHz, CDCl₃) δ

9.02 (s, 1H), 8.56 (dd, *J*=4.1, 0.8 Hz, 1H), 8.12 (d, *J*=8.4 Hz, 2H), 7.96 (d, *J*=8.4 Hz, 2H), 7.77 (td, *J*=8.0, 1.6 Hz, 1H), 7.47 (d, *J*=8.0 Hz, 1H), 7.26–7.20 (m, 1H), 3.95 (s, 3H), 1.89 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 166.65, 165.43, 164.57, 147.70, 140.17, 137.50, 132.45, 129.90, 127.19, 122.21, 119.68, 56.92, 52.43, 27.53. HRMS (EI-TOF) calcd for C₁₇H₁₈N₂O₃ (M⁺): 298.1317, found: 298.1320.

2.2.8 4-Methyl-*N*-(2-(pyridin-2-yl)propan-2-yl)benzamide (1i)

The title compound **1i** was prepared according to the general procedure (Method A). ¹H NMR (400 MHz, CDCl₃) δ 8.77 (s, 1H), 8.56 (d, *J*=4.4 Hz, 1H), 7.80 (d, *J*=8.0 Hz, 2H), 7.75 (td, *J*=8.0, 1.6 Hz, 1H), 7.46 (d, *J*=8.0 Hz, 1H), 7.26–7.22 (m, 3H), 2.40 (s, 3H), 1.88 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 166.37, 164.99, 147.74, 141.44, 137.31, 133.37, 129.22, 127.12, 122.02, 119.68, 56.74, 27.70, 21.55. HRMS (EI-TOF) calcd for C₁₆H₁₈N₂O (M⁺): 254.1419, found: 254.1421.

2.3 General procedure for copper-catalyzed $C(sp^2)$ -H esterification

To a 50 mL sealed tube was added **1** (0.15 mmol), acid (0.45 mmol), CuOAc (7.4 mg, 0.06 mmol), AgNO₃ (101.9 mg, 0.6 mmol), Li₂CO₃ (33.3 mg, 0.45 mmol) and DMF (3 mL). The mixture was purged with N₂ and stirred at 120 °C for 24 h. The reaction mixture was then cooled to room temperature, diluted with dichloromethane and quenched with saturated sodium sulfide. The aqueous phase was extracted with dichloromethane (3×10 mL). The combined organic phase was dried with anhydrous magnesium sulfate. After concentration, the resulting residue was purified by flash chromatography to afford the product.

2.3.1 2-((2-(Pyridin-2-yl)propan-2-yl)carbamoyl)phenyl 2,4,6-trimethylbenzoate (2a)

The title compound **2a** was prepared according to the general procedure. ¹H NMR (400 MHz, CDCl₃): δ 8.82 (brs, 1H), 8.04 (dd, *J*=7.6, 1.6 Hz, 1H), 7.93 (d, *J*=4.8 Hz, 1H), 7.60 (td, *J*=8.0, 1.6 Hz, 1H), 7.52 (td, *J*=8.0, 2.0 Hz, 1H), 7.38–7.29 (m, 3H), 7.00 (ddd, *J*=7.2, 5.2, 0.8 Hz, 1H), 6.82 (s, 2H), 2.40 (s, 6H), 2.28 (s, 3H), 1.75 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 167.68, 164.27, 164.03, 148.30, 147.58, 140.29, 136.89, 136.63, 131.60, 130.98, 129.31, 129.07, 128.92, 126.28, 123.19, 121.55, 119.13, 57.43, 27.51, 21.28, 20.56; HRMS (EI-TOF) calcd for C₂₅H₂₆N₂O₃ (M⁺): 402.1943, found: 402.1950.

2.3.2 2-((2-(Pyridin-2-yl)propan-2-yl)carbamoyl)-1,3-phenylene bis(2,4,6-trimethylbenzoate) (**2a**')

The title compound **2a**' was prepared according to the general procedure. ¹H NMR (400 MHz, CDCl₃): δ 8.33 (d, *J*=4.0 Hz, 1H), 7.85 (brs, 1H), 7.52 (t, *J*=8.0 Hz, 1H), 7.36–7.22 (m, 4H), 7.04–7.00 (m, 1H), 6.84 (s, 4H), 2.37 (s, 12H), 2.28 (s, 6H), 1.56 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 167.69, 163.86, 162.17, 148.51, 147.68, 140.44, 137.04, 136.80, 129.86, 129.00, 128.80, 121.74, 120.35, 119.26, 57.68, 27.45, 21.31, 20.71; HRMS (ESI-TOF) calcd for C₃₅H₃₆N₂O₅H⁺ (M⁺): 565.2697, found: 565.2700.

