View Article Online View Journal

Organic & Biomolecular Chemistry

Accepted Manuscript

This article can be cited before page numbers have been issued, to do this please use: Y. Yuan, H. Tan, L. Kong, Z. Zheng, M. Xu, J. Huang and Y. LI, *Org. Biomol. Chem.*, 2019, DOI: 10.1039/C9OB00081J.

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the **author guidelines**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the ethical guidelines, outlined in our <u>author and reviewer resource centre</u>, still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

rsc.li/obc

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

www.rsc.org/

Transition-metal-free C-C σ-Bonds Activation of α-Aryl Ketones and Subsequent Zn-catalyzed Intramolecular Cyclization: Synthesis of Tetrasubstituted Furans

Yang Yuan,[†] Hailu Tan,[†] Lingkai Kong,[†] Zhong Zheng,[†] Murong Xu,[†] Jiaqi Huang,[†] and Yanzhong Li*^a

A highly atom-economical protocol for the synthesis of tetrasubstituted furans has been developed. This process is realized through the tandem reactions of Cs_2CO_3 promoted C-C σ -bonds activation of α -aryl ketones followed by Zn-catalyzed intramolecular cyclization. This represents the first example for the preparation of tetrasubstituted furans through rearrangement of molecular skeletons and subsequent transformations. Mild reaction conditions and readily accessible starting material make the protocol attractive in organic synthesis.

Introduction

Published on 12 February 2019. Downloaded by Macquarie University on 2/12/2019 7:41:24 AM

Highly substituted furans are of great importance because they exhibit a wide range of biological activities and appear as key structural units in many natural products, pharmaceuticals, and agrochemicals¹, examples include two sesquiterpenoids (I and II)^{1e} and dimethylfuroguaiacin (III)^{1f} (Figure 1). Moreover, they are versatile building blocks in synthetic organic chemistry.² Many synthetic routes for their preparation have been developed, such as direct functionalization of furan rings,³ the Paal-Knorr synthesis from 1,4-dicarbonyl compounds,⁴ the Feist- Bénary synthesis,⁵ and transitionmetal-catalyzed cycloisomerization of alkynyl or allenyl ketones.⁶ However, literature reports for the syntheses of tetrasubstituted furans are relatively rare.7 Polysubstituted furans were synthesized through Iron-catalyzed C-H/C-H coupling of activated carbonyl methylenes with S, Sfunctionalized olefins (Scheme 1, a).7c Ag-catalyzed coupling of two (sp³)C –H groups afforded tetrasubstituted furans (Scheme 1, b).7h DBU-mediated tandem Michael addition/ cycloisomerization of keto-methylenes and enynes also gave tetrasubstituted furans.7f Although these methods are

Figure 1 Some naturally occurring compounds containing substituted furans.

Yu's work: Fe-catalyzed C-H functionalization COR³ EWG Fe(OAc)₂ cat. -R² DMA, 120 °C

Wang's work: Ag-catalyzed C-H/C-H coupling

$$Ar_{i}^{1} \xrightarrow{R^{1}} R^{1} \xrightarrow{*} Ar_{i}^{2} \xrightarrow{R^{2}} R^{2} \xrightarrow{i) \text{ AgF cat., xylene, 140 °C}} ii) \text{ TsOH (1.5 equiv)} \xrightarrow{R^{1}} R^{2}$$

This work: Base-promoted C-C σ-bonds activation of α-aryl ketones and subsequent intramolecular cyclization to tetrasubstituted furans

$$R^{2} = R^{1} + R^{3} + R^{3} + R^{4} + R^{4} + R^{4} + R^{2} + R^{2} + R^{4} + R^{4$$

Scheme 1 synthesis of tetrasubstituted furans using keto-methylenes.

effective, more diverse and atom-economical procedures are strongly demanded for highly functionalized furans. In this context, processes initiated from the C-C σ -bonds activation toward tetrasubstituted furans would be very attractive, because it can reorganize the molecular skeleton and form two carbon-carbon bonds simultaneously without any byproducts.⁸ As a continuation of our interest in the C-H and C-C $\sigma\text{-bonds}$ activation chemistry, we report herein the one-pot procedure of Cs₂CO₃ mediated C-C bond insertion of alkynones into α aryl ketones and subsequent Zn-catalyzed intramolecular cyclization (Scheme 1, c).^{9a} The reaction produces the corresponding tetrasubstituted furans in good yields with easily accessible starting materials. This is the first example for the synthesis of tetrasubstituted furans through transitionmetal-free carbon-carbon σ -bonds cleavage of unstrained molecules, as far as our knowledge.

Results and discussion

We initially conducted the reactions of 1,3-diphenylprop-2-yn-1-one (1a) with 1,2-diphenylethanone (2a) (1.0 equiv) in

(b)

^{a.} Y. Yuan, H. Tan, L. Kong, Z. Zheng, M. Xu, J. Huang, Prof. Dr. Y. Li Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering

East China Normal University, 500 Dongchuan Road

E-mail: yzli@chem.ecnu.edu.cn

Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. See DOI: 10.1039/x0xx00000x

the presence of Cs_2CO_3 (2.0 equiv) in DMF under N_2 at room temperature. After the C-C bond cleavage product was formed Table 1 Screening of the reaction conditions for the synthesis of 3a

	Ph	- Ph Cs ₂ CO ₃ (2.0 ec DMF, rt, N ₂ , 3	quiv) catalyst, [C → Temp, air, a	
1a	~ 2a			^О 3а
entry	cat.	[O] (equiv)	temp (°C)	yield (%) ^a
1	Znl ₂ (20 mol%)	-	50	NP
2	Znl ₂ (20 mol%)	K ₂ S ₂ O ₈ [2]	50	78%
3	Znl ₂ (20 mol%)	K ₂ S ₂ O ₈ [2]	80	78%
4	Znl ₂ (20 mol%)	K ₂ S ₂ O ₈ [2]	30	31%
5	-	K ₂ S ₂ O ₈ [2]	50	39%
6	Znl ₂ (10 mol%)	K ₂ S ₂ O ₈ [2]	50	67%
7	Znl ₂ (50 mol%)	K ₂ S ₂ O ₈ [2]	50	77%
8	Znl ₂ (20 mol%)	K ₂ S ₂ O ₈ [1]	50	54%
9	Znl ₂ (20 mol%)	K ₂ S ₂ O ₈ [3]	50	63%
10	Cul (20 mol%)	K ₂ S ₂ O ₈ [2]	50	64%
11	FeCl ₃ (20 mol%)	K ₂ S ₂ O ₈ [2]	50	50%
12	ZnCl ₂ (20 mol%)	K ₂ S ₂ O ₈ [2]	50	38%
13	Zn(OTf) ₂ (20 mol%)	K ₂ S ₂ O ₈ [2]	50	37%
14	Znl ₂ (20 mol%)	(NH ₄) ₂ S ₂ O ₈ [2]	50	55%
15	Znl ₂ (20 mol%)	TBHP [2]	50	26%
16	Znl ₂ (20 mol%)	DTBP [2]	50	NP
17	Znl ₂ (20 mol%)	H ₂ O ₂ [2]	50	trace
Reaction con	ditions: 1a (0.2 mn	nol), 2a (0.2 mm	ol), Cs ₂ CO ₃ (0.4	1 mmol), DMF (2.0

