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ABSTRACT
An efficient one-pot regioselective synthesis of various novel
3,4-dihydropyrimidin-2(1H)-one (DHPMs) via a three-component
Biginelli-type condensation of aldehyde, phenylacetone and urea/
thioureaunder twodifferentbased-catalyzedconditions is described.
In kinetic control path, lithiumN,N-diisopropylamide (LDA-20mol %
generated in situ from n-BuLi and diisopropylamine) was used as the
base, in tetrahydroforane (THF) as the solvent at 0°C. Thermodynamic
control path was run with NaH as the base, in EtOH as the solvent
under reflux status. The simple procedure, mild base-catalytic reac-
tion conditions, no column chromatography and good to high yields
are important features of this protocol.
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1. Introduction

Biginelli reaction is an acid(base)-catalyzed one-pot synthesis of 3,4-dihydropyrimidin-
2(1H)-ones (DHPMs) using multicomponent condensation of easily-accessible starting
materials, including (thio)urea, active methylene compound and aldehyde [1–5]. DHPMs
are an interesting pharmacophore in the medicinal chemistry and fascinating target for
combinatorial chemistry of biologically active heterocycles with novel properties in the
past two decades [6–8]. Also, DHPM was applied as a key core in the synthesis of wide
variety pharmaceutical compounds, significant biomolecules, diverse natural products and
interesting alkaloids with special properties [9] and functional materials such as adhesive
[10], polymers and fabric dyes [11]. Furthermore, some of the DHPMs show many attrac-
tive properties such as antiviral, antibacterial, antitumour, antimalarial, anti-inflammatory,
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2 M. NEMATPOUR ET AL.

Scheme 1. Regioselective synthesis of novel 3,4-dihydropyrimidin-2(1H)-one (DHPMs) under two dif-
ferent conditions: kinetic and thermodynamic control.

antidiabetic, antitubercular, antileishmanial, anti-epileptic, antiproliferative activities, etc.
[12–16]. A number of polysubstituted DHPMs have been found to be antihypertensive
agents, potent calcium channel blockers [17], A2B receptor antagonists [18] and mPGES-
1 inhibitors [19]. Presently, the Biginelli reaction is exploited in solid-phase synthesis for
heterocyclic compound [20] and asymmetric synthesis for bioactive chiral DHPMs [21].
Despite extensive studies on the Biginelli-type reactions, achieving to new approaches
in synthesis of DHPMs with various substitutions in mild reaction conditions is a great
deal of attention. The standard protocol for the Biginelli reaction generally involves the
use of a Lewis or protic acid [22–25] and few methods are available under basic condi-
tions. In addition,most reported Biginelli-type protocl led to formation of thermodynamic
compunds.

Herein, we report a novel simple and efficient protocol for regioselective synthesis of
various novel 3,4-dihydropyrimidin-2(1H)-one (DHPMs) via a three-component conden-
sation of aldehyde, phenylacetone and urea/thiourea with good to high yields under two
different conditions (Scheme 1). In the kinetic control reaction (Path A), the base LDA (in
situ generated from n-BuLi and diisopropylamine) in tetrahydroforane (THF) at 0°C was
used while the thermodynamic control pathway (Path B) [3,26–28] was run with NaH as
the base in EtOH under the terms of reflux.

2. Results and discussion

At first, urea 1a, benzaldehyde 2a and phenylacetone 3 were selected as a model reaction
and then the reaction was optimized under two different conditions separately. In Path A
(kinetic control reaction), changing the solvent and amount of catalyst are checked out.
It is proved that THF is the most optimal solvent compared to MeOH, EtOH, CH2Cl2,
MeCN, DMF and acetone. Finally, the reaction was optimized by 20 mol% of LDA as the
base-catalyst, 1.5mmol of urea, 1.2mmol of benzaldehyde and 1.5mmol of phenylacetone
in THF at 0°C (Table 1).

Using the optimized conditions described above, various 6-benzyl-4-phenyl-3,4-
dihydropyrimidin-2(1H)-one were synthesized from urea, phenylacetone and benzalde-
hyde with various electron-withdrawing or electron-donating substituents on the aromatic
rings (Table 2).

Structures of compounds 4a-m were assigned by 1H NMR, 13C NMR, IR and mass
spectral data (http://dx.doi.org/10.1080/17415993.2017.1402332). The 1HNMR spectrum
of 4a exhibited two singlet for two NH group (δ = 6.04 and 8.61 ppm), three doublet in
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JOURNAL OF SULFUR CHEMISTRY 3

Table 1. Formation of product 4a under different reac-
tions conditions.

Entry Solventa Time/h Yield 4a (%)

1 MeOH 6 32
2 EtOH 6 38
3 CH2Cl2 5 33
4b THF 1 81
5 MeCN 4 52
6 DMF 5 59
7 Acetone 6 49
aReactions were performed using 1a (1.5mmol), 2a (1.2mmol), 3
(1.5mmol) and LDA as the base-catalyst (20mol%) under different
solvent (2mL) at 0°C.

b10 mol% LDA as the base-catalyst, reaction time was 5 h.

Table 2. Synthesis of 3,4-dihydropyrimidin-2(1H)-one derivatives under kinetic control condition
(Path A).

Entry 1–4 X R Ar Yield of 4 (%)

1 a O H Ph 81
2 b O H 4-Cl-C6H4 83
3 c O H 2-Cl-C6H4 79
4 d O H 2-OH-C6H4 73
5 e O H 4-OMe-C6H4 77
6 f O H 4-NO2-C6H4 88
7 g S H Ph 85
8 h S H 4-Cl-C6H4 87
9 i S H 4-OMe-C6H4 79
10 j S H 4-NO2-C6H4 91
11 k S Et 4-Br-C6H4 78
12 l S Me 4-Cl-C6H4 79
13 m S Me 4-NO2-C6H4 83

aliphatic range for CH2 benzyli group (δ = 3.62 ppm, J = 6.3Hz) protons and two CH
group (δ = 5.26 and 5.67 ppm, J = 4.8Hz) protons together with multiplication charac-
teristic aromatic protons. The 13C NMR spectrum of 4a exhibits 13 signals in agreement
with the proposed structure. The mass spectrum of 4a defined the molecular ion peak
at m/z = 264. The NMR spectra of compounds 4b-m are like that of 4a, except for the
substituents, which showed signals in the appropriate regions of the spectrum.

To extend our work of this field, we performed this reaction in the presence of sodium
hydride as base in EtOHunder the terms of reflux, thermodynamic control condition (Path
B). These reactions led to 6-methyl-4,5-diphenyl-3,4-dihydropyrimidin-2(1H)-one 5a in
high yields (Scheme 2). Formation of this heterocyclic product can be attributable to the
reaction has progressed from thermodynamic path. Structures of compounds 5a-k were
confirme by 1H-NMR, 13C-NMR, Mass and IR spectrum.
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4 M. NEMATPOUR ET AL.

Scheme 2. Synthesis of 6-methyl-4,5-diphenyl-3,4-dihydropyrimidin-2(1H)-one derivatives under ther-
modynamic control condition (Path B).

Table 3. Optimization of reaction conditions for the formation of product 5a from 1.5mmol of urea,
1.2mmol of benzaldehyde and 1.5mmol of phenylacetone under the terms of reflux.

Base-catalysta Solvent Yield (%)b Base-catalysta Solvent Yield (%)b

NaHc EtOH 88 KOH EtOH 34
NaH MeOH 82 KOH DMF 23
NaH DMF 34 NaOH EtOH 30
KOt-Bu EtOH 80 NaOH MeCN 21
KOt-Bu DMF 30 NaOEt EtOH 38
KOt-Bu MeCN 26 NaOEt MeCN 21
K2CO3 EtOH 47 LiOH EtOH –
K2CO3 DMF 28 LiOH DMF –
K2CO3 MeCN 22 n-BuLi EtOH –
a20 mol% catalyst unless stated otherwise.
bReaction time 3 h.
c10 mol% catalyst, reaction time was 7 h.

Weoptimize the reaction conditions by changing the solvent and base. Several base such
as NaH, KOt-Bu, K2CO3, KOH, NaOH, NaOEt, LiOH and n-BuLi were tested. EtOH and
NaH show the best results among various solvents and bases in this reaction. Eventually,
this reaction was performed using 20 mol% of NaH as the base-catalyst, 1.5mmol of urea,
1.2mmol of benzaldehyde and 1.5mmol of phenylacetone in EtOH under the terms of
reflux (Table 3).

Various 6-methyl-4,5-diphenyl-3,4-dihydropyrimidin-2(1H)-one were synthesized
from urea, phenylacetone and various benzaldehyde under the optimized conditions
described above (Table 4). We have used aliphatic aldehyde instead of aromatic aldehyde
under thermodynamic and kinetic control condition but we were unable to isolate the
various dihydropyrimidin derivatives 4 and 5.

A possible reactionmechanism is shown in Scheme 3. It is proposed that phenylacetone
3, an unsymmetrical dialkyl ketone, can form two regioisomeric enolates on deprotona-
tion. The formation of an enolate mixture can be governed by kinetic or thermodynamic
factors. Under two different conditions, LDA as the base, in THF as the solvent at 0°C,
kinetic enol (A) is formed. When NaH was used as the base and EtOH as solvent, under
the terms of reflux, thermodynamic enol (B) is formed. Aldol condensation of aldehyde 2
with enol (A or B), followed by elimination of the resulting hydroxyl group gives one 7.
Subsequent aza-Michael addition of urea 1 to enone 7 leads to the formation of Michael
adduct 8. Compunds 4 or 5were formed from intermediate 8 undergo cyclization reaction
and subsequent loss of water [29].
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JOURNAL OF SULFUR CHEMISTRY 5

Table 4. Synthesis of 6-methyl-4,5-diphenyl-3,4-dihydropyrimidin-2(1H)-one
derivatives.

Entry 1–5 X R Ar Yield of 5 (%)

1 a O H Ph 88
2 b O H 4-NO2-C6H4 92
3 c O H 4-Cl-C6H4 90
4 d O H 4-OMe-C6H4 79
5 e S H 4-NO2-C6H4 93
6 f S H 4-OMe-C6H4 75
7 g S H Ph 89
8 h S Me Ph 85
9 i S Me 4-OMe-C6H4 77
10 j S Me 4-Br-C6H4 87
11 k S Et 4-Cl-C6H4 86

Scheme 3. A plausible mechanism the formation of compounds 4, 5.

3. Conclusion

In conclusion, a novel protocol, one-pot regioselective synthesis of various 3,4-
dihydropyrimidin-2(1H)-one (DHPMs) via a three-component Biginelli-type condensa-
tion of aldehyde, phenylacetone and urea/thiourea under two different conditions, kinetic
control; LDA-20 mol % as the base in THF at 0°C and thermodynamic control; NaH as the
base, in EtOH, under the terms of reflux, affording good to high yields was described. The
generally available substrates, mild conditions, high yields and ease purification procedure
make this reaction suitable for the synthesis of various 3,4-dihydropyrimidin-2(1H)-one.
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6 M. NEMATPOUR ET AL.

4. Experimental

4.1. General

All chemicals were obtained commercially and used without further purification. IR
Spectra: Shimadzu-IR-460 spectrometer; bond positions in cm−1. 1H- and 13C-NMR
Spectra: Bruker DRX-500 Avance instrument using TMS as internal standard and CDCl3
as applied solvent at 500.1 and 125.7MHz, resp.; the abbreviations used for NMR sig-
nals: s = singlet, d = doublet, t = triplet, m = multiplet and δ in ppm, J in Hz. MS:
Finnigan-MAT-8430EI-MSmass spectrometer; at 70 eV; inm/z (rel. %). mp:melting points
(uncorrected) Electrothermal-9100 apparatus. Elemental analyses: Vario EL III CHNOS
elemental analyzer.

4.2. General procedure for preparation of compounds 4

A solution of n-BuLi (20 mol %) in THF (2mL) was slowly added to diisopropylamine
(20 mol%) and the mixture was stirred at at 0°C for 1min. Then, a mixture of urea 1a
(1.5mmol), benzaldehyde 2a (1.2mmol) and phenylacetone 3 (1.5mmol) in THF (3mL)
was slowly added to the first solution and the mixture was stirred at 0°C for 1 h. After
completion of the reaction [about 1 h; TLC (AcOEt/ hexane 1:4) monitoring], the resulting
solid was isolated by filtration and washed with acetone.