2.3.3 3-Fluoro-2-((2-(pyridin-2-yl)propan-2-yl)carbamoyl)phenyl 2,4,6-trimethylbenzoate (**2b**)

The title compound **2b** was prepared according to the general procedure. ¹H NMR (400 MHz, CDCl₃): δ 8.42 (d, *J*=4.0 Hz, 1H), 8.18 (brs, 1H), 7.61 (t, *J*=7.6 Hz), 7.46 – 7.36 (m, 2H), 7.15–7.10 (m, 2H), 7.06 (t, *J*=8.0 Hz), 6.85 (s, 2H), 2.39 (s, 6H), 2.28 (s, 3H), 1.78 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 167.76, 163.97, 159.94 (*J*_{C-F}=247.5 Hz), 158.70, 148.91 (*J*_{C-F}=6.3 Hz), 147.68, 140.38, 137.11, 136.87, 130.54 (*J*_{C-F}=9.5 Hz), 128.94, 128.87, 121.94, 121.19 (*J*_{C-F}=20.9 Hz), 119.41, 118.88 (*J*_{C-F}=3.4 Hz), 113.59 (*J*_{C-F}=22.0 Hz), 57.74, 27.60, 21.28, 20.59; HRMS (EI-TOF) calcd for C₂₅H₂₅FN₂O₃ (M⁺): 420.1849, found: 420.1846.

2.3.4 3-Chloro-2-((2-(pyridin-2-yl)propan-2-yl)carbamoyl)phenyl 2,4,6-trimethylbenzoate (**2c**)

The title compound **2c** was prepared according to the general procedure. ¹H NMR (400 MHz, CDCl₃): δ 8.40 (d, *J*=4.0 Hz, 1H), 8.01 (brs, 1H), 7.56 (t, *J*=8.0 Hz, 1H), 7.41–7.32 (m, 3H), 7.27 (d, *J*=8.0 Hz, 1H), 7.12 (dd, *J*=7.2, 4.8 Hz, 1H), 6.83 (s, 2H), 2.35 (s, 6H), 2.27 (s, 3H), 1.77 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 167.79, 163.94, 162.76, 148.45, 147.64, 140.45, 137.08, 136.91, 132.36, 131.76, 130.06, 128.96, 128.77, 127.25, 121.94, 121.48, 119.43, 57.75, 27.48, 21.29, 20.60; HRMS (EI-TOF) calcd for C₂₅H₂₅ClN₂O₃ (M⁺): 436.1554, found: 436.1554.

2.3.5 2-((2-(Pyridin-2-yl)propan-2-yl)carbamoyl)-3-(trifluoromethyl)phenyl 2,4,6-trimethylbenzoate (**2d**)

The title compound **2d** was prepared according to the general procedure. ¹H NMR (400 MHz, CDCl₃): δ 8.36 (d, *J*=4.4 Hz, 1H), 8.18 (brs, 1H), 7.63–7.56 (m, 3H), 7.53 (td, *J*=8.0, 1.2 Hz, 1H), 7.33 (d, *J*=8.0 Hz, 1H), 7.10 (dd, *J*=7.2, 5.2 Hz, 1H), 6.83 (s, 2H), 2.34 (s, 6H), 2.27 (s, 3H), 1.71 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 167.67, 163.82, 162.53, 148.42, 147.49, 140.55, 137.09, 137.03, 130.48, 129.76, 129.17, 129.00, 128.85, 128.49, 126.82, 123.69 (q, *J*_{C-F}=4.8 Hz), 123.45 (q, *J*_{C-F}=272.5 Hz), 121.93, 119.38, 57.62, 27.04, 21.28, 20.59; HRMS (EI-TOF) calcd for C₂₆H₂₅F₃N₂O₃ (M⁺): 470.1817, found: 470.1821.

2.3.6 2-Methoxy-6-((2-(pyridin-2-yl)propan-2-yl)carbamoyl)phenyl 2,4,6-trimethylbenzoate (**2e**)

The title compound **2e** was prepared according to the general procedure. ¹H NMR (400 MHz, CDCl₃): δ 8.75 (s, 1H), 7.96 (d, *J*=4.8 Hz, 1H), 7.61–7.55 (m, 2H), 7.33–7.28 (m, 2H), 7.12 (d, *J*=8.0 Hz, 1H), 6.99 (dd, *J*=6.4, 5.2 Hz, 1H), 6.82 (s, 2H), 3.89 (s, 3H), 2.45 (s, 6H), 2.27 (s, 3H), 1.74 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 166.42, 164.28, 164.12, 151.73, 147.61, 140.27, 137.85, 136.83, 130.71, 129.07, 128.89, 126.63, 121.97, 121.54, 119.11, 114.52, 57.49, 56.20, 27.55, 21.27, 20.95; HRMS (EI-TOF) calcd for C₂₆H₂₈N₂O₄ (M⁺): 432.2049, found: 432.2049.

2.3.7 4-Methoxy-2-((2-(pyridin-2-yl)propan-2-yl)carbamoyl)phenyl 2,4,6-trimethylbenzoate (**2f**)

The title compound **2f** was prepared according to the general procedure. ¹H NMR (400 MHz, CDCl₃): δ 8.92 (s, 1H), 7.85 (d, *J*=4.0 Hz, 1H), 7.63–7.57 (m, 2H), 7.31 (d, *J*=8.0 Hz, 1H), 7.24 (d, *J*=9.2 Hz, 1H), 7.05 (dd, *J*=8.8, 2.8 Hz, 1H), 6.98 (dd, *J*=6.4, 4.8 Hz, 1H), 6.81 (s, 2H), 3.86 (s, 3H), 2.37 (s, 6H), 2.28 (s, 3H), 1.73 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 168.04, 164.25, 163.61, 157.47, 147.62, 141.85, 140.25, 136.85, 136.57, 129.44, 129.29, 128.91, 124.22, 121.52, 119.07, 118.40, 114.54, 57.53, 55.95, 27.50, 21.28, 20.56; HRMS (EI-TOF) calcd for C₂₆H₂₈N₂O₄ (M⁺): 432.2049, found: 432.2048.

2.3.8 4-Methoxy-2-((2-(pyridin-2-yl)propan-2-yl)carbamoyl)-1,3-phenylene bis(2,4,6-trimethylbenzoate) (**2f**')

The title compound **2f**' was prepared according to the general procedure. ¹H NMR (400 MHz, CDCl₃): δ 8.33 (d, *J*=4.0 Hz, 1H), 7.82 (s, 1H), 7.32–7.22 (m, 3H), 7.08 (d, *J*=8.8 Hz, 1H), 7.00 (t, *J*=5.2 Hz, 1H), 6.84 (s, 2H), 6.83 (s, 2H), 3.89 (s, 3H), 2.41 (s, 6H), 2.36 (s, 6H), 2.27 (s, 3H), 1.58 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 168.13, 166.57, 163.86, 162.05, 149.56, 147.71, 140.86, 140.43, 140.27, 138.13, 137.39, 136.96, 136.73, 129.15, 129.01, 128.95, 128.31, 127.36, 121.69, 120.66, 119.23, 112.70, 57.71, 56.41, 27.53, 21.29, 21.00, 20.68; HRMS (EI-TOF) calcd for C₃₆H₃₈N₂O₆ (M⁺): 594.2730, found: 594.2734.

2.3.9 4-Methyl-2-((2-(pyridin-2-yl)propan-2-yl)carbamoyl) phenyl 2,4,6-trimethylbenzoate (**2g**)

The title compound **2g** was prepared according to the general procedure. ¹H NMR (400 MHz, CDCl₃): δ 8.78 (s, 1H), 7.91 (d, *J*=4.4 Hz, 1H), 7.85 (s, 1H), 7.60 (td, *J*=8.0, 1.6 Hz, 1H), 7.32 (d, *J*=8.0 Hz, 2H), 7.21 (d, *J*=8.0 Hz, 1H), 6.99 (dd, *J*=6.4, 4.8 Hz, 1H), 6.81 (s, 2H), 2.40 (s, 3H), 2.38 (s,6H), 2.28 (s, 3H), 1.73 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 167.88, 164.33, 164.14, 147.61, 146.06, 140.20, 136.83, 136.57, 136.08, 132.20, 131.34, 129.45, 128.88, 128.44, 122.92, 121.51, 119.12, 57.44, 27.51, 21.27, 20.96, 20.54; HRMS (EI-TOF) calcd for C₂₆H₂₈N₂O₃ (M⁺): 416.2100, found: 416.2102.

2.3.10 4-Methoxy-2-((2-(pyridin-2-yl)propan-2-yl)carbamoyl)-1,3-phenylene bis(2,4,6-trimethylbenzoate) (**2g**')

The title compound **2g**' was prepared according to the general procedure. ¹H NMR (400 MHz, CDCl₃): δ 8.34 (d, *J*=4.4 Hz, 1H), 7.75 (s, 1H), 7.36 (d, *J*=7.6 Hz, 1H), 7.26–7.19 (m, 3H), 6.99 (t, 5.6 Hz), 6.88 (s, 3H), 6.83 (s, 3H), 5.30 (s, 3H), 2.47 (s, 6H), 2.35 (s, 6H), 2.29 (s, 6H), 2.28 (s, 3H), 1.51 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 167.82, 166.66, 163.93, 162.74, 147.75, 146.87, 146.32, 141.09, 140.29, 139.17, 136.97, 136.65, 131.50, 129.81, 129.20, 128.95, 127.31, 126.51, 121.64, 120.45, 119.25, 57.68, 27.44, 22.07, 21.29, 20.64, 17.25; HRMS (EI-TOF) calcd for C₃₆H₃₈N₂O₅ (M⁺): 578.2781, found: 578.2780.

2.3.11 5-(Methoxycarbonyl)-2-((2-(pyridin-2-yl)propan-2-yl)carbamoyl)phenyl 2,4,6-trimethylbenzoate (**2h**)

The title compound **2h** was prepared according to the general procedure. ¹H NMR (400 MHz, CDCl₃): δ 8.95 (s, 1H), 8.08 (d, *J*=8.0 Hz, 1H), 8.01 (d, *J*=8.4 Hz, 1H), 7.97 (s, 1H), 7.94 (d, *J*=4.0 Hz, 1H), 7.62 (t, *J*=7.6 Hz, 1H), 7.33 (d, *J*=8.0 Hz, 1H), 7.02 (dd, *J*=6.4, 5.2 Hz, 1H), 6.83 (s, 2H), 3.96 (s, 3H), 2.41 (s, 6H), 2.29 (s, 3H), 1.75 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 167.43, 165.84, 164.03, 163.32, 148.14, 147.55, 140.54, 137.02, 136.92, 133.32, 133.14, 131.01, 129.02, 128.87, 127.22, 124.57, 121.70, 119.15, 57.56, 52.66, 27.43, 21.30, 20.72; HRMS (EI-TOF) calcd for C₂₇H₂₈N₂O₅ (M⁺): 460.1998, found: 460.2007.

2.3.12 5-(Methoxycarbonyl)-2-((2-(pyridin-2-yl)propan-2yl)carbamoyl)-1,3-phenylene bis(2,4,6-trimethylbenzoate) (**2h**')

The title compound **2h**' was prepared according to the general procedure. ¹H NMR (400 MHz, CDCl₃): δ 8.33 (d, *J*=4.0 Hz, 1H), 8.04 (s, 1H), 1.95 (s, 2H), 7.40 (td, *J*=8.0, 1.6 Hz, 1H), 7.23 (d, *J*=8.0 Hz, 1H), 7.05 (dd, *J*=6.4, 4.8 Hz, 1H), 6.84 (s, 4H), 3.97 (s, 3H), 2.38 (s, 12H), 2.27 (s, 3H), 1.55 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 167.39, 165.25, 163.62, 161.44, 148.46, 147.63, 140.66, 137.22, 136.91, 132.02, 130.02, 129.07, 128.36, 121.86, 121.66, 119.20, 57.73, 52.83, 27.35, 21.31, 20.79; HRMS (EI-TOF) calcd for C₃₇H₃₈N₂O₇ (M⁺): 622.2679, found: 622.2653.

2.3.13 5-Methyl-2-((2-(pyridin-2-yl)propan-2-yl)carbamoyl)phenyl 2,4,6-trimethylbenzoate (**2i**)

The title compound **2i** was prepared according to the general procedure. ¹H NMR (400 MHz, CDCl₃): δ 8.78 (s, 1H), 7.95 (d, *J*=8.0 Hz, 1H), 7.89 (d, *J*=4.4 Hz, 1H), 7.59 (t, *J*=7.6 Hz, 1H), 7.31 (d, *J*=8.0 Hz, 1H), 7.16 (d, *J*=8.0 Hz, 1H), 7.12 (s, 1H), 6.99 (dd, *J*=6.0, 4.8 Hz, 1H), 6.82 (s, 2H), 2.43 (s, 3H), 2.40 (s, 6H), 2.28 (s, 3H), 1.73 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 167.68, 164.44, 164.02, 148.26, 147.62, 142.44, 140.27, 136.81, 136.69, 131.04, 129.40, 128.94, 127.16, 126.04, 123.55, 121.48, 119.11, 57.41, 27.56, 21.45, 21.28, 20.62; HRMS (EI-TOF) calcd for C₂₆H₂₈N₂O₃ (M⁺): 416.2100, found: 416.2102.

2.3.14 2-((2-(Pyridin-2-yl)propan-2-yl)carbamoyl)phenyl 2,6-dimethylbenzoate (**3**)

The title compound **3** was prepared according to the general procedure. ¹H NMR (400 MHz, CDCl₃): δ 8.85 (brs, 1H), 8.03 (dd, *J*=8.0, 1.6 Hz, 1H), 7.90 (d, *J*=4.4 Hz, 1H), 7.60 (td, *J*=8.0, 1.6 Hz, 1H), 7.53 (td, *J*=8.0, 1.6 Hz, 1H), 7.40–7.31 (m, 3H), 7.20 (t, *J*=7.6 Hz, 1H), 7.04–6.98 (m, 3H), 2.43 (s, 6H), 1.75 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 167.63, 164.22, 164.04, 148.22, 147.58, 136.95, 136.27, 132.41, 131.60, 130.96, 130.18, 129.13, 128.05, 126.37, 123.15, 121.70, 119.16, 57.43, 27.51, 20.43; HRMS (EI-TOF) calcd for C₂₄H₂₄N₂O₃ (M⁺): 388.1787, found: 388.1785.

2.3.15 2-((2-(Pyridin-2-yl)propan-2-yl)carbamoyl)-1,3-phenylene bis(2,6-dimethylbenzoate) (**3**')

The title compound **3**' was prepared according to the general procedure. ¹H NMR (400 MHz, CDCl₃): δ 8.32 (d, *J*=4.4 Hz, 1H), 7.93 (brs, 1H), 7.54 (t, *J*=8.4 Hz, 1H), 7.39–7.33 (m, 3H), 7.26–7.17 (m, 3H), 7.06–7.00 (m, 5H), 2.40 (s, 12H), 1.56 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 167.54, 163.81, 162.04, 148.43, 147.63, 136.87, 136.50, 131.96, 130.22, 129.85, 128.04, 125.83, 121.80, 120.30, 119.23, 57.65, 27.36, 20.49; HRMS (ESI-TOF) calcd for C₃₃H₃₂N₂O₅H⁺ (M⁺): 537.2384, found: 537.2382.

2.3.16 2-((2-(Pyridin-2-yl)propan-2-yl)carbamoyl)phenyl 2,4,6-triisopropylbenzoate (**4**)

The title compound **4** was prepared according to the general procedure. ¹H NMR (400 MHz, CDCl₃): δ 9.30 (s, 1H), 8.13 (dd, *J*=8.0, 1.6 Hz, 1H), 7.60–7.51 (m, 3H), 7.43 (d, *J*=8.0 Hz, 1H), 7.39–7.30 (m, 2H), 7.03 (s, 2H), 6.93 (dd, *J*=6.4, 4.8 Hz, 1H), 3.18–3.08 (m, 2H), 2.98–2.89 (m, 1H), 1.77 (s, 6H), 1.29 (d, *J*=7.2 Hz, 6H), 1.20 (d, *J*=6.8 Hz, 12H); ¹³C NMR (100 MHz, CDCl₃): δ 168.19, 164.23, 163.78, 151.10, 148.49, 147.28, 146.27, 136.88, 131.57, 131.33, 129.25, 128.54, 126.05, 122.71, 121.48, 121.17, 119.21, 57.46, 34.67, 31.50, 27.58, 24.34, 24.13; HRMS (ESI-TOF) calcd for C₃₁H₃₈N₂O₃H⁺ (M⁺): 487.2955, found: 487.2957.

2.3.17 2-((2-(Pyridin-2-yl)propan-2-yl)carbamoyl)-1,3-phenylene bis(2,4,6-triisopropylbenzoate) (4')

The title compound **4'** was prepared according to the general procedure. ¹H NMR (400 MHz, CDCl₃): δ 8.29 (d, *J*=4.0 Hz, 1H), 7.82 (s, 1H), 7.53 (dd, *J*=9.2, 7.2 Hz, 1H), 7.47–7.43 (m, 2H), 7.25–7.22 (m, 1H), 7.14 (td, *J*=7.2, 1.6 Hz, 1H), 7.03–6.95 (m, 5H), 3.12–3.03 (m, 4H), 2.93–2.84 (m, 2H), 1.55 (s, 6H), 1.24 (d, *J*=7.2 Hz, 12H), 1.19 (d, *J*=6.8 Hz, 24H); ¹³C NMR (100 MHz, CDCl₃): δ 168.25, 163.95, 162.03, 151.03, 148.68, 147.62, 146.06, 136.79, 129.71, 128.93, 125.42, 121.56, 121.11, 119.42, 119.26, 57.81, 34.59, 31.53, 27.68, 24.41, 24.04; HRMS (ESI-TOF) calcd for C₄₇H₆₀N₂O₅H⁺ (M⁺): 733.4575, found: 733.4578.

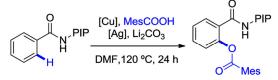
2.3.18 2-((2-(Pyridin-2-yl)propan-2-yl)carbamoyl)phenyl 4-bromo-2,6-dimethylbenzoate (**5**)

The title compound **5** was prepared according to the general procedure. ¹H NMR (400 MHz, CDCl₃) δ 8.88 (brs, 1H), 8.02 (dd, *J*=7.6, 1.2 Hz, 1H), 7.94 (d, *J*=4.4 Hz, 1H), 7.65 (td, *J*=7.6, 1.6 Hz, 1H), 7.53 (td, *J*=8.0, 1.6 Hz, 1H), 7.41–7.29 (m, 3H), 7.16 (s, 2H), 7.07 (dd, *J*=7.2, 5.2 Hz, 1H), 2.40 (s, 6H), 1.78 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 166.91, 164.19, 164.04, 148.02, 147.41, 138.49, 137.10, 131.62, 131.40, 130.89, 129.34, 126.56, 124.28, 123.09, 121.85, 119.19, 57.43, 27.46, 20.28. HRMS (EI-TOF) calcd for C₂₄H₂₃BrN₂O₃ (M⁺): 466.0892, found: 466.0888.

2.2.19 2-((2-(Pyridin-2-yl)propan-2-yl)carbamoyl)-1,3-phenylene bis(4-bromo-2,6-dimethylbenzoate) (**5**')

The title compound **5**' was prepared according to the general procedure. ¹H NMR (400 MHz, CDCl₃) δ 8.31 (d, *J*=4.0 Hz, 1H), 8.06 (brs, 1H), 7.56–7.46 (m, 2H), 7.32 (d, *J*=8.4 Hz, 2H), 7.28–7.24 (m, 1H), 7.19 (s, 4H), 7.08 (ddd, *J*=7.2, 4.8, 0.8 Hz, 1H), 2.37 (s, 12H), 1.57 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 166.78, 163.69, 161.88, 148.26, 147.55, 138.78, 137.04, 130.99, 130.84, 129.97, 125.80, 124.47, 122.00, 120.42, 119.28, 57.55, 27.34, 20.37. HRMS (EI-TOF) calcd for C₃₃H₃₀Br₂N₂O₅ (M⁺): 692.0521, found: 692.0516.

3 Results and discussion


3.1 Optimization of reaction conditions

We started our study by investigating the optimal conditions for copper-catalyzed $C(sp^2)$ –H esterification. PIP-NH₂ was employed as directing group and MesCOOH was chosen as coupling partner. Our initial condition using CuOAc (10 mol%) as catalyst, Li₂CO₃ (3.0 equiv.) as base, AgNO₃ (4.0 equiv.) as oxidant in DMF at 120 °C for 24 h afforded the desired product in 51% overall yield (Table 1, Entry 1, mono:di=3.3:1). The overall yield was improved to 63% when when 20 mol% CuOAc was used (Entry 2). Subsequent screening of several copper salts revealed that CuOAc and Cu(OAc)₂ gave identical efficiency (Entries 3-8). Li₂CO₃ was crucial for this transformation since no product was observed in the absence of Li₂CO₃ (Entry 9). To our delight, the yield could be increased by simply lowering the concentration of the reaction and enhancing the amount of copper salts (entry 10, 70% yield, mono:di=1.3:1).

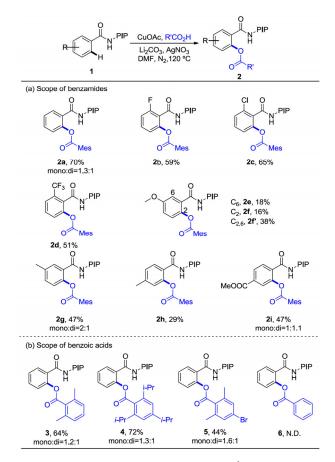
3.2 Substrate scope

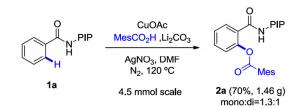
With the optimized reaction conditions in hand, we then explored the amide substrate scope under the optimized conditions. As shown in Scheme 2, a variety of functional groups were well tolerated, such as fluoro (**2b**), chloro (**2c**), trifluoromethyl (**2d**), methoxy (**2e** and **2f**), methoxycarbonyl

Table 1 Optimization of reaction condictions

				INICO	
1a			2a		
Entry [Cu] (equiv.)	[Ag]	MesCOOH	Li ₂ CO ₃	DMF	Yield
	(equiv.)	(equiv.)	(equiv.)	(mL)	$(\%)^{a)}$
1 CuOAc (0.1)	AgNO ₃	3.0	3.0	1.5	51
	(4.0)				(3.3:1)
2 CuOAc (0.2)	AgNO ₃	3.0	3.0	1.5	63
	(4.0)				(2.7:1)
Cu ₂ (OH) ₂ CO ₃	AgNO ₃	3.0	3.0	1.5	44
$3 \frac{Cu_2(011)_2CO_3}{(0.2)}$	(4.0)				(7.8:1)
4 $Cu(OAc)_2(0.2)$. ,	3.0	3.0	1.5	61
					(3.7:1)
5 $CuBr_2(0.2)$. ,	3.0	3.0	1.5	51
	0				(2.6:1)
	. ,		•		
CuO (0.2)	-	3.0	3.0	1.5	N.D.
	· · ·				44
CuCN (0.2)		3.0	3.0	1.5	(3.9:1)
8 CuI (0.2)	· · ·				57
Cul (0.2)	0 *	3.0	3.0	1.5	(3.4:1)
9 CuOAc (0.2)	· · ·				· /
CuOAc (0.2)		3.0	-	1.5	N.D.
~ ~					70
CuOAc (0.4)	(4.0)	3.0	3.0	3.0	(1.3:1)
	[Cu] (equiv.) CuOAc (0.1) CuOAc (0.2) Cu ₂ (OH) ₂ CO ₃ (0.2) Cu(OAc) ₂ (0.2)	$\begin{array}{c c} [Cu] (equiv.) & [Ag] \\ (equiv.) \\ \hline (equiv.) \\ CuOAc (0.1) & AgNO3 \\ (4.0) \\ CuOAc (0.2) & AgNO3 \\ (4.0) \\ Cu_2(OH)_2CO3 & AgNO3 \\ (0.2) & (4.0) \\ Cu(OAc)_2 (0.2) & (4.0) \\ CuBr_2 (0.2) & AgNO3 \\ (4.0) \\ CuO (0.2) & AgNO3 \\ (4.0) \\ CuO (0.2) & AgNO3 \\ (4.0) \\ CuCN (0.2) & AgNO3 \\ (4.0) \\ CuI (0.2) & AgNO3 \\ (4.0) \\ CuOAc (0.2) & AgNO3 \\ (4.0) \\ CuOAc (0.4) & AgNO3 \\ (4.0) \\ (4.0) \\ CuOAc (0.4) & AgNO3 \\ (4.0) \\ (4$	$\begin{array}{c c} [Cu] (equiv.) & [Ag] & MesCOOH \\ (equiv.) & (equiv.) \\ \hline \\ CuOAc (0.1) & AgNO_3 \\ (4.0) & 3.0 \\ \hline \\ CuOAc (0.2) & AgNO_3 \\ (4.0) & 3.0 \\ \hline \\ Cu_2(OH)_2CO_3 & AgNO_3 \\ (0.2) & (4.0) & 3.0 \\ \hline \\ Cu(OAc)_2 (0.2) & AgNO_3 \\ (4.0) & 3.0 \\ \hline \\ CuBr_2 (0.2) & AgNO_3 \\ (4.0) & 3.0 \\ \hline \\ CuO (0.2) & AgNO_3 \\ (4.0) & 3.0 \\ \hline \\ CuO (0.2) & AgNO_3 \\ (4.0) & 3.0 \\ \hline \\ CuCN (0.2) & AgNO_3 \\ (4.0) & 3.0 \\ \hline \\ CuCN (0.2) & AgNO_3 \\ (4.0) & 3.0 \\ \hline \\ CuOAc (0.2) & AgNO_3 \\ (4.0) & 3.0 \\ \hline \\ CuOAc (0.4) & AgNO_3 \\ (4.0) & 3.0 \\ \hline \\ CuOAc (0.4) & AgNO_3 \\ \hline \\ CuOAc (0.4) & AgNO_3 \\ \hline \\ CuOAc (0.4) & AgNO_3 \\ \hline \\ \end{array}$	$\begin{array}{c c} [Cu] (equiv.) & [Ag] & MesCOOH & Li_2CO_3 \\ (equiv.) & (equiv.) & (equiv.) \\ (equiv.) & (equiv.) & (equiv.) \\ \end{array} \\ \begin{array}{c} CuOAc (0.1) & AgNO_3 \\ (4.0) & 3.0 & 3.0 \\ CuOAc (0.2) & AgNO_3 \\ (4.0) & 3.0 & 3.0 \\ Cu_2(OH)_2CO_3 & AgNO_3 \\ (0.2) & (4.0) & 3.0 & 3.0 \\ Cu(OAc)_2 (0.2) & AgNO_3 \\ (4.0) & 3.0 & 3.0 \\ CuBr_2 (0.2) & AgNO_3 \\ (4.0) & 3.0 & 3.0 \\ CuO (0.2) & AgNO_3 \\ (4.0) & 3.0 & 3.0 \\ CuO (0.2) & AgNO_3 \\ (4.0) & 3.0 & 3.0 \\ CuO (0.2) & AgNO_3 \\ (4.0) & 3.0 & 3.0 \\ CuO (0.2) & AgNO_3 \\ (4.0) & 3.0 & 3.0 \\ CuO (0.2) & AgNO_3 \\ (4.0) & 3.0 & 3.0 \\ CuO (0.2) & AgNO_3 \\ (4.0) & 3.0 & 3.0 \\ CuO (0.2) & AgNO_3 \\ (4.0) & 3.0 & 3.0 \\ CuO (0.2) & AgNO_3 \\ (4.0) & 3.0 & 3.0 \\ CuO (0.2) & AgNO_3 \\ (4.0) & 3.0 & 3.0 \\ CuO Ac (0.2) & AgNO_3 \\ (4.0) & 3.0 & 3.0 \\ \end{array} $	$\begin{array}{c c c c c } 1a & & & & & & & & & & & & & & & & & & $

a) ¹H NMR yield using CH_2Br_2 as the internal standard; b) isolated yield.

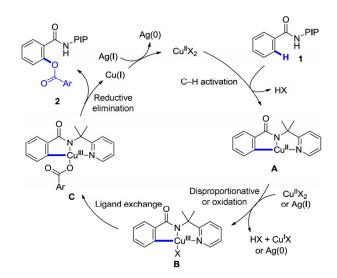

(2i). Notably, when *meta*-methylbenzamide 1g was employed, the esterification occured predominantly at the sterically more accessible site to avoid the steric congestion. Interestingly, *meta*-methoxybenzamide 1e gave a mixture of esterification at both of C6 and C2-position (2e and 2f), probably due to the coordination effect of the methoxy substituten in stabilizing the aryl copper intermediate. Subsequently, we further explored the scope of benzoic acids. Generally, sterically bulky benzoic acids with 2,6-disubstituents showed good reaction efficiency, thus affording the desired esterification products in moderate to good yields (3–5). However, simple benzoic acid did not provide the desired product.


3.3 Gram scale synthesis

To demonstrate the synthetic utility of this reaction, we performed this reaction on gram scale (4.5 mmol) and the desired product was obtained in 70% overall yield (Scheme 3, 1.46 g, mono:di=1.3:1).

3.4 Plausible reaction mechansim

On the basis of the experiments above and previous work on copper-catalyzed C–H functionalized [21–25], the reaction mechanism was tentatively proposed as shown in Schem 4. The reaction starts with Cu(II)-catalyzed C–H activation to generate C,N,N-Cu(II) intermediate **A**, which undergoes



Scheme 3 Gram scale synthesis.

disproportion or oxidation to afford the C,N,N-Cu(III) species **B**. Finally, ligand exchange and reductive elimination from intermediate **C** delivered the desired product **2** with Cu(I). Notably, when CuOAc was used as catalyst, the catalytic cycle is both initiated and closed by the reoxidation of Cu(I) to Cu(II) by silver salt.

4 Conclusions

In conclusion, we have developed a copper-catalyzed esterification of $C(sp^2)$ -H bonds with sterically bulky benzoic acids. The presence of Li₂CO₃ is crucial for this process.

Scheme 4 Proposed reaction mechanism.

The reaction could tolerate various functional groups and proceed in good yield even in gram scale, providing an efficient and practical protocol for the synthesis of aryl esters.

This work was financially supported by the National Basic Research Program of China (2015CB856600), the National Natural Science Foundation of China (21422206, 21272206), the Fundamental Research Funds for the Central Universities (2014QNA3008) and the Natural Science Foundation of Zhejiang Province (Z12B02000).

- Chen X, Engle KM, Wang DH, Yu JQ. Palladium(II)-catalyzed C-H activation/C-C cross-coupling reactions: versatility and practicality. *Angew Chem Int Ed*, 2009, 48: 5094–5115
- 2 Li B, Yang S, Shi Z. Recent advances in direct arylation via palladiumcatalyzed aromatic C-H activation. *Synlett*, 2008, 7: 949–957
- 3 Lyons TW, Sanford MS. Palladium-catalyzed ligand-directed C–H functionalization reactions. *Chem Rev*, 2010, 110: 1147–1169
- 4 Ackermann L. Carboxylate-assisted transition-metal-catalyzed C–H bond functionalizations: mechanism and scope. *Chem Rev*, 2011, 111: 1315–1345
- 5 Baudoin O. Transition metal-catalyzed arylation of unactivated C(sp³)–H bonds. *Chem Soc Rev*, 2011, 40: 4902–4911
- 6 Colby DA, Bergman RG, Ellman JA. Rhodium-catalyzed C–C bond formation via heteroatom-directed C–H bond activation. *Chem Rev*, 2010, 110: 624–655
- 7 Kulkarni AA, Daugulis O. Direct conversion of carbon-hydrogen into carbon-carbon bonds by first-row transition-metal catalysis. *Synthesis*, 2009, 24: 4087–4109
- 8 Liu B, Shi BF. Transition-metal-catalyzed etherification of unactivated C-H bonds. *Tetrahedron Lett*, 2015, 56: 15–22
- 9 Chen X, Hao XS, Goodhue CE, and Yu JQ. Cu(II)-catalyzed functionalizations of aryl C–H bonds using O₂ as an oxidant. *J Am Chem Soc*, 2006, 128: 6790–6791
- 10 Wang WH, Luo F, Zhang SH, Cheng J. Copper(II)-catalyzed ortho-acyloxylation of the 2-arylpyridines sp² C–H bonds with anhydrides, using O₂ as terminal oxidant. J Org Chem, 2010, 75: 2415– 2418
- 11 Liu Q, Wu P, Yang YH, Zeng ZQ, Liu J, Yi H, Lei AW. Roomtemperature copper-catalyzed oxidation of electron-deficient arenes and heteroarenes using air. *Angew Chem Int Ed*, 2012, 51: 4666– 4670
- 12 Liu J, Zhang X, Yi H, Liu C, Liu R, Zhang H, Zhuo K, Lei AW.

Chloroacetate-promoted selective oxidation of heterobenzylic methylenes under copper catalysis. *Angew Chem Int Ed*, doi: 10.1002/anie.201409580

- 13 Roane J, Daugulis O. Copper-catalyzed etherification of arene C–H bonds. *Org Lett*, 2013, 15: 5842–5845
- 14 Hao XQ, Chen LJ, Ren B, Li LY, Yang XY, Gong JF, Niu JL, Song MP. Copper-mediated direct aroyloxylation of benzamides assisted by an *N*,*O*-bidentate directing group. *Org Lett*, 2014, 16: 1104–1107
- 15 Li X, Liu YH, Gu WJ, Li B, Chen FJ, and Shi BF. Copper-mediated hydroxylation of arenes and heteroarenes directed by a removable bidentate auxiliary. *Org Lett*, 2014, 16: 3904–3907
- 16 Wang Z, Kuninobu Y, Kanai M. Copper-mediated direct C(sp³)–H and C(sp²)–H acetoxylation. Org Lett, 2014, 16: 4790–4793
- 17 Wu XS, Zhao Y, Ge HB. Copper-promoted site-selective acyloxylation of unactivated C(sp³)–H bonds. *Chem Asian J*, 2014, 9: 2736– 2739
- 18 Tang S, Yuan JW, Liu C, Lei AW. Direct oxidative esterification of alcohols. *Dalton Trans*, 2014, 43: 13460–13470
- 19 Chen FJ, Zhao S, Hu F, Chen K, Zhang Q, Zhang SQ, Shi BF. Pd(II)-catalyzed alkoxylation of unactivated C(sp³)–H and C(sp²)–H bonds using a removable directing group: efficient synthesis of alkyl

ethers. Chem Sci, 2013, 4: 4187-4192

- 20 Zhang Q, Chen K, Rao WH, Zhang Y, Chen FJ, Shi BF. Stereoselective synthesis of chiral α-amino-β-lactams via Pd(II)-catalyzed sequential monoarylation/amidation of $C(sp^3)$ –H bonds. *Angew Chem Int Ed*, 2013, 52, 13588–13592
- 21 Long C, Zhao L, You JS, Wang MX. Copper(I)-catalyzed halogenations and acyloxylation of aryl triflates through a copper(I)/copper(III) catalytic cycle. *Organometallics*, 2014, 33: 1061–1067
- 22 Suess AM, Ertem MZ, Cramer CJ, Stahl SS. Divergence between organometallic and single-electron-transfer mechanisms in copper (II)-mediated aerobic C–H oxidation. J Am Chem Soc, 2013, 135: 9797–9804
- 23 Huffman LM, Stahl SS. Carbon-nitrogen bond formation involving well-defined aryl-copper(III) complexes. J Am Chem Soc, 2008, 130: 9196–9197
- 24 Wang ZL, Zhao L, Wang MX. Regiospecific functionalization of azacalixaromatics through copper-mediated aryl C–H activation and C–O bond formation. Org Lett, 2011, 13: 6560–6563
- 25 Zhang H, Yao B, Zhao L, Wang DX, Xu BQ, Wang MX. Direct synthesis of high-valent Aryl–Cu(II) and Aryl–Cu(III) compounds: mechanistic insight into arene C–H bond metalation. J Am Chem Soc, 2014, 136: 6326–6332