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Visible light induced photoredox catalysis is an efficient method 

for radical activation. Herein, we report a photoredox catalyzed 

intramolecular radical-radical coupling reaction that proceeds 

through biradical intermediate. This protocol represents a new 

synthetic route to construct multi-substituted N-heterocycles. 

Four, five and six-mumber N-heterocyclic structures with a 

quaternary carbon center are accessible under mild conditions. 

The nitrogen heterocycles, as basic alkaloid scaffolds, appear 

in numerous bioactive products, pharmaceuticals, and 

agrochemicals.
1
 As a result, the synthesis and functionalization 

of N-heterocycles have attracted a long-lasting interest in 

synthetic field.
2
 In the past years, a couple of strategies have 

been developed for the synthesis of N-heterocycles including 

piperidines, pyrrolidines, azetidines, and indoles.
3 

Despite the 

great achievements in this area, an efficient method for the 

construction of multi-substituted N-heterocycles with 

quaternary carbon centre from simple substrates is still 

desirable. Herein, we present a new way to synthesize four, 

five and six-membered aminated heterocyclic structures via 

visible-light-induced photoredox catalysis. 

Visible-light-induced photocatalysis has proven to be one of the 

most effective methods for radical activation,
4
 a large number of 

radical reactions have been realized via visible light irradiation.
5
 

Ketyl is valuable synthetic radical in organic synthesis.
6
 However, 

the unfavorable activation barrier during ketyl formation severely 

prevented their wider application. Recently, the groups of Knowles 
7
 and Rueping 

8
 reported efficient protocols to access ketyls under 

mild conditions by visible light photoredox catalysis. In their work, a  
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Scheme 1.Photoredox catalysed  ketyl formation reaction. 

sacrificial electron-donor reagent was needed to initiate catalytic 

cycle (Scheme 1-a). Meggers and co-workers also introduced a 

visible-light-driven asymmetric intermolecular ketyl/α-amine radical 

coupling reaction between one electron-acceptor (E-A) and one 

electron-donor (E-D) which avoids the use of an extra sacrificial 

electron-donor (Scheme 1-b). However, only electron-deficient 

trifluoromethyl ketones are suitable substrates. Inspired by our 

recent success in visible light photoredox catalysis,
10

 we assumed 

that a substrate bearing both ketone as electron-acceptor and 

tertiary amine as electron-donor
11

 would generate an active 

biradical intermediate which undergo radical- radical cyclization 

under visible light photoredox catalysis (Scheme 1-c). 

In order to demonstrate our hypothesis mentioned above, we 

synthesized compound 1a as a model substrate. However, visible 

light irradiation of substrate 1a in MeCN solution containing 1 mol% 

Ir(ppy)2(dtbbpy)PF6 led to no conversion (Table 1, entry 1). Addition 

of protonic acid (PhO)2PO2H was also ineffective (Table 1, entry 2). 

To our surprise, when thioacetic acid (CH3COSH) was employed, 

Page 1 of 5 ChemComm

C
he

m
C

om
m

A
cc

ep
te

d
M

an
us

cr
ip

t

Pu
bl

is
he

d 
on

 1
9 

M
ay

 2
01

6.
 D

ow
nl

oa
de

d 
by

 U
ni

ve
rs

ity
 o

f 
So

ut
h 

C
ar

ol
in

a 
L

ib
ra

ri
es

 o
n 

20
/0

5/
20

16
 0

6:
09

:5
6.