4.2.1. 6-Benzyl-4-phenyl-3,4-dihydropyrimidin-2(1H)-one (4a)
White powder, mp: 223–225°C; yield: 0.21 g (81%). IR (KBr) (νmax, cm−1): 3114, 1620,
1237, 1178, 1090. 1H-NMR (500MHz, CDCl3): δH = 3.62 (2 H, d, J = 6.3, CH2), 5.26 (1
H, d, 3J = 4.8, CH), 5.67 (1 H, d, 3J = 4.8, CH), 6.04 (1 H, s, NH), 7.13 (2 H, d, 3J = 7.5,
Ar), 7.19 (1 H, t, 3J = 7.5, Ar), 7.24 (2 H, t, 3J = 7.5, Ar), 7.40 (2 H, d, 3J = 7.7, Ar), 7.48
(1 H, t, 3J = 7.7, Ar), 7.60 (2 H, t, 3J = 7.7, Ar), 8.61 (1 H, s, NH). 13C-NMR (125.7MHz,
CDCl3): δC = 41.8 (CH2), 56.3 (CH), 100.0 (CH), 125.9 (CH), 126.1 (2 CH), 127.7 (2 CH),
128.7 (2 CH), 129.9 (2 CH), 131.5 (C), 133.7 (CH), 135.4 (C), 143.4 (C), 153.3 (C=O). EI-
MS: 264 (M+, 8), 207 (15), 187 (86), 173 (34), 91 (100), 77 (19), 57 (23). Anal. Calc. for
C17H16N2O (264.32): C, 77.25; H, 6.10; N, 10.60%. Found: C, 77.27; H, 6.13; N, 10.58%.

4.2.2. 6-Benzyl-4-(4-chlorophenyl)-3,4-dihydropyrimidin-2(1H)-one (4b)
White powder, mp: 260–262°C; yield: 0.25 g (83%). IR (KBr) (νmax, cm−1): 3122, 1658,
1241, 1182, 1095. 1H-NMR (500MHz, CDCl3): δH = 3.73 (2 H, d, J = 6.5, CH2), 5.10 (1
H, d, 3J = 4.8, CH), 5.66 (1 H, d, 3J = 4.8, CH), 6.02 (1 H, s, NH), 7.06 (2 H, d, 3J = 7.4,
Ar), 7.18 (1H, t, 3J = 7.4, Ar), 7.27 (2H, t, 3J = 7.4, Ar), 7.38 (2H, d, 3J = 7.9, Ar), 7.90 (2
H, d, 3J = 7.9, Ar), 8.00 (1 H, s, NH). 13C-NMR (125.7MHz, CDCl3): δC = 43.1 (CH2),
57.6 (CH), 100.0 (CH), 126.6 (2 CH), 127.4 (2 CH), 128.7 (CH), 129.9 (2 CH), 130.6 (2
CH), 132.4 (C), 134.4 (C), 142.1 (C), 147.4 (C), 153.8 (C=O). EI-MS: 298 (M+, 2), 240
(18), 207 (29), 111 (67), 91 (100), 77 (45), 58 (14). Anal. Calc. for C17H15ClN2O (298.77):
C, 68.34; H, 5.06; N, 9.38%. Found: C, 68.38; H, 5.10; N, 9.33%.

4.2.3. 6-Benzyl-4-(2-chlorophenyl)-3,4-dihydropyrimidin-2(1H)-one (4c)
White powder, mp: 231–233°C; yield: 0.24 g (79%). IR (KBr) (νmax, cm−1): 3116, 1660,
1244, 1184, 1097. 1H-NMR (500MHz, CDCl3): δH = 3.80 (2 H, d, J = 6.7, CH2), 5.24 (1
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JOURNAL OF SULFUR CHEMISTRY 7

H, d, 3J = 4.7, CH), 5.80 (1 H, d, 3J = 4.7, CH), 6.52 (1 H, s, NH), 7.19 (1 H, d, 3J = 7.8,
Ar), 7.28 (1 H, t, 3J = 7.8, Ar), 7.31–7.36 (3 H, m, Ph), 7.59 (2 H, t, 3J = 7.5, Ar), 7.78 (1
H, t, 3J = 7.8, Ar), 7.98 (1 H, d, 3J = 7.8, Ar), 8.22 (1 H, s, NH). 13C-NMR (125.7MHz,
CDCl3): δC = 41.7 (CH2), 56.8 (CH), 104.5 (CH), 126.9 (CH), 127.4 (CH), 127.8 (C), 128.8
(2 CH), 129.9 (CH), 130.2 (2 CH), 130.9 (CH), 131.7 (CH), 132.9 (C), 135.8 (C), 144.7 (C),
153.0 (C=O). EI-MS: 298 (M+, 4), 207 (77), 187 (84), 111 (85), 91 (100), 77 (79). Anal.
Calc. for C17H15ClN2O (298.77): C, 68.34; H, 5.06; N, 9.38%. Found: C, 68.31; H, 5.11; N,
9.40%.

4.2.4. 6-Benzyl-4-(2-hydroxyphenyl)-3,4-dihydropyrimidin-2(1H)-one (4d)
White powder, mp: 253–255°C; yield: 0.20 g (73%). IR (KBr) (νmax, cm−1): 3446, 3332,
1626, 1240, 1151, 1094. 1H-NMR (500MHz, CDCl3): δH = 3.76 (2 H, d, J = 6.8, CH2),
4.99 (1 H, d, 3J = 4.8, CH), 5.36 (1 H, d, 3J = 4.8, CH), 6.00 (1 H, s, OH), 6.24 (1 H, s,
NH), 7.18 (2 H, d, 3J = 7.4, Ar), 7.22 (1 H, t, 3J = 7.6, Ar), 7.26–7.33 (3 H, m, Ph), 7.38
(1 H, t, 3J = 7.6, Ar), 7.46 (1 H, d, 3J = 7.6, Ar), 7.88 (1 H, d, 3J = 7.6, Ar), 8.18 (1 H,
s, NH). 13C-NMR (125.7MHz, CDCl3): δC = 42.0 (CH2), 55.6 (CH), 101.5 (CH), 120.0
(CH), 124.4 (CH), 125.8 (CH), 125.9 (CH), 128.7 (2 CH), 129.2 (2 CH), 130.6 (CH), 132.5
(C), 134.9 (C), 135.5 (C), 142.1 (C), 151.3 (C=O). EI-MS: 280 (M+, 5), 222 (18), 189 (25),
91 (100), 58 (88). Anal. Calc. for C17H16N2O2 (280.32): C, 72.84; H, 5.75; N, 9.99%. Found:
C, 72.80; H, 5.78; N, 10.02%.