^aReaction conditions: **1a** (0.2 mmol), **2a** (0.2 mmol), Cs₂CO₃ (0.4 mmol), DMF (2.0 mL), 50 °C, isolated yields. NP = No Product.

as monitored by TLC, several reaction parameters were subsequent further order to achieve screened in transformations, the results are depicted in Table 1. When ZnI₂ (20 mol %) was added and the reaction temperature was increased to 50 °C, no new product was observed (entry 1). Interestingly, when $K_2S_2O_8$ (2.0 equiv) was employed, the corresponding tetrasubstituted furan 3a was formed in 78% yield (entry 2). A higher temperature of 80 °C gave the same result as that of 50 °C (entry 3). A lower reaction temperature (30 °C) resulted in only 31% yield of 3a (entry 4). It is worth to note that the subsequent reaction could also occur in the absence of Znl₂ to give a low yield of the desired product (entry 5). Reducing the catalyst loading of ZnI₂ to 10 mol % achieved **3a** in 67% yield (entry 6). 50 mol % of catalyst loading gave almost the same outcome as that of 20 mol % (entry 7 vs entry 2). Then, the amount of K₂S₂O₈ was tested. Decreasing or increasing the amount of $K_2S_2O_8$ made lower yields of the desired furan (entries 8, 9). Next, other metal salts were screened. It was found that CuI, FeCl₃, ZnCl₂ and Zn(OTf)₂ could also catalyze the reaction, however, the yields of 3a were in the range of 37-64% (entries 10-13). Lastly, different oxidants were tested. $(NH_4)_2S_2O_8$ and *tert*-butyl hydroperoxide (TBHP) afforded the desired 3a in 55% and 26% yields, respectively (entries 14, 15). Whereas, di-tert-butyl peroxide (DTBP) and H_2O_2 are not effective for this reaction.

Encouraged by the above results, we next examined the substrate scope toward the synthesis of diverse tetrasubstituted furans by varying substituents on alkynones under the conditions shown in Table 1, entry 2. The results are depicted in Figure 2. First, we investigated the effect of different substituents (R¹) of the aryl rings on the triple bond. It was found that both electron-withdrawing and electron-

Figure 2 The scope of alkynone 1 for the synthesis of furan 3. Reaction conditions: 1 (0.2 mmol), 2a (0.2 mmol), Cs_2CO_3 (0.4 mmol), DMF (2.0 mL), Znl₂ (0.04 mmol), K₂S₂O₈ (0.4 mmol), isolated yields.

donating groups on the aryl ring underwent the reaction smoothly to afford the desired substituted furans in good to high yields (Figure 2, 3a-3g). With electron-withdrawing groups on the *para*-position of the aryl ring such as *p*-CN and *p*-Cl, the corresponding products 3b or 3c were obtained in 59% and 81% yields, respectively. With electron-donating groups on the aryl ring such as p-Me or p-OMe, the desired tetrasubstituted furans were also produced in high yields (3d, 3e). A methyl group on the ortho-position of the aryl ring afforded the target compound **3f** in a yield of 69%. A meta-chloro substituted aryl ring produced the desired furan **3g** in 73% yield. Next, the R² substituents of the aryl ring on the carbonyl carbon were explored (Figure 2, 3h-3l). It was worth noting when substituents on the carbonyl carbon of substrates 1 and 2 were different, two isomers would be obtained. With an electron-withdrawing group on the para-position of the aryl ring such as p-F, two isomerized products 3h and 3h' were obtained in a combined yield of 76% with a ratio of 4:3. The results indicated that there was competitively enolization between two carbonyl group of the C-C cleavage intermediate. Other electron-withdrawing groups such as p-Cl and p-Br were tolerable to the reaction conditions, affording (3i, 3i') and (3i, 3j') as two isomers in high yields. Substrates bearing electrondonating groups such as *p*-Me and *p*-OMe cyclized readily under the standard reaction conditions to afford the corresponding tetrasubstituted furans (3k, 3k') and (3l, 3l') in 83% and 52% yields, respectively.

To investigate whether our synthetic strategy is effective for alkyl-substituted alkynones, we next introduced *tert*-butyl and ethyl groups on the carbonyl side of the alkynone **1**. Interestingly, the desired tetrasubstituted furans (**3m**, **3m'**) and (**3n**, **3n'**) were obtained as well in good yields of 61% and 63% as two isomers, respectively (Figure 3, a). However, when the alkyne terminus was an *n*-butyl, only complex reaction mixture was observed in the first step reaction (Figure 3, b).

Figure 3 Synthesis of furans using alkyl substituted alkynones.

The scope of the α -aryl ketone **2** was also examined (Figure 4). In order to synthesize only one isomer, we tried to keep R^2 and R^3 as the same groups. For R^4 substituent, both electron-withdrawing and -donating groups on the aryl ring readily delivered the corresponding furans in good yields (3o-3s). A variety of functional groups such as nitro (3o), fluoro (3p), chloro (3q), bromo (3r), and methyl (3s) were tolerated well. The structure of 3q was confirmed by comparing with the reported compound.^{7a} For R³ substituent, again, both electronwithdrawing and -donating character of the substituents on the aryl ring, such as p-Cl, p-Br, p-Me and p-OMe were well tolerated (3t-3w), providing the products in 51-82% yields. Interestingly, when R³ as *p*-Br was employed to react with 1,3diphenylprop-2-yn-1-one (1a), the corresponding 3j and 3j' were formed in a combined yield of 71%. We can find a similar result from Figure 2 for the preparation of 3j and 3j'. In that case, the desired substituted furans were produced from the reaction of 1-(4-bromophenyl)-3-phenylprop-2-yn-1-one with 1,2-diphenylethanone (2a). Moreover, bicyclic substituent smoothly underwent to this reaction, offering the desired furan 3x in 51% yield, demonstrating the synthetic potential for the construction of complex organic molecules by this

Figure 4 The scope of α -aryl ketone 2. Reaction conditions: 1 (0.2 mmol), 2 (0.2 mmol), Cs2CO3 (0.4 mmol), DMF (2.0 mL), ZnI2 (0.04 mmol), K2S2O8 (0.4 mmol), isolated vields

method. When R^1 substituent of substrate **1** with *p*-Cl or *p*-Me groups were used, the corresponding furans (3y, 3z) were obtained both in 70% yield. With a 2-thienyl group in the alkyne side, the corresponding furan 3za was also produced in 58% yield. However, when acetophenone was used, since the first step of the reaction cannot occur, the target product 3zb cannot be obtained. To demonstrate the practical utility of this methodology, the gram scale reaction was conducted for the synthesis of 3a, and the desired product 3a was obtained in 73% (1.47 g) yield.