 

View Article Online
DOI: 10.1039/C6CC02027E

http://dx.doi.org/10.1039/c6cc02027e


COMMUNICATION Journal Name 

2 | J. Name., 2012, 00, 1-3 This journal is © The Royal Society of Chemistry 20xx 

Please do not adjust margins 

Please do not adjust margins 

36% yield of pyrrolidine product was obtained with 2.5:1 mixture of 

diastereomers (Table 1, entry 3). While MacMillan and co-workers  

Table 1. Optimization studies 
[a] 

 

Entry Solvent Additive
[b]
 Yield/% cis:trans

 [c]
 

1 CH3CN      0 
- 

2 CH3CN (PhO)2PO2H trace - 

3 CH3CN CH3COSH  36 2.5:1 

4 CH3CN Thiol 3a, K2HPO4  66 2:1 

5 DCM Thiol 3a, K2HPO4 64 1.5:1 

6 THF Thiol 3a, K2HPO4  36 2.3:1 

7 DMF Thiol 3a, K2HPO4  82 12:1 

8 DMSO Thiol 3a, K2HPO4  73 14:1 

9 DMF Thiol 3a, K3PO4  7 ND 

10 DMF Thiol 3a, KH2PO4  70 12:1 

11 DMF Thiol 3a, K2CO3  13 ND 

12 DMF Thiol 3a, KHCO3  64 12:1 

13 DMF K2HPO4  0 - 

14 DMF Thiol 3a trace - 

15
[d]
 DMF Thiol 3a, K2HPO4 0 - 

16 
[e]
 DMF Thiol 3a, K2HPO4  0 - 

[a] Optimization reactions performed on 0.2 mmol scale with anhydrous solvent 

under Argon atmosphere. Isolated yield. [b] All additives were used in 0.2 eq. [c] 

Determined by 
1
HNMR. [d] No catalyst. [e] No light. ND = not determined. 

have pioneered the strategy for thiol activation of C-H bonds 

via photoredox catalysis.
12 

We guessed that the electrophilic R-

S
.
 radical generated from MeCOSH may have an acceleration 

effect on the reaction by abstraction of H
.
 from substrate 1a.

 

Based on this hypothesis and after screening several similar 

conditions (see more details in Table 1 in ESI), the combination 

of methyl thioglycolate (thiol 3a) and K2HPO4 was adopted. In 

survey of various solvents, it was found that polar solvents 

provided better results. With DMF as reaction medium, the 

desired N-heterocycle 2a was obtained in 82% yield with high 

level of diastereoselectivity (Table 1, entries 4-8). Bases have a 

great influence on reaction yield (Table 1, entries 9-12). Among 

the bases screened, K2HPO4 proved to be the best choice (see 

more details in Table 1 in SI). Control experiments indicated 

the necessary of photocatalyst, thiol, light, and base, no 

desired product was detected in absence of any elements 

mentioned above (Table 1, entries 13-16). 

Table 2. Substrate scope 
[a] 

 

N

Ph

Ph

Ph

OH

2a [b]: 83%, dr=10:1,

N

Ph

Ar2

Ph

OH

2b:Ar2 =4-Me-Ph, 85% yield, dr=9:1

2c: Ar2 =4-OMe-Ph, 51% yield, dr=7:1

2d: Ar2 =4-CF3-Ph, 93% yield, dr=8:1

2e: Ar2 =4-F-Ph, 75% yield, dr=9:1

2f: Ar2 =4-Cl-Ph, 84% yield, dr=13:1

2g: Ar2 =4-Br-Ph, 87% yield, dr=15:1

N

Ph

Ar2

Ph

OH
2h:Ar2 =3-Me-Ph, 70% yield, dr=3:1

2i: Ar2 =3-F-Ph, 77% yield, dr=4:1

2j: Ar2 =3-Cl-Ph, 74% yield, dr=4:1

2k:Ar2 =2-Me-Ph, 74% yield, dr=3:1

N

Ph

Ph

OHS

2l: 76%, dr=5:1

N

Ph

Ph

OH

Ph

2m: 87% yield, dr=6:1

N

Ph

Ph

OH

2s: 95% yield, dr>20:1

N

Ph

Ph

OH

2t: 93% yield, dr>20:1

NPh
Ph

2u[c]: 61% yield, dr=1.5:1

N

Ar1

Ph

Ph

OH 2n: Ar1 =4-Me-Ph,73% yield, dr=7:1

2o[c]: Ar1 =4-CF3-Ph,52% yield, dr=6:1

N

Ph

Ph

Ph
OH

Me

2p[c]: 52% yield, dr=11:1

N

Ph

Ph

R1

OH 2q: R1=4-Me-Ph, 78% yield, dr=10:1

2r : R1=4-CF3-Ph, 86% yield, dr=10:1

H

five-mumbered ring:

2x[d]: 90% yield, dr=13:1

NPh
HO

Ph

O

NPh
HO

Ph

2v[c]:59% yield, dr=1.4:1

H

2w[d]: 71% yield, dr=3:1

PhN OH

Ph

H

H

Me Et
HO

 
[a] isolated Yields, d.r. was determined by 

1
H NMR. [b] Average yield of two runs 

(81% and 85%). [c] thiol (0.25 mmol), K2HPO4 (0.25 mmol). [d] relative 

configuration was determined by NOE. 

With the optimized conditions in hand, we next engaged to 
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define the substrate generality of this protocol. When the reaction 

was performed on 0.5 mmol scale, model substrate 1a provided 

cyclized product in an undiminished yield (83%) as a 10:1 mixture of 

diastereomers (Table 2, 2a). We then investigated a variety of Ar
2
 

groups. Both electron-rich and electron-poor substrates functioned 

well in this process (Table 2, 2b-2k). Substrates with strong 

electron-withdrawing group (CF3) on the benzene ring (Table 2, 2d) 

resulted in high yield (93%) but in slow conversion. It was found 

that the position of substituents have great impact on the 

diastereomeric ratio. Meta-substituted and orth-substitued 

analogues led to poor diastereoselectivity (Table 2, 2h-2k). 

Heteroarene structures are prevalence in bioactive molecules, 

so heteroaromatic substrate (Table 2, 2l) was tested too, and 76% 

yield of product was obtained. Conjugated substrate was also 

suitable for this system which could offer 2-vinyl substituted N-

heterocycle in 76% yield (Table 2, 2m). The effect of Ar
1
 groups 

were examined too, all underwent reaction to provide desired 

products in moderate to good yields (Table 2, 2n-2o). The two 

aromatic groups (Ar
1
 and Ar

2
) are necessary to the successful of 

this transformation, while replacing of either Ar
1 

or Ar
2 

by aliphatic 

groups lead to no conversion (see details in ESI Table 2). 

Notably, α-alkyl branched substrate was successfully cyclized to 

provide product containing two continuous quaternary 

carbons in 52% yield with good diastereoselectivity (Table 2, 

2p). Aliphatic ketones 1s and 1t were also tolerable substrates 

(Table 2, 2s and 2t), furnishing cyclization in good results with 

high level diastereoselectivity (dr>20:1). Multi-substituted 

pyrrolidine fused to 6-, 7- membered rings were readily 

accessible via this protocol (Table 2, 2u-2w). The bridged 

bicyclic structure was also prepared in 90% yield which further 

demonstrated the generality of this method in constructing N-

heterocycle compounds (Table 2, 2x). Next, we explored the 

possibility of expanding this protocol to synthesize N-heterocycles 

of different sizes. At first, we employed our protocol to synthesize 

piperidine scaffold. The corresponding piperdines could be isolated 

in good yields (Table 2, 4a-4f). Then, we questioned if it is possible 

to obtain azetine with high ring strain. To our delight, the cyclization 

procedure proceeded well to provide multi-substituted azetidines in 

moderate yields (Table 2, 5a-5b). It was needed to mention that 

substrates with N-Me or N-Et substitution also could smoothly 

furnish the cyclization reactions (Table 2, 5a-5f). Gram-scale 

experiments were also performed to test the potential application 

of this method in organic synthesis (see results in ESI, page of 6). 

With N-substituted amino acetophenone as substrate, we 

get dehydration products which led to 1, 2, 3,-trisubstituted 

indoles. In consideration of the widely existence of indole 

scaffolds in natural products, the generality of this method 

was then examined (see optimization studies in Table 3 in ESI), 

the results are shown in Table 3. A range of functional groups 

on the aryl moiety were tolerated very well (Table 3, 7a-7i). 

Indolo[2,1-a]isoquinoline structures were also accessible in 

good yields (Table 3, 7j-7k). 

 

 

Table 3. Substrates scope of indole formation
 [a] 

N

Me

Ar

Ar

Me

O

N Ar

Ar

Ir(ppy)2(dtbbpy)PF6 (1 mol%)
CH3CN (5 mL), 5 W blue LED

K2HPO4 (0.5eq.), thiol 3a(0.5 eq.),
Ar, 48 h, rt

6
7

0.5 mmol

N

Me

Ph

7a: 68% yield

N

Me

Ar

Ar

N

Me

Ph

Me

7i: 62% yield

N

Me

7j: 91% yield

N

Me

MeO

MeO

7k: 87% yield

Ph

7b:Ar=4-Me-Ph, 70%; 7c: Ar=4-F-Ph, 65%
7d:Ar=4-Cl-Ph, 67%; 7e: Ar=4-CF3-Ph, 52%
7f: Ar=3-Me-Ph, 63%; 6g: Ar=3-Cl-Ph, 60%
7h: Ar=2-Cl-Ph, 56%

[a]
 
Reaction conditions: substrate (0.5 mmol), thiol (0.25 mmol), K2HPO4 (0.25 

mmol), Ir(ppy)2(dtbbpy)PF6 (0.005 mmol), CH3CN (5mL) irradiate by 5 W blue LED 

under argon atmosphere for 48 hours. Yields of isolated products. 

Based on our experiment results (see details in ESI) and the 

previous research done in visible light photoredox catalysis,
12

 a 

plausible mechanism is proposed in Scheme 2. Visible light 

irradiation of Ir
III

 photocatalyst lead to a long-lived 

photoexcited state *Ir
III

.  *Ir
III

 undergoes a single electron 

transfer (SET) oxidation process with thiol to generate thiyl 

radical and reduced photocatalyst Ir
II
. The thiol radical 

abstracts H
.
 from 1a, providing α-amino radical 1a-1. At this 

juncture, electron transfer to the ketone part of 1a-1 by the Ir
II
 

forms biradical intermediate 1a-2 while concomitantly 

regenerating the Ir
III

. The active biradical 1a-2 prefers to go 

through intramolecular coupling in the less hindered 

conformation, which leads to cis-2a as the main diastereomer. 

N

OH
H

Bn
sterically
hindered

unfavored
conormation

N OH
H

favored
conformation

Bn

Ir(III)

*Ir(III)

Ir(II)

hv

MeO2C SH

MeO2C S

SET

Ph

O

N

Ph

Ph
1a

Ph

O

N

Ph

Ph

H
abstrcation

1a-1

1a-1

PCET

1a-2

biradical

N
Ph

Ph

Ph
OH

cyclization

H

H

cis-2a

N Ph

Ph

OH

Bn

less sterically
hindered

1a-2

N OH
H

Bn

 

Scheme 2. Proposed catalytic cycles for radical-radical coupling. 
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Conclusions 

In conclusion, we have developed a visible light 

photoredox catalyzed radical-radical coupling reaction to 

construct 4-, 5-, and 6-membered N-heterocycles. Ketyl and α-

amino radical were formed in one catalytic cycle via proton-

coupled electron transfer without extra sacrificial electron 

donor. We anticipate this reaction will prove to be a versatile 

method for N-heterocycles formation and find synthetic utility 

among orgnic synthesis. 
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A visible light mediated radical-radical coupling reaction towards valuable nitrogen heterocyle 

has been developed. Piperidines, pyrrolidine, indoles, and azetidines scafolds were synthesized in 

good to excellent yields from simple substrates.  
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