4.2.5. 6-Benzyl-4-(4-methoxyphenyl)-3,4-dihydropyrimidin-2(1H)-one (4e)
Cream powder, mp: 239–241°C; yield: 0.23 g (77%). IR (KBr) (νmax, cm−1): 3455, 1680,
1242, 1153, 1095. 1H-NMR (500MHz, CDCl3): δH = 3.54 (2 H, d, J = 6.7, CH2), 3.72 (3
H, s, OMe), 5.34 (1 H, d, 3J = 4.8, CH), 5.89 (1 H, d, 3J = 4.8, CH), 6.37 (1 H, s, NH),
7.23 (2 H, d, 3J = 7.2, Ar), 7.25-7.34 (5 H, m, Ph), 7.48 (2 H, d, 3J = 7.2, Ar), 8.13 (1 H,
s, NH). 13C-NMR (125.7MHz, CDCl3): δC = 42.5 (CH2), 52.2 (CH), 55.2 (OMe), 100.2
(CH), 120.0 (2 CH), 126.1 (2 CH), 127.8 (CH), 129.0 (2 CH), 131.4 (2 CH), 132.8 (C),
134.8 (C), 145.0 (C), 148.2 (C), 152.5 (C=O). EI-MS: 294 (M+, 15), 236 (16), 203 (52),
187 (79), 107 (51), 91 (100), 77 (54). Anal. Calc. for C18H18N2O2 (294.35): C, 73.45; H,
6.16; N, 9.52%. Found: C, 73.47; H, 6.19; N, 9.48%.

4.2.6. 6-Benzyl-4-(4-nitrophenyl)-3,4-dihydropyrimidin-2(1H)-one (4f)
Pale yellowpowder,mp: 269–271°C; yield: 0.27 g (88%). IR (KBr) (νmax, cm−1): 3291, 1622,
1554, 1360, 1095. 1H-NMR (500MHz, CDCl3): δH = 3.61 (2 H, d, J = 6.7, CH2), 4.98 (1
H, d, 3J = 4.8, CH), 5.26 (1 H, d, 3J = 4.8, CH), 6.25 (1 H, s, NH), 7.30 (2 H, d, 3J = 7.5,
Ar), 7.44 (2H, d, 3J = 8.0, Ar), 7.59 (2H, t, 3J = 7.5, Ar), 7.71 (1H, t, 3J = 7.5, Ar), 8.01 (2
H, d, 3J = 8.0, Ar), 8.71 (1 H, s, NH). 13C-NMR (125.7MHz, CDCl3): δC = 41.0 (CH2),
56.0 (CH), 103.3 (CH), 127.4 (2 CH), 128.7 (2 CH), 129.2 (2 CH), 130.2 (CH), 132.5 (2
CH), 135.7 (C), 136.0 (C), 144.8 (C), 148.9 (C), 152.1 (C=O). EI-MS: 309 (M+, 15), 252
(31), 187 (35), 122 (18), 91 (100), 77 (15), 58 (24). Anal. Calc. for C17H15N3O3 (309.32):
C, 66.01; H, 4.89; N, 13.58%. Found: C, 66.00; H, 4.90; N, 13.53%.

4.2.7. 6-Benzyl-4-phenyl-3,4-dihydropyrimidine-2(1H)-thione (4g)
White powder, mp: 240–242°C; yield: 0.24 g (85%). IR (KBr) (νmax, cm−1): 3466, 1643,
1158, 1105. 1H-NMR (500MHz, CDCl3): δH = 3.77 (2 H, d, J = 6.4, CH2), 5.25 (1 H, d,
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8 M. NEMATPOUR ET AL.

3J = 4.8, CH), 5.70 (1 H, d, 3J = 4.8, CH), 6.34 (1 H, s, NH), 7.19 (2 H, d, 3J = 7.5, Ar),
7.26 (1 H, t, 3J = 7.5, Ar), 7.33 (2 H, t, 3J = 7.5, Ar), 7.60 (2 H, t, 3J = 7.7, Ar), 7.72 (1
H, t, 3J = 7.7, Ar), 7.87 (2 H, d, 3J = 7.7, Ar), 9.11 (1 H, s, NH). 13C-NMR (125.7MHz,
CDCl3): δC = 42.8 (CH2), 58.0 (CH), 102.1 (CH), 126.1 (2 CH), 127.3 (2 CH), 127.8 (CH),
129.0 (2 CH), 130.0 (CH), 131.2 (2 CH), 131.9 (C), 135.8 (C), 141.9 (C), 175.0 (C=S). EI-
MS: 280 (M+, 10), 204 (29), 189 (38), 91 (100), 77 (49), 73 (10). Anal. Calc. for C17H16N2S
(280.39): C,72.82; H, 5.75; N, 9.99%. Found: C, 72.80; H, 5.77; N, 9.95%.

4.2.8. 6-Benzyl-4-(4-chlorophenyl)-3,4-dihydropyrimidine-2(1H)-thione (4h)
White powder, mp: 255–257°C; yield: 0.27 g (87%). IR (KBr) (νmax, cm−1): 3366, 1679,
1162, 1117. 1H-NMR (500MHz, CDCl3): δH = 3.40 (2 H, d, J = 6.8, CH2), 5.38 (1 H, d,
3J = 4.8, CH), 5.95 (1 H, d, 3J = 4.8, CH), 6.45 (1 H, s, NH), 7.21 (2 H, d, 3J = 7.6, Ar),
7.25 (1 H, t, 3J = 7.6, Ar), 7.32 (2 H, t, 3J = 7.6, Ar), 7.61 (2 H, d, 3J = 7.9, Ar), 8.00 (2 H,
d, 3J = 7.9, Ar), 9.11 (1 H, s, NH). 13C-NMR (125.7MHz, CDCl3): δC = 41.9 (CH2), 58.4
(CH), 101.1 (CH), 125.3 (2 CH), 125.5 (2 CH), 127.5 (2 CH), 128.9 (CH), 130.0 (2 CH),
130.2 (C), 131.8 (C), 135.7 (C), 144.9 (C), 175.0 (C=S). EI-MS: 314 (M+, 4), 240 (90),
203 (59), 111 (100), 91 (62), 73 (72). Anal. Calc. for C17H15ClN2O2S (314.83): C, 64.85; H,
4.80; N, 8.90%. Found: C, 64.85; H, 4.76; N, 8.93%.

4.2.9. 6-Benzyl-4-(4-methoxyphenyl)-3,4-dihydropyrimidine-2(1H)-thione (4i)
Cream powder, mp: 244–246°C; yield: 0.24 g (79%). IR (KBr) (νmax, cm−1): 3368, 1638,
1252, 1106. 1H-NMR (500MHz, CDCl3): δH = 3.55 (2 H, d, J = 6.8, CH2), 3.67 (3 H, s,
OMe), 5.05 (1 H, d, 3J = 4.6, CH), 5.55 (1 H, d, 3J = 4.6, CH), 6.25 (1 H, s, NH), 7.25 (2 H,
d, 3J = 7.4, Ar), 7.33 (1 H, t, 3J = 7.4, Ar), 7.40–7.48 (4 H, m, Ph), 7.50 (2 H, d, 3J = 7.6,
Ar), 9.01 (1 H, s, NH). 13C-NMR (125.7MHz, CDCl3): δC = 41.1 (CH2), 58.6 (CH), 60.1
(OMe), 102.5 (CH), 118.6 (2 CH), 126.7 (2 CH), 127.9 (CH), 128.6 (2 CH), 129.4 (2 CH),
130.1 (C), 131.9 (C), 135.6 (C), 143.9 (C), 175.5 (C=S). EI-MS: 310 (M+, 19), 237 (24),
219 (25), 107 (36), 91 (100). Anal. Calc. for C18H18N2OS (310.41): C, 69.65; H, 5.84; N,
9.02%. Found: C, 69.67; H, 5.90; N, 9.07%.

4.2.10. 6-Benzyl-4-(4-nitrophenyl)-3,4-dihydropyrimidine-2(1H)-thione (4j)
Pale yellowpowder,mp: 275–277°C; yield: 0.30 g (91%). IR (KBr) (νmax, cm−1): 3363, 1682,
1551, 1345, 1160, 1109. 1H-NMR (500MHz, CDCl3): δH = 3.68 (2 H, d, J = 6.8, CH2),
4.73 (1 H, d, 3J = 4.8, CH), 5.59 (1 H, d, 3J = 4.8, CH), 6.15 (1 H, s, NH), 7.09 (2 H, d,
3J = 7.4, Ar), 7.28-7.33 (3 H, m, Ph), 7.49 (2 H, d, 3J = 7.9, Ar), 7.89 (2 H, d, 3J = 7.9,
Ar), 9.05 (1 H, s, NH). 13C-NMR (125.7MHz, CDCl3): δC = 41.2 (CH2), 60.7 (CH), 102.1
(CH), 126.8 (CH), 126.9 (2 CH), 127.5 (2 CH), 128.7 (2 CH), 129.9 (2 CH), 130.1 (C), 131.6
(C), 135.8 (C), 142.9 (C), 174.4 (C=S). EI-MS: 325 (M+, 15), 251 (44), 234 (48), 203 (40),
122 (66), 91 (60), 77 (100). Anal. Calc. for C17H15N3O2S (325.38): C, 62.75; H, 4.65; N,
12.91%. Found: C, 62.77; H, 4.62; N, 12.95%.

4.2.11. 6-Benzyl-4-(4-bromophenyl)-1,3-diethyl-3,4-dihydropyrimidine-2(1H)-thione
(4k)
White powder, mp: 250–252°C; yield: 0.26 g (78%). IR (KBr) (νmax, cm−1): 1675, 1160,
1107. 1H-NMR (500MHz, CDCl3): δH = 0.99 (3 H, t, J = 6.8, Me), 1.19 (3 H, t, J = 6.8,
Me), 3.22 (2 H, q, J = 6.8, NCH2), 3.35 (2 H, q, J = 6.8, NCH2), 3.54 (2 H, d, J = 6.8,
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CH2), 5.29 (1 H, d, 3J = 4.8, CH), 5.98 (1 H, d, 3J = 4.8, CH), 7.63 (2 H, t, 3J = 7.6, Ar),
7.68 (1 H, t, 3J = 7.6, Ar), 8.05 (2 H, d, 3J = 7.6, Ar), 8.09 (2 H, d, 3J = 7.9, Ar), 8.40 (2 H,
d, 3J = 7.9, Ar). 13C-NMR (125.7MHz, CDCl3): δC = 16.9 (Me), 18.6 (Me), 40.9 (CH2),
41.3 (NCH2), 43.4 (NCH2), 60.0 (CH), 100.1 (CH), 126.9 (2 CH), 127.2 (2 CH), 128.1 (C),
130.3 (4 CH), 131.7 (CH), 132.5 (C), 135.9 (C), 147.8 (C), 177.7 (C=S). EI-MS: 415 (M+,
5), 385 (24), 259 (44), 154 (100), 91 (61), 77 (70). Anal. Calc. for C21H23BrN2S (415.39):
C, 60.72; H, 5.58; N, 6.74%. Found: C, 60.70; H, 5.60; N, 6.77%.

4.2.12. 6-Benzyl-4-(4-chlorophenyl)-1,3-dimethyl-3,4-dihydropyrimidine-2(1H)-
thione (4l)
Cream powder, mp: 264–266°C; yield: 0.27 g (79%). IR (KBr) (νmax, cm−1): 1630, 1251,
1100. 1H-NMR (500MHz, CDCl3): δH = 2.95 (3 H, s, NMe), 3.10 (3 H, s, NMe), 3.63 (2
H, d, J = 6.3, CH2), 5.27 (1 H, d, 3J = 4.6, CH), 5.68 (1 H, d, 3J = 4.6, CH), 7.05 (1 H, t,
3J = 7.6, Ar), 7.38–7.43 (4H,m, Ph), 7.76 (2H, d, 3J = 7.9, Ar), 7.92 (2H, d, 3J = 7.9, Ar).
13C-NMR (125.7MHz, CDCl3): δC = 41.4 (CH2), 42.3 (NMe), 42.9 (NMe), 56.4 (CH),
102.0 (CH), 127.8 (2 CH), 128.2 (C), 129.3 (2 CH), 129.8 (CH), 130.1 (C), 130.7 (2 CH),
131.9 (2 CH), 140.1 (C), 147.2 (C), 173.2 (C=S). EI-MS: 344 (M+2, 14), 342 (7), 327 (20),
265 (33), 251 (31), 91 (100), 77 (77). Anal. Calc. for C19H19ClN2S (342.89): C, 66.55; H,
5.59; N, 8.17%. Found: C, 66.57; H, 5.61; N, 8.21%.

4.2.13. 6-Benzyl-1,3-dimethyl-4-(4-nitrophenyl)-3,4-dihydropyrimidine-2(1H)-thione
(4m)
Pale yellowpowder,mp: 289–291°C; yield: 0.29 g (83%). IR (KBr) (νmax, cm−1): 1689, 1557,
1342, 1155, 1100. 1H-NMR (500MHz, CDCl3): δH = 2.92 (3 H, s, NMe), 3.01 (3 H, s,
NMe), 3.88 (2 H, d, J = 6.8, CH2), 5.26 (1 H, d, 3J = 4.6, CH), 5.64 (1 H, d, 3J = 4.6, CH),
7.27 (1 H, t, 3J = 7.6, Ar), 7.30-7.35 (4 H, m, Ph), 7.50 (2 H, d, 3J = 7.9, Ar), 8.04 (2 H, d,
3J = 7.9, Ar). 13C-NMR (125.7MHz, CDCl3): δC = 41.1 (CH2), 42.0 (NMe), 42.7 (NMe),
57.1 (CH), 100.5 (CH), 126.2 (2 CH), 127.4 (2 CH), 127.8 (CH), 128.7 (2 C), 129.2 (2 CH),
132.5 (2 CH), 135.7 (C), 144.9 (C), 175.1 (C=S). EI-MS: 353 (M+, 7), 338 (25), 234 (28),
231 (32), 122 (82), 91 (64), 77 (100). Anal. Calc. for C19H19N3O2S (353.44): C, 64.57; H,
5.42; N, 11.89%. Found: C, 64.50; H, 5.40; N, 11.88%.

4.3. General procedure for preparation of compounds 5

Amixture of urea 1a (1.5mmol), benzaldehyde 2 (1.2mmol) and phenylacetone 3
(1.5mmol) in EtOH (3mL) was slowly added to NaH (20mol %) and the mixture was
stirred at 75°C for 3 h.After completion of the reaction [about 3 h; TLC (AcOEt/hexane 1:3)
monitoring], the resulting solid was isolated by filtration and washed with diethyl ether.

4.3.1. 6-Methyl-4,5-diphenyl-3,4-dihydropyrimidin-2(1H)-one (5a)
White powder, mp: 220–222°C; yield: 0.23 g (88%). IR (KBr) (νmax, cm−1): 3209, 1636,
1397, 1103. 1H-NMR (500MHz, CDCl3): δH = 2.61 (3 H, s, Me), 5.28 (1 H, s, CH), 6.25
(1 H, s, NH), 7.26–7.30 (3 H, m, Ph), 7.44 (2 H, d, 3J = 7.3, Ar), 7.60 (2 H, t, 3J = 7.7,
Ar), 7.71 (1 H, t, 3J = 7.7, Ar), 7.87 (2 H, d, 3J = 7.7, Ar), 8.06 (1 H, s,NH). 13C-NMR
(125.7MHz, CDCl3): δC = 18.8 (Me), 57.6 (CH), 112.4 (C), 123.5 (2 CH), 127.4 (2 CH),
128.8 (CH), 129.3 (2 CH), 130.2 (2 CH), 132.5 (CH), 133.1 (C), 135.7 (C), 144.7 (C), 152.0
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10 M. NEMATPOUR ET AL.

(C=O). EI-MS: 264 (M+, 11), 250 (21), 206 (26), 187 (84), 110 (80), 77 (100), 58 (31).
Anal. Calc. for C17H16N2O (264.32): C, 77.25; H, 6.10; N, 10.60%. Found: C, 77.21; H,
6.08; N, 10.56%.

4.3.2. 6-Methyl-4-(4-nitrophenyl)-5-phenyl-3,4-dihydropyrimidin-2(1H)-one (5b)
Pale yellowpowder,mp: 266–268°C; yield: 0.28 g (92%). IR (KBr) (νmax, cm−1): 3192, 1636,
1527, 1350, 1256, 1102, 1049. 1H-NMR (500MHz, CDCl3): δH = 2.45 (3 H, s, Me), 5.63
(1 H, s, CH), 6.33 (1 H, s, NH), 7.29–7.35 (3 H, m, Ph), 7.40 (2 H, d, 3J = 7.5, Ar), 7.50 (2
H, d, 3J = 7.9, Ar), 7.91 (2 H, d, 3J = 7.9, Ar), 8.86 (1 H, s, NH). 13C-NMR (125.7MHz,
CDCl3): δC = 18.2 (Me), 57.2 (CH), 113.4 (C), 122.6 (C), 127.5 (2 CH), 128.8 (2 CH),
129.2 (CH), 130.7 (2 CH), 132.6 (2 CH), 142.1 (C), 144.5 (C), 147.3 (C), 152.2 (C=O).
EI-MS: 309 (M+, 15), 251 (23), 232 (31), 187 (57), 122 (48), 110 (42), 77 (100), 58 (27).
Anal. Calc. for C17H15N3O3 (309.32): C, 66.01; H, 4.89; N, 13.58%. Found: C, 66.09; H,
4.91; N, 13.55%.

4.3.3. 4-(4-Chlorophenyl)-6-methyl-5-phenyl-3,4-dihydropyrimidin-2(1H)-one (5c)
White powder, mp: 233–235°C; yield: 0.27 g (90%). IR (KBr) (νmax, cm−1): 3193, 1637,
1257, 1141, 1036. 1H-NMR (500MHz, CDCl3): δH = 2.46 (3 H, s, Me), 5.50 (1 H, s,
CH), 6.29 (1 H, s, NH), 7.30-7.36 (3 H, m, Ph), 7.41 (2 H, d, 3J = 7.4, Ar), 7.48 (2 H, d,
3J = 8.0, Ar), 7.93 (2H, d, 3J = 8.0, Ar), 8.11 (1H, s, NH). 13C-NMR (125.7MHz,CDCl3):
δC = 17.7 (Me), 58.6 (CH), 112.9 (C), 126.7 (2 CH), 127.3 (2 CH), 128.7 (CH), 129.7 (2
CH), 130.7 (2 CH), 132.5 (C), 136.7 (C), 140.0 (C), 142.4 (C), 152.7 (C=O). EI-MS: 298
(M+, 7), 240 (51), 221 (100), 187 (65), 111 (89), 77 (89). Anal. Calc. for C17H15ClN2O
(298.77): C, 68.34; H, 5.06; N, 9.38%. Found: C, 68.30; H, 5.10; N, 9.40%.

4.3.4. 4-(4-Methoxyphenyl)-6-methyl-5-phenyl-3,4-dihydropyrimidin-2(1H)-one (5d)
Cream powder, mp: 243–245°C; yield: 0.23 g (79%). IR (KBr) (νmax, cm−1): 3377, 1689,
1168, 1109. 1H-NMR (500MHz, CDCl3): δH = 2.67 (3 H, s, Me), 3.76 (3 H, s, OMe), 5.47
(1 H, s, CH), 6.05 (1 H, s, NH), 7.28–7.33 (4 H, m, Ph), 7.44 (2 H, d, 3J = 7.5, Ar), 7.47 (1
H, t, 3J = 7.3, Ar), 7.89 (2 H, d, 3J = 7.5, Ar), 8.31 (1 H, s, NH). 13C-NMR (125.7MHz,
CDCl3): δC = 18.9 (Me), 56.2 (CH), 60.6 (OMe), 112.5 (C), 120.0 (2 CH), 128.7 (2 CH),
129.3 (CH), 129.7 (2 CH), 130.0 (2 CH), 130.7 (C), 132.7 (C), 132.9 (C), 141.9 (C), 153.6
(C=O). EI-MS: 294 (M+, 16), 236 (48), 217 (40), 187 (100), 110 (89), 77 (78). Anal. Calc.
for C18H18N2O2 (294.35): C, 73.45; H, 6.16; N, 9.52%. Found: C, 73.49; H, 6.18; N, 9.55%.

4.3.5. 6-Methyl-4-(4-nitrophenyl)-5-phenyl-3,4-dihydropyrimidine-2(1H)-thione (5e)
Pale yellowpowder,mp: 259–261°C; yield: 0.30 g (93%). IR (KBr) (νmax, cm−1): 3190, 1643,
1531, 1350, 1259, 1178. 1H-NMR (500MHz, CDCl3): δH = 2.66 (3 H, s, Me), 5.57 (1 H,
s, CH), 6.15 (1 H, s, NH), 7.22 (2 H, d, 3J = 7.3, Ar), 7.28 (1 H, t, 3J = 7.3, Ar), 7.36 (2 H,
t, 3J = 7.3, Ar), 7.41 (2 H, d, 3J = 7.9, Ar), 7.92 (2 H, d, 3J = 7.9, Ar), 10.05 (1 H, s, NH).
13C-NMR (125.7MHz, CDCl3): δC = 18.8 (Me), 61.7 (CH), 116.3 (C), 126.2 (2 CH), 127.5
(CH), 127.7 (2 CH), 130.0 (2 CH), 130.6 (2 CH), 138.8 (C), 140.7 (C), 142.1 (C), 143.4 (C),
171.2 (C=S). EI-MS: 325 (M+, 8), 251 (39), 248 (32), 203 (35), 122 (77), 77 (80), 73 (100).
Anal. Calc. For C17H15N3O2S (325.38): C, 62.75; H, 4.65; N, 12.91%. Found: C, 62.77; H,
4.67; N, 12.90%.
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4.3.6. 4-(4-Methoxyphenyl)-6-methyl-5-phenyl-3,4-dihydropyrimidine-2(1H)-thione
(5f)
Cream powder, mp: 251–253°C; yield: 0.23 g (75%). IR (KBr) (νmax, cm−1): 3201, 1652,
1264, 1117, 1040. 1H-NMR (500MHz, CDCl3): δH = 2.47 (3H, s,Me), 3.84 (3H, s, OMe),
5.48 (1 H, s, CH), 6.18 (1 H, s, NH), 7.29–7.35 (3 H,m, Ph), 7.48 (2 H, d, 3J = 7.3, Ar), 7.84
(2H, d, 3J = 7.5, Ar), 7.92 (2H, d, 3J = 7.5, Ar), 10.11 (1H, s,NH). 13C-NMR (125.7MHz,
CDCl3): δC = 17.7 (Me), 56.3 (OMe), 63.6 (CH), 113.6 (C), 120.6 (2 CH), 127.4 (2 CH),
128.7 (2 CH), 129.2 (2 CH), 130.1 (CH), 132.6 (C), 135.7 (C), 144.8 (C), 151.5 (C), 171.6
(C=S). EI-MS: 310 (M+, 12), 236 (50), 203 (49), 107 (68), 77 (100), 73 (41). Anal. Calc.
for C18H18N2OS (310.41): C, 69.65; H, 5.84; N, 9.02%. Found: C, 69.68; H, 5.88; N, 9.10%.

4.3.7. 6-Methyl-4,5-diphenyl-3,4-dihydropyrimidine-2(1H)-thione (5g)
White powder, mp: 229–231°C; yield: 0.25 g (89%). IR (KBr) (νmax, cm−1): 3173, 1650,
1264, 1117, 1005. 1H-NMR (500MHz, CDCl3): δH = 2.41 (3 H, s, Me), 5.45 (1 H, s, CH),
6.21 (1 H, s, NH), 7.30-7.36 (3 H, m, Ph), 7.47 (2 H, d, 3J = 7.3, Ar), 7.62 (2 H, t, 3J = 7.7,
Ar), 7.74 (1 H, t, 3J = 7.7, Ar), 8.05 (2 H, d, 3J = 7.7, Ar), 10.01 (1 H, s, NH). 13C-NMR
(125.7MHz, CDCl3): δC = 18.0 (Me), 60.2 (CH), 112.5 (C), 127.5 (CH), 128.8 (2 CH),
129.0 (2 CH), 129.2 (2 CH), 130.2 (2 CH), 132.5 (C), 135.7 (CH), 140.0 (C), 144.8 (C),
170.2 (C=S). EI-MS: 280 (M+, 12), 206 (49), 126 (52), 77 (100). Anal. Calc. for C17H16N2S
(280.39): C, 72.82; H, 5.75; N, 9.99%. Found: C, 72.85; H, 5.77; N, 10.03%.

4.3.8. 1,3,6-Trimethyl-4,5-diphenyl-3,4-dihydropyrimidine-2(1H)-thione (5h)
White powder, mp: 225–227°C; yield: 0.26 g (85%). IR (KBr) (νmax, cm−1): 1632, 1390,
1121. 1H-NMR (500MHz, CDCl3): δH = 2.47 (3 H, s, Me), 2.91 (3 H, s, NMe), 3.01 (3 H,
s, NMe), 5.66 (1 H, s, CH), 7.47-7.59 (5 H, m, Ph), 7.61 (1 H, t, 3J = 7.6, Ar), 7.92 (2 H, d,
3J = 7.6, Ar), 7.98 (2 H, d, 3J = 7.8, Ar). 13C-NMR (125.7MHz, CDCl3): δC = 18.4 (Me),
40.2 (NMe), 44.4 (NMe), 56.6 (CH), 111.9 (C), 127.4 (2 CH), 128.7 (2 CH), 129.0 (CH),
129.3 (CH), 130.7 (2 CH), 131.6 (2 CH), 132.3 (C), 134.4 (C), 145.4 (C), 172.7 (C=S).
EI-MS: 308 (M+, 10), 293 (20), 231 (29), 154 (66), 77 (100). Anal. Calc. for C19H20N2S
(308.44): C, 73.99; H, 6.54; N, 9.08%. Found: C, 73.90; H, 6.57; N, 9.00%.

4.3.9. 4-(4-Methoxyphenyl)-1,3,6-trimethyl-5-phenyl-3,4-dihydropyrimidine-2(1H)-
thione (5i)
Pale yellowpowder,mp: 275–277°C; yield: 0.26 g (77%). IR (KBr) (νmax, cm−1): 1622, 1251,
1100, 1041. 1H-NMR (500MHz, CDCl3): δH = 2.45 (3 H, s, Me), 2.92 (3 H, s, NMe), 3.02
(3 H, s, NMe), 4.02 (3 H, s, OMe), 5.89 (1 H, s, CH), 7.31-7.36 (3 H, m, Ph), 7.41 (2 H, d,
3J = 7.8, Ar), 7.78 (2H, d, 3J = 7.6, Ar), 7.93 (2H, d, 3J = 7.8, Ar). 13C-NMR (125.7MHz,
CDCl3): δC = 19.9 (Me), 40.5 (NMe), 44.5 (NMe), 52.2 (CH), 56.0 (OMe), 111.4 (C), 122.6
(2 CH), 127.4 (2 CH), 128.7 (2 CH), 129.2 (2 CH), 130.1 (C), 132.5 (C), 134.6 (CH), 142.1
(C), 145.0 (C), 176.0 (C=S). EI-MS: 338 (M+, 12), 323 (23), 231 (24), 261 (51), 107 (25), 77
(100). Anal. Calc. for C20H22N2OS (338.47): C, 70.97; H, 6.55; N, 8.28%. Found: C, 70.93;
H, 6.50; N, 8.30%.

4.3.10. 4-(4-Bromophenyl)-1,3,6-trimethyl-5-phenyl-3,4-dihydropyrimidine-2(1H)-
thione (5j)
White powder, mp: 288–290°C; yield: 0.34 g (87%). IR (KBr) (νmax, cm−1): 1621, 1252,
1140, 1032. 1H-NMR (500MHz, CDCl3): δH = 2.66 (3 H, s, Me), 2.98 (3 H, s, NMe), 3.03
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12 M. NEMATPOUR ET AL.

(3 H, s, NMe), 5.60 (1 H, s, CH), 6.92 (1 H, t, 3J = 7.5, Ar), 7.14 (2 H, d, 3J = 7.5, Ar),
7.21 (2 H, d, 3J = 7.8, Ar), 7.31 (2 H, t, 3J = 7.5, Ar), 7.57 (2 H, d, 3J = 7.8, Ar). 13C-
NMR (125.7MHz, CDCl3): δC = 18.6 (Me), 40.0 (NMe), 42.3 (NMe), 57.7 (CH), 114.4
(C), 126.7 (C), 129.8 (2 CH), 130.1 (2 CH), 133.1 (CH), 134.0 (2 CH), 138.3 (C), 138.9
(2 CH), 142.9 (C), 145.3 (C), 176.0 (C=S). EI-MS: 387 (M+, 7), 371 (50), 309 (24), 231
(33), 154 (100), 77 (81). Anal. Calc. for C19H19BrN2S (387.34): C, 58.92; H, 4.94; N, 7.23%.
Found: C, 58.90; H, 4.96; N, 7.28%.

4.3.11. 4-(4-Chlorophenyl)-1,3-diethyl-6-methyl-5-phenyl-3,4-dihydropyrimidine-
2(1H)-thione (5k)
Cream powder, mp: 279–281°C; yield: 0.32 g (86%). IR (KBr) (νmax, cm−1): 1655, 1161,
1021. 1H-NMR (500MHz, CDCl3): δH = 0.95 (3 H, t, J = 6.8, Me), 1.14 (3 H, t, J = 6.8,
Me), 2.55 (3 H, s, Me), 3.09 (2 H, q, J = 6.8, NCH2), 3.22 (2 H, q, J = 6.8, NCH2), 5.62 (1
H, s, CH), 7.29–7.33 (4 H, m, Ph), 7.49 (2 H, d, 3J = 7.9, Ar), 7.73 (1 H, t, 3J = 7.6, Ar),
8.04 (2 H, d, 3J = 7.9, Ar). 13C-NMR (125.7MHz, CDCl3): δC = 14.5 (Me), 15.6 (Me),
17.9 (Me), 41.9 (NCH2), 47.5 (NCH2), 57.6 (CH), 114.9 (C), 127.4 (2 CH), 128.7 (2 CH),
129.2 (CH), 130.1 (C), 132.5 (2 CH), 135.7 (2 CH), 136.9 (C), 144.8 (C), 145.9 (C), 176.8
(C=S). EI-MS: 370 (M+, 11), 355 (49), 341 (48), 259 (54), 111 (100), 77 (78). Anal. Calc.
for C21H23ClN2S (370.94): C, 68.00; H, 6.25; N, 7.55%. Found: C, 68.09; H, 6.19; N, 7.58%.
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