In order to clarify the reaction mechanism, we carried out the following control experiments (Scheme 2). First, the reaction of 1a with 2a was performed under the optimized reaction conditions for the first step. An intermediate 4a was obtained in 84% yield after 3 h (Scheme 2, a). Treatment of 4a with the general reaction conditions for the second step of our system, the desired furan 3a was formed in 64% isolated yield within 8 h (Scheme 2, b). The result implicates that 4a is the reaction intermediate for the formation of 3a in the one-pot reaction. When the reaction was carried out with the addition of a radical scavenger TEMPO (3.0 equiv), a 55% yield of 3a was obtained as well (Scheme 2, c). This indicates that a racical reaction pathway may not be involved in the reaction process.

Scheme 3 A plausible reaction mechanism.

Based on the above observation and our previous reports,⁹ a plausible reaction mechanism is depicted in Scheme 3. In the presence of a base, **1** is attacked by α -aryl ketone **2** to give an intermediate A, which undergoes an intramolecular nucleophilic addition/ring-opening to give a formal alkyne insertion product C. Tautermerization of C leads to the formation of D or E, which delivers intermediate 4a after hydrolysis. There are two possible pathways to achieve the final products ${\bf 3}$ and ${\bf 3'}.$ In path a, coordination of the double bond of **D** to ZnI₂ affords **F**. Nucleophilic attack of the carbonyl O atom to the activated double bond gives G. Hydrolysis of G followed by oxidative aromatization offers furan 3. In path b, coordination of the double bond of E to ZnI_2 produces I. Nucleophilic attack of the carbonyl O atom to a double bond gives J. Hydrolysis of J followed by aromatization affords furan 3'.

Conclusions

In summary, we have developed a one-pot procedure for the atom-economical synthesis of tetrasubstituted furans from α -aryl ketones and alkynones under mild conditions. This reaction proceeds through the base-promoted cleavage of a unstrained C-C single bond of ketones followed by the subsequent Zn-catalyzed intramolecular cyclization.

Experimental

General Information.

All reactions were performed in flame-dried glassware under an atmosphere of dry nitrogen, unless otherwise noted. Anhydrous DMF were prepared by distillation from CaH₂. Unless noted, all commercial reagents were used without further purification. Reactions were monitored by thin layer chromatography. Preparation of ynones and diaryl ketones were using reported methods.9a-9j, 10 Purification of reaction products was carried out by flash chromatography on silica gel (200~300 mesh). ¹H NMR spectra were recorded at 400 MHz, ^{13}C NMR spectra were recorded at 100 MHz, and in CDCl_3 (containing 0.03% TMS) solutions. ¹H NMR spectra was recorded with tetramethylsilane (δ = 0.00 ppm) as internal reference; ¹³C NMR spectra was recorded with CDCl₃(δ = 77.00 ppm) as internal reference. High-resolution mass spectra were performed on a mass spectrometer with a TOF (for EI or ESI) or FT-ICR (for MALDI) analyzer.

Typical Procedure for the Synthesis of 1

To a solution of alkyne (12 mmol) in anhydrous THF (30 mL), n-BuLi (2.5M, 10 mmol, 4 mL) was added at -78 °C. The resulting mixture was stirred at -78 °C for 1 hour, then the aldehyde (10 mmol) was added and the reaction temperature was raised to room temperature till aldehyde disappeared by TLC analysis. The resulting mixture was quenched with a saturated solution of NH₄Cl and extracted with ethyl acetate (20 mL × 3). The combined organic layers were washed with brine and dried over anhydrous Na₂SO₄, filtered, and concentrated under

To a solution of substituted alkynol (10 mmol) in DMSO (20 mL) in round-bottom flask, IBX (12 mmol, 3.36 g) was added at room temperature. The reaction was stirred in air until the full conversion of substituted alkynol monitored by thin-layer chromatography. The resulting mixture was quenched with water (20 mL) and filtered. Then the filtrate was extracted with ethyl acetate (20 mL × 3). The organic layers was combined, washed with brine, dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. Purification by column chromatography with petroleum ether/ethyl acetate = 10/1-20:1 as the eluent afforded the acetylenic ketones.

4,4-dimethyl-1-phenylpent-1-yn-3-one and **1-phenylpent-1-yn-3-one** were synthesized according to the references 10a and 10b, respectively.

Typical Procedure for the Synthesis of 2.9a

To a Schlenk tube with a magnetic stirring bar were charged the respective nitrile (1.0 mmol), arylboronic acid (2.0 mmol), Pd(OAc)₂ (5 mol %, 11.2 mg), bpy (10 mol%, 15.6 mg), TFA (10 equiv, 0.74 ml), THF (5 mL), and H₂O (1 mL) under N₂ atmosphere. The reaction mixture was stirred at 80 °C for 36 h. After cooling to r.t., the mixture was poured into EtOAc (5 mL), which was washed with sat. aq NaHCO₃ (2 × 10 mL) and then brine (1 × 10 mL). After extracting the aqueous layer with EtOAc (3 × 10 mL), the combined organic layers were dried over anhydrous Na₂SO₄, and evaporated under vacuum. Purification by column chromatography with petroleum ether/ethyl acetate = 5/1-10:1 as the eluent afforded the alkyl aryl ketones **2**.

Typical Procedure for the Synthesis of 3

In a schlenk tube, acetylenic ketone **1a** (0.2 mmol, 40.2 mg), 2phenylacetophenone **2a** (0.2 mmol, 39.2 mg), Cs_2CO_3 (0.4 mmol, 130.3 mg) and DMF (2.0 mL) were stirred at room temperature under N₂. After 3 h, then Znl₂ (0.04 mmol, 12.8 mg) and K₂S₂O₈ (0.4 mmol, 108.1 mg) were added. After the completion of the addition, the reaction mixture was allowed to react at 50 °C for 8 h. Then, the reaction mixture was cooled to room temperature and was treated with H₂O, then extracted with EA and dried over anhydrous Na₂SO₄. After removal of the EA, the residue was purified by chromatography on basic silica gel (PE: EA = 30: 1) to afford **3a** (yellow solid, 62.5 mg, 78%).

Phenyl(2,4,5-triphenylfuran-3-yl)methanone (3a). yellow solid, obtained in 11 h and purified by chromatography on silica gel (petroleum ether/ethyl acetate = 30:1); yield: 78%, 62.5 mg, m.p. 185-187 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.83 (d, J = 8.0 Hz, 2H), 7.63 (d, J = 7.6 Hz, 2H), 7.54 (d, J = 7.6 Hz, 2H), 7.42-7.37 (m, 1H), 7.35-7.15 (m, 13H). ¹³C NMR (100 MHz, CDCl₃) δ 194.0, 151.3, 148.4, 137.7, 133.6, 132.4, 130.4, 130.0, 129.8, 128.8, 128.7, 128.6, 128.1, 127.9, 126.5, 126.2, 124.3,

Journal Name

COMMUNICATION

View Article Online

124.0. HRMS (ESI) calcd for $C_{29}H_{20}NaO_2$ [M+Na]⁺: 423.1356; found: 423.1361.

4-(4-Benzoyl-2,5-diphenylfuran-3-yl)benzonitrile (3b). yellow solid, obtained in 11 h and purified by chromatography on silica gel (petroleum ether/ethyl acetate = 30:1); yield: 59%, 50.5 mg, m.p. 134-136 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.82 (d, J = 8.0 Hz, 2H), 7.60 (d, J = 7.2 Hz, 2H), 7.53 (d, J = 8.0 Hz, 2H), 7.49-7.42 (m, 3H), 7.41-7.37 (m, 2H), 7.36-7.25 (m, 8H). ¹³C NMR (100 MHz, CDCl₃) δ 193.2, 152.4, 149.3, 137.7, 137.4, 134.0, 132.6, 130.8, 130.0, 129.6, 129.3, 129.1, 128.9, 128.8, 128.8, 126.8, 126.6, 123.1, 122.5, 118.8, 111.5. HRMS (ESI) calcd for C₃₀H₁₉NNaO₂ [M+Na]⁺: 448.1308; found: 448.1323.

(4-(4-Chlorophenyl)-2,5-diphenylfuran-3-

yl)(phenyl)methanone (3c). yellow solid, obtained in 11 h and purified by chromatography on silica gel (petroleum ether/ethyl acetate = 30:1); yield: 81%, 70.2 mg, mp 137-139 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.83 (d, *J* = 7.6 Hz, 2H), 7.60 (d, *J* = 7.2 Hz, 2H), 7.52 (d, *J* = 6.4 Hz, 2H), 7.45-7.41 (m, 1H), 7.32-7.25 (m, 7H), 7.25-7.17 (m, 5H). ¹³C NMR (100 MHz, CDCl₃) δ 193.7, 151.6, 148.7, 137.5, 133.9, 133.8, 131.4, 130.9, 130.1, 130.0, 129.6, 129.1, 128.8, 128.7, 128.4, 126.6, 126.3, 123.7, 123.1. HRMS (ESI) calcd for C₂₉H₁₉ClNaO₂ [M+Na]+: 457.0966; found: 457.0972.

(2,5-Diphenyl-4-(p-tolyl)furan-3-yl)(phenyl)methanone (3d). yellow solid, obtained in 11 h and purified by chromatography on silica gel (petroleum ether/ethyl acetate = 30:1); yield: 83%, 69.2 mg, m.p. 148-150 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.85 (d, J = 8.0 Hz, 2H), 7.61 (d, J = 7.6 Hz, 2H), 7.56 (d, J = 7.6 Hz, 2H), 7.45-7.38 (m, 1H), 7.33-7.21 (m, 8H), 7.15 (d, J = 8.0 Hz, 2H), 7.03 (d, J = 8.0 Hz, 2H), 2.28 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 194.1, 151.0, 148.4, 137.7, 137.6, 133.6, 130.5, 130.1, 129.8, 129.5, 129.2, 128.8, 128.7, 128.6, 128.0, 126.5, 126.2, 124.4, 124.1, 21.0. HRMS (ESI) calcd for C₃₀H₂₂NaO₂ [M+Na]⁺: 437.1512; found: 437.1516.

(4-(4-Methoxyphenyl)-2,5-diphenylfuran-3-

yl)(phenyl)methanone (3e). yellow solid, obtained in 11 h and purified by chromatography on silica gel (petroleum ether/ethyl acetate = 30:1); yield: 67%, 57.8 mg, m.p. 104-106 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.85 (d, *J* = 8.0 Hz, 2H), 7.62 (d, *J* = 7.6 Hz, 2H), 7.56 (d, *J* = 7.6 Hz, 2H), 7.45-7.39 (m, 1H), 7.34-7.23 (m, 8H), 7.19 (d, *J* = 8.4 Hz, 2H), 6.77 (d, *J* = 8.4 Hz, 2H), 3.75 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 194.2, 159.4, 151.0, 148.3, 137.7, 133.6, 131.2, 130.5, 130.0, 129.8, 128.8, 128.7, 128.6, 128.0, 126.4, 126.1, 124.4, 124.1, 124.0, 114.2, 55.0. HRMS (ESI) calcd for $C_{30}H_{22}NaO_3$ [M+Na]⁺: 453.1461; found: 453.1467.

(2,5-diphenyl-4-(o-tolyl)furan-3-yl)(phenyl)methanone (3f). yellow solid, obtained in 11 h and purified by chromatography on silica gel (petroleum ether/ethyl acetate = 30:1); yield: 69%, 57.5 mg, m.p. 163-165 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.79 (d, J = 7.6 Hz, 2H), 7.62 (d, J = 7.6 Hz, 2H), 7.45 (d, J = 7.6 Hz, 2H), 7.42-7.36 (m, 1H), 7.32-7.13 (m, 11H), 7.12-7.05 (m, 1H), 2.15 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 193.5, 151.4, 148.2, 137.6, 137.4, 133.4, 131.8, 130.7, 130.6, 130.4, 129.8, 129.7, 128.8, 128.7, 128.7, 128.4, 128.4, 127.9, 126.7, 126.1, 125.0, 124.3, 123.5, 19.8. HRMS (ESI) calcd for C₃₀H₂₂NaO₂ [M+Na]⁺: 437.1512; found: 437.1515.

(4-(3-chlorophenyl)-2,5-diphenylfuran-3-

yl)(phenyl)methanone (3g). yellow solid Pobta head for \mathfrak{PPP} wild purified by chromatography on silica gel (petroleum ether/ethyl acetate = 30:1); yield: 73%, 63.3 mg, m.p. 136-138 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.82 (d, J = 8.0 Hz, 2H), 7.62 (d, J = 7.6 Hz, 2H), 7.52 (d, J = 7.2 Hz, 2H), 7.44-7.39 (m, 1H), 7.33-7.23 (m, 9H), 7.19-7.13 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 193.5, 151.7, 148.8, 137.6, 134.5, 134.3, 133.7, 130.1, 130.0, 129.9, 129.5, 128.9, 128.8, 128.6, 128.4, 128.1, 126.6, 126.3, 123.6, 122.8. HRMS (ESI) calcd for C₂₉H₁₉ClNaO₂ [M+Na]⁺: 457.0966; found: 457.0964.

(4-Fluorophenyl)(2,4,5-triphenylfuran-3-yl)methanone and (2-(4-fluorophenyl)-4,5-diphenylfuran-3-

yl)(phenyl)methanone (3h+3h'). yellow solid, obtained in 11 h and purified by chromatography on silica gel (petroleum ether/ethyl acetate = 30:1); yield: 76%, 63.5 mg. ¹H NMR (400 MHz, CDCl₃) Obtained as 4: 3 isomer. Major isomer: δ 7.89-7.78 (m, 2H), 7.66-7.60 (m, 2H), 7.57-7.50 (m, 2H), 7.46-7.36 (m, 1H), 7.32-7.20 (m, 10H), 6.95-6.88 (m, 2H); minor isomer: δ 7.12-6.96 (m, 2H); other peaks are overlapped with the other isomer. ¹³C NMR (100 MHz, CDCl₃) δ 193.8, 192.3, 167.5, 164.9, 164.3, 161.8, 151.3, 150.6, 148.5, 148.4, 137.6, 134.1, 134.1, 133.7, 133.3, 132.7, 132.6, 132.3, 130.3, 130.0, 130.0, 129.7, 128.8, 128.8, 128.7, 128.6, 128.5, 128.5, 128.2, 128.0, 127.9, 126.5, 126.2, 124.3, 124.2, 123.8, 123.7, 116.0, 115.8, 115.8, 115.6. HRMS (ESI) calcd for C₂₉H₁₉FNaO₂ [M+Na]⁺: 441.1261; found: 441.1266.

(4-Chlorophenyl)(2,4,5-triphenylfuran-3-yl)methanone and (2-(4-chlorophenyl)-4,5-diphenylfuran-3-

yl)(phenyl)methanone (3i+3i'). yellow solid, obtained in 11 h and purified by chromatography on silica gel (petroleum ether/ethyl acetate = 30:1); yield: 79%, 68.3 mg. ¹H NMR (400 MHz, CDCl₃) Obtained as 1: 1 isomer. Isomer 1: δ 7.82 (d, J = 8.0 Hz, 2H), 7.64-7.51 (m, 4H), 7.46-7.36 (m, 1H), 7.30-7.20 (m, 12H); isomer 2: δ 7.76 (d, J = 8.0 Hz, 2H); other peaks are overlapped with the other isomer. ¹³C NMR (100 MHz, CDCl₃) δ 193.8, 192.6, 151.4, 150.0, 148.7, 148.6, 140.1, 137.5, 136.0, 134.6, 133.8, 132.2, 132.1, 131.3, 130.2, 130.2, 130.0, 129.6, 129.1, 128.9, 128.9, 128.8, 128.7, 128.6, 128.3, 128.2, 128.0, 127.9, 127.6, 126.5, 126.3, 126.2, 124.4, 124.1, 123.5. HRMS (ESI) calcd for C₂₉H₁₉CINaO₂ [M+Na]⁺: 457.0966; found: 457.0967.

(4-Bromophenyl)(2,4,5-triphenylfuran-3-yl)methanone and (2-(4-bromophenyl)-4,5-diphenylfuran-3-

yl)(phenyl)methanone (3j+3j'). yellow solid, obtained in 11 h and purified by chromatography on silica gel (petroleum ether/ethyl acetate = 30:1); yield: 72%, 68.9 mg. ¹H NMR (400 MHz, CDCl₃) Obtained as 1: 1 isomer. Isomer 1: δ 7.82 (d, J = 8.0 Hz, 2H), 7.62 (d, J = 7.6 Hz, 2H), 7.55-7.38 (m, 5H), 7.32-7.20 (m, 10H); isomer 2: δ 7.69 (d, J = 8.4 Hz, 2H); other peaks are overlapped with the other isomer. ¹³C NMR (100 MHz, CDCl₃) δ 193.8, 192.8, 151.5, 150.0, 148.7, 148.6, 137.5, 136.4, 133.8, 132.2, 132.1, 132.0, 131.9, 131.4, 130.2, 130.2, 130.0, 129.6, 128.9, 128.8, 128.7, 128.7, 128.3, 128.2, 128.0, 128.0, 127.8, 126.5, 126.3, 126.2, 124.5, 124.4, 124.2, 123.5, 122.8. HRMS (ESI) calcd for C₂₉H₁₉BrNaO₂ [M+Na]+: 501.0461; found: 501.0461.

(4,5-P-tolyl(2,4,5-triphenylfuran-3-yl)methanone and diphenyl-2-(p-tolyl)furan-3-yl)(phenyl)methanone (3k+3k'). yellow solid, obtained in 11 h and purified by chromatography on silica gel (petroleum ether/ethyl acetate = 30:1); yield: 83%, 69.0 mg. ¹H NMR (400 MHz, CDCl₃) Obtained as 1.4: 1 isomer. Major isomer: δ 7.76 (d, J = 7.6 Hz, 2H), 7.64-7.50 (m, 4H), 7.45-7.35 (m, 1H), 7.30-7.20 (m, 10H), 7.13-7.03 (m, 2H), 2.30 (s, 3H); minor isomer: δ 7.83 (d, J = 7.6 Hz, 2H); other peaks are overlapped with the other isomer. ^{13}C NMR (100 MHz, CDCl_3) δ 194.1, 193.7, 151.6, 150.6, 148.4, 148.1, 144.7, 138.8, 137.8, 135.2, 133.5, 132.5, 132.4, 130.5, 130.2, 130.0, 130.0, 130.0, 129.8, 129.5, 129.4, 128.8, 128.8, 128.7, 128.5, 128.1, 128.0, 127.8, 127.8, 127.0, 126.5, 126.3, 126.2, 126.2, 124.3, 124.3, 124.2, 123.4, 21.4, 21.0. HRMS (ESI) calcd for C₃₀H₂₂NaO₂ [M+Na]*: 437.1512; found: 437.1513.

(4-Methoxyphenyl)(2,4,5-triphenylfuran-3-yl)methanone

and (2-(4-methoxyphenyl)-4,5-diphenylfuran-3yl)(phenyl)methanone (3I+3I'). yellow solid, obtained in 11 h and purified by chromatography on silica gel (petroleum ether/ethyl acetate = 10:1); yield: 52%, 44.8 mg. ¹H NMR (400 MHz, CDCl₃) Obtained as 4: 1 isomer. Major isomer: δ 7.84 (d, *J* = 8.8 Hz, 2H), 7.63 (d, *J* = 7.6 Hz, 2H), 7.54 (d, *J* = 7.2 Hz, 2H), 7.33-7.20 (m, 11H), 6.76 (d, *J* = 8.4 Hz, 2H), 3.78 (s, 3H); minor isomer: δ 7.42-7.37 (m, 1H), 6.82 (d, *J* = 8.8 Hz, 2H); other peaks are overlapped with the other isomer. ¹³C NMR (100 MHz, CDCl₃) δ 192.5, 164.2, 150.4, 148.3, 133.4, 132.5, 130.8, 130.5, 130.0, 130.0, 130.0, 129.9, 128.8, 128.8, 128.7, 128.7, 128.5, 128.5, 128.2, 128.0, 127.9, 127.9, 127.8, 126.2, 126.1, 124.3, 124.2, 114.2, 113.8, 55.3, 55.1. HRMS (ESI) calcd for C₃₀H₂₂NaO₃: [M+Na]⁺: 453.1461 found: 453.1467.

2,2-dimethyl-1-(2,4,5-triphenylfuran-3-yl)propan-1-one and (2-(tert-butyl)-4,5-diphenylfuran-3-yl)(phenyl)methanone

(3m+3m'). white solid, obtained in 11 h and purified by chromatography on silica gel (petroleum ether/ethyl acetate = 50:1); yield: 61%, 46.6 mg. ¹H NMR (400 MHz, CDCl₃) Obtained as 1.2: 1 isomer. Major isomer: δ 7.78 (d, J = 7.6 Hz, 2H), 7.53 (d, J = 6.8 Hz, 2H), 7.45-7.11 (m, 11H), 1.36 (s, 9H); minor isomer: δ 7.65 (d, J = 8.0 Hz, 2H), 0.82 (s, 9H); other peaks are overlapped with the other isomer. ¹³C NMR (100 MHz, CDCl₃) δ 212.7, 195.4, 159.8, 148.2, 147.6, 146.0, 138.6, 133.4, 133.2, 132.8, 130.8, 130.5, 130.3, 129.9, 129.0, 128.9, 128.6, 128.6, 128.5, 128.4, 128.1, 128.0, 127.5, 127.5, 126.2, 126.0, 125.8, 125.2, 123.0, 122.6, 122.0, 45.7, 34.1, 29.2, 26.5. HRMS (ESI) calcd for C₂₇H₂₄NaO₂: [M+Na]⁺: 403.1669 found: 403.1669.

1-(2,4,5-triphenylfuran-3-yl)propan-1-one and (2-ethyl-4,5diphenylfuran-3-yl)(phenyl)methanone (3n+3n'). yellow oil, obtained in 11 h and purified by chromatography on silica gel (petroleum ether/ethyl acetate = 50:1); yield: 63%, 44.6 mg. ¹H NMR (400 MHz, CDCl₃) Obtained as 16.7: 1 isomer. Major isomer: δ 7.71 (d, *J* = 7.6 Hz, 2H), 7.45 (d, *J* = 7.2 Hz, 2H), 7.54-7.36 (m, 1H), 7.29-7.12 (m, 10H), 2.75 (q, *J* = 7.6 Hz, 2H), 1.31 (t, 3H); minor isomer: δ 7.98 (d, *J* = 7.6 Hz, 2H), 2.31 (q, *J* = 7.6 Hz, 2H), 0.94 (t, 3H); other peaks are overlapped with the other isomer. ¹³C NMR (100 MHz, CDCl₃) δ 193.1, 159.9, 147.5, 138.7, 135.1, 132.9, 132.8, 130.6, 130.1, 129.6, 129.2, 129.2, 128.8, 128.5, 128.5, 128.2, 127.7, 127.4, 127.2, 126.1, 123.3, 122.5,
 20.9,
 12.3.
 HRMS (ESI)
 calcd
 for
 C25H20NaQ2:w
 Mt Na He

 375.1356 found:
 375.1354.
 DOI: 10.1039/C9OB00081J

(5-(4-Nitrophenyl)-2,4-diphenylfuran-3-

yl)(phenyl)methanone (3o). yellow solid, obtained in 11 h and purified by chromatography on silica gel (petroleum ether/ethyl acetate = 30:1); yield: 61%, 54.5 mg, m.p. 157-159 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.13 (d, *J* = 8.8 Hz, 2H), 7.82 (d, *J* = 7.6 Hz, 2H), 7.72-7.60 (m, 4H), 7.45-7.40 (m, 1H), 7.35-7.23 (m, 10H). ¹³C NMR (100 MHz, CDCl₃) δ 193.2, 152.8, 146.8, 146.0, 137.3, 136.3, 133.9, 131.4, 129.9, 129.7, 129.4, 129.2, 129.1, 128.9, 128.7, 128.0, 126.7, 126.0, 124.5, 124.1. HRMS (ESI) calcd for $C_{29}H_{19}NNaO_4$ [M+Na]⁺: 468.1206; found: 468.1207.

(5-(4-Fluorophenyl)-2,4-diphenylfuran-3-

yl)(phenyl)methanone (3p). yellow solid, obtained in 11 h and purified by chromatography on silica gel (petroleum ether/ethyl acetate = 30:1); yield: 83%, 69.3 mg, m.p. 150-152 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.83 (d, *J* = 7.6 Hz, 2H), 7.62 (d, *J* = 7.6 Hz, 2H), 7.54-7.47 (m, 2H), 7.43-7.38 (m, 1H), 7.32-7.21 (m, 10H), 7.02-6.94 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 193.8, 162.7 (*J* = 248.6 Hz), 151.3, 147.6, 137.6, 133.6, 132.2, 130.0, 130.0, 129.7, 128.9, 128.8, 128.7, 128.6, 128.1 (*J* = 8.1 Hz), 128.0, 126.6 (*J* = 3.3 Hz), 126.5, 124.0, 123.9, 115.7 (*J* = 21.8 Hz). HRMS (ESI) calcd for C₂₉H₁₉FNaO₂ [M+Na]⁺: 441.1261; found: 441.1264.

(5-(4-Chlorophenyl)-2,4-diphenylfuran-3-

yl)(phenyl)methanone (3q). white solid, obtained in 11 h and purified by chromatography on silica gel (petroleum ether/ethyl acetate = 30:1); yield: 70%, 60.9 mg, m.p. 178-180 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.82 (d, *J* = 7.6 Hz, 2H), 7.62 (d, *J* = 7.2 Hz, 2H), 7.46 (d, *J* = 8.4 Hz, 2H), 7.42-7.37 (m, 1H), 7.35-7.14 (m, 12H). ¹³C NMR (100 MHz, CDCl₃) δ 193.7, 151.5, 147.4, 137.6, 133.9, 133.7, 132.0, 130.0, 129.9, 129.6, 128.9, 128.8, 128.8, 128.6, 128.1, 127.4, 126.5, 124.8, 124.0. HRMS (ESI) calcd for C₂₉H₁₉ClNaO₂ [M+Na]⁺: 457.0966; found: 457.0970.

(5-(4-Bromophenyl)-2,4-diphenylfuran-3-

yl)(phenyl)methanone (3r). yellow solid, obtained in 11 h and purified by chromatography on silica gel (petroleum ether/ethyl acetate = 30:1); yield: 75%, 72.0 mg, m.p. 164-166 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.82 (d, *J* = 8.0 Hz, 2H), 7.62 (d, *J* = 7.2 Hz, 2H), 7.42-7.36 (m, 5H), 7.30-7.21 (m, 10H). ¹³C NMR (100 MHz, CDCl₃) δ 193.7, 151.5, 147.4, 137.5, 133.7, 132.0, 131.9, 130.0, 129.9, 129.5, 129.2, 128.9, 128.8, 128.8, 128.6, 128.1, 127.6, 126.5, 124.9, 124.0, 122.0. HRMS (ESI) calcd for C₂₉H₁₉BrNaO₂ [M+Na]⁺: 501.0461; found: 501.0466.

(2,4-Diphenyl-5-(p-tolyl)furan-3-yl)(phenyl)methanone (3s). yellow solid, obtained in 11 h and purified by chromatographyon silica gel (petroleum ether/ethyl acetate = 30:1); yield: 86%, 71.3 mg, m.p. 140-142 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.84 (d, *J* = 7.6 Hz, 2H), 7.63 (d, *J* = 7.2 Hz, 2H), 7.45-7.36 (m, 3H), 7.31-7.18 (m, 10H), 7.10 (d, *J* = 8.0 Hz, 2H), 2.33 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 194.1, 151.0, 148.7, 138.1, 137.7, 133.6, 132.5, 130.0, 129.8, 129.4, 128.8, 128.7, 128.6, 128.5, 127.7, 127.6, 126.5, 126.2, 123.9, 123.7, 21.0. HRMS (ESI) calcd for C₃₀H₂₂NaO₂ [M+Na]⁺: 437.1512; found: 437.1516.

Journal Name

Journal Name

(4-Chlorophenyl)(2-(4-chlorophenyl)-4,5-diphenylfuran-3-yl)methanone (3t). yellow solid, obtained in 11 h and purified by chromatography on silica gel (petroleum ether/ethyl acetate = 30:1); yield: 82%, 76.9 mg, m.p. 147-149 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.75 (d, J = 8.4 Hz, 2H), 7.58 (d, J = 8.4 Hz, 2H), 7.52 (d, J = 7.2 Hz, 2H), 7.32-7.18 (m, 12H). ¹³C NMR (100 MHz, CDCl₃) δ 192.5, 150.2, 148.8, 140.3, 135.8, 134.8, 132.0, 131.3, 130.0, 129.9, 129.2, 129.0, 128.9, 128.7, 128.4, 128.1, 127.6, 126.3, 124.2, 123.9. HRMS (ESI) calcd for C₂₉H₁₈Cl₂NaO₂ [M+Na]⁺: 491.0576; found: 491.0577.

(4-Bromophenyl)(2-(4-bromophenyl)-4,5-diphenylfuran-3yl)methanone (3u). yellow solid, obtained in 11 h and purified by chromatography on silica gel (petroleum ether/ethyl acetate = 30:1); yield: 75%, 83.2 mg, m.p. 193-195 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.67 (d, *J* = 8.0 Hz, 2H), 7.54-7.40 (m, 8H), 7.32-7.20 (m, 8H). ¹³C NMR (100 MHz, CDCl₃) δ 192.7, 150.2, 148.9, 136.2, 132.1, 132.0, 131.9, 131.4, 130.0, 129.9, 129.2, 128.9, 128.8, 128.5, 128.4, 128.1, 127.8, 126.3, 124.2, 124.0, 123.0. HRMS (ESI) calcd for C₂₉H₁₈Br₂NaO₂ [M+Na]⁺: 578.9566; found: 578.9577.

(4,5-Diphenyl-2-(p-tolyl)furan-3-yl)(p-tolyl)methanone (3v). yellow solid, obtained in 11 h and purified by chromatography on silica gel (petroleum ether/ethyl acetate = 30:1); yield: 80%, 68.6 mg, m.p. 168-170 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.75 (d, J = 8.0 Hz, 2H), 7.55-7.47 (m, 4H), 7.30-7.18 (m, 8H), 7.12-7.03 (m, 4H), 2.29 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 193.7, 151.0, 148.0, 144.6, 138.6, 135.3, 132.5, 130.5, 130.2, 130.0, 129.5, 129.3, 128.7, 128.6, 127.9, 127.8, 127.1, 126.3, 126.2, 124.3, 123.5, 21.4, 21.0. HRMS (ESI) calcd for C₃₁H₂₄NaO₂ [M+Na]⁺: 451.1669; found: 451.1678.

(4-Methoxyphenyl)(2-(4-methoxyphenyl)-4,5-

diphenylfuran-3-yl)methanone (3w). yellow oil, obtained in 11 h and purified by chromatography on silica gel (petroleum ether/ethyl acetate = 10:1); yield: 51%, 46.6 mg. ¹H NMR (400 MHz, CDCl₃) δ 7.83 (d, *J* = 8.8 Hz, 2H), 7.58 (d, *J* = 8.4 Hz, 2H), 7.52 (d, *J* = 7.6 Hz, 2H), 7.29-7.20 (m, 8H), 6.82 (d, *J* = 8.4 Hz, 2H), 6.75 (d, *J* = 8.8 Hz, 2H), 3.77 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 192.6, 164.1, 160.0, 150.9, 147.7, 132.6, 132.5, 130.9, 130.6, 130.0, 128.7, 128.6, 127.9, 127.8, 127.8, 126.1, 124.3, 122.8, 122.7, 114.2, 113.8, 55.3, 55.1. HRMS (ESI) calcd for C₃₁H₂₄NaO₄ [M+Na]⁺: 483.1567; found: 483.1572.

Naphthalen-2-yl(2-(naphthalen-2-yl)-4,5-diphenylfuran-3yl)methanone (3x). yellow solid, obtained in 11 h and purified by chromatography on silica gel (petroleum ether/ethyl acetate = 30:1); yield: 51%, 51.1 mg, m.p. 136-138 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.38 (s, 1H), 8.20 (s,1H), 8.01 (d, J = 8.4 Hz, 2H), 7.80-7.68 (m, 7H), 7.63 (d, J = 7.6 Hz, 2H), 7.53-7.47 (m, 1H), 7.42-7.15 (m, 11H). ¹³C NMR (100 MHz, CDCl₃) δ 194.0, 151.0, 148.7, 136.0, 135.2, 133.4, 133.2, 132.9, 132.6, 132.4, 130.4, 130.0, 129.9, 128.8, 128.8, 128.7, 128.6, 128.6, 128.2, 127.9, 127.9, 127.8, 127.2, 126.8, 126.7, 126.7, 126.3, 125.6, 124.7, 124.7, 124.6, 123.8. HRMS (ESI) calcd for C₃₇H₂₄NaO₂ [M+Na]⁺: 523.1669; found: 523.1681.

(2,4-Bis(4-chlorophenyl)-5-phenylfuran-3-yl)(4-

chlorophenyl)methanone (3y). yellow solid, obtained in 11 h and purified by chromatography on silica gel (petroleum ether/ethyl acetate = 30:1); yield: 70%, 70.7 mg, m.p. 145-147

°C. ¹H NMR (400 MHz, CDCl₃) δ 7.76 (d, *J* = 8.0 Hz, 2H), 7.36 7.46 (m, 4H), 7.35-7.16 (m, 11H). ¹³C NMR (100 MHz, CDCl₃) 8 192.2, 150.4, 149.2, 140.6, 135.7, 135.0, 134.2, 131.3, 130.5, 129.7, 129.3, 129.2, 128.9, 128.7, 127.9, 127.7, 126.4, 123.6, 123.0. HRMS (ESI) calcd for C₂₉H₁₇Cl₃NaO₂ [M+Na]⁺: 525.0186; found: 525.0200.

(5-Phenyl-2,4-di-p-tolylfuran-3-yl)(p-tolyl)methanome (3z). yellow solid, obtained in 11 h and purified by chromatography on silica gel (petroleum ether/ethyl acetate = 30:1); yield: 70%, 62.3 mg, m.p. 64-66 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.77 (d, *J* = 7.6 Hz, 2H), 7.55 (d, *J* = 7.6 Hz, 2H), 7.49 (d, *J* = 8.0 Hz, 2H), 7.30-7.22 (m, 3H), 7.18-7.00 (m, 8H), 2.3-2.2 (m, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 193.8, 150.8, 147.9, 144.6, 138.5, 137.5, 135.3, 130.7, 130.2, 129.8, 129.5, 129.5, 129.4, 128.6, 127.8, 127.1, 126.3, 126.1, 124.3, 123.6, 21.4, 21.0, 21.0. HRMS (ESI) calcd for C₃₂H₂₆NaO₂ [M+Na]⁺: 465.1825; found: 465.1828.

(5-phenyl-4-(thiophen-2-yl)-2-(p-tolyl)furan-3-yl)(ptolyl)methanone (3za). yellow solid, obtained in 11 h and purified by chromatography on silica gel (petroleum ether/ethyl acetate = 30:1); yield: 58%, 50.4 mg, m.p. 177-179 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.79 (d, J = 8.4 Hz, 2H), 7.62 (d, J = 6.8 Hz, 2H), 7.50 (d, J = 8.4 Hz, 2H), 7.35-7.26 (m, 3H), 7.23-7.18 (m, 1H), 7.14-7.06 (m, 4H), 6.97-6.92 (m, 1H), 6.92-6.87 (m, 1H), 2.33 (S, 3H), 2.30 (S, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 193.4, 150.8, 149.4, 144.8, 138.8, 135.2, 132.6, 130.2, 130.1, 129.5, 129.4, 128.7, 128.6, 128.3, 127.5, 126.9, 126.7, 126.4, 126.2, 123.8, 116.8, 21.5, 21.0. HRMS (ESI) calcd for C₂₉H₂₂NaO₂S [M+Na]⁺: 457.1233; found: 457.1239.

Typical Procedure for the Synthesis of 4a.

In a schlenk tube acetyenic ketone **1a** (0.2 mmol, 41.2 mg), Cs_2CO_3 (0.4 mmol, 130.3 mg), DMF (3.0 mL) and 2-phenylacetophenone **2a** (0.2 mmol, 39.2 mg) was stirred at room temperature under N₂. After the reaction was completed as monitored by thin-layer chromatography, the reaction mixture was then quenched by water, and the water layers were extracted with ethyl acetate (10 mL × 3). The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. Purification by chromatography on silica gel (petroleum ether/ethyl acetate = 20/1) afforded desired compound **4a** (yellow solid, 67.6 mg, 84%).

(2Z,3Z)-2-(hydroxy(phenyl)methylene)-1,3,4-triphenylbut-3-en-1-one (4a). yellow solid, obtained in 3.0 h and purified by chromatography on silica gel (petroleum ether/ethyl acetate = 20:1); yield: 84%, 67.6 mg, m.p. 156-158 °C. ¹H NMR (400 MHz, CDCl₃) δ 17.94 (s, 1H), 7.44-7.32 (m, 6H), 7.25-7.05 (m, 14H), 6.64 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 190.7, 143.0, 137.8, 137.2, 137.0, 132.3, 130.6, 128.7, 128.5, 128.5, 127.7, 127.6, 127.5, 127.2, 127.0, 110.7. HRMS (ESI) calcd for C₂₉H₂₂NaO₂ [M+Na]⁺: 425.1512; found: 425.1505.

Gram Scales.

In a schlenk tube, acetyenic ketone **1a** (5.0 mmol, 1031.2 mg), 2-phenylacetophenone **2a** (5.0 mmol, 981.2 mg), Cs_2CO_3 (10.0 mmol, 3258.2 mg) and DMF (50 mL) were stirred at room temperature under N₂. After 3 h, then ZnI₂ (1.0 mmol, 319.2mg)

and $K_2S_2O_8$ (10.0 mmol, 2703.2 mg) were added. After the completion of the addition, the reaction mixture was allowed to react at 50 °C for 8 h. Then, the reaction mixture was cooled to room temperature and was treated with H₂O, then extracted with EA and dried over anhydrous Na₂SO₄. After removal of the EA, the residue was purified by chromatography on basic silica gel (PE: EA = 30: 1) to afford **3a** (yellow solid, 1469.3 mg, 73%).

Conflicts of interest

COMMUNICATION

There are no conflicts to declare.

Acknowledgements

We thank the National Natural Science Foundation of China (Grant Nos. 21272074, 21871087) and the Program for Changjiang Scholars and Innovative Research Team in University (PCSIRT) for financial support.

Notes and references

- (a) F. Hasegawa, K. Niidome, C. Migihashi, M. Murata, T. Negoro, T. Matsumoto, K. Kato, A. Fujii, *Bioorg. Med. Chem. Lett.* 2014, 24, 4266. (b) X. L. Hou, Z. Yang, H. N. C. Wong, In *Progress in Heterocyclic Chemistry*; G. W. Gribble, T. L. Gilchrist, Eds.; Pergamon: Oxford, 2003; Vol. 15, pp 167-205. (c) B. A. Keay, P. W. Dibble, In *Comprehensive Heterocyclic Chemistry II*; A. R. Katritzky, C. W. Rees, E. F. V. Scriven, Eds.; Elsevier: Oxford, 1997; Vol. 2, pp 395-436. (d) D. M. X. Donnelly, M. J. Meegan, In *Comprehensive Heterocyclic Chemistry*; A. R. Katritzky, C. W. Rees, Eds.; Pergamon: Oxford, 1984; Vol. 4, pp 657-712. (e) S. Wang, L. Bao, F. Zhao, Q. Wang, S. Li, J. Ren, L. Li, H. Wen, L. Guo, H. Liu, *J. Agric. Food Chem.*, 2013, 61, 5122. (f) F. E. King, J. G. Wilson, *J. Chem. Soc.*, 1964, 4011.
- 2 B. H. Lipshutz, Chem. Rev., 1986, 86, 795.
- (a) L. Melzig, C. B. Rauhut, P. Knochel, *Chem. Commun.*, 2009, 3536.
 (b) K. Sne'garoff, J.-M. L'Helgoual'ch, G. Bentabed-Ababsa, T. T. Nguyen, F. Chevallier, M. Yonehara, M. Uchiyama, A. Derdour, F. Mongin, *Chem.-Eur. J.*, 2009, **15**, 10280. For selected reviews, see: (c) H. Ila, O. Baron, A. J. Wagner, P. Knochel, *Chem. Commun.*, 2006, 583.
- 4 G. Minetto, L. F. Raveglia, A. Sega, M. Taddei, *Eur. J. Org. Chem.*, 2005, 5277, and references cited therein.
- 5 (a) G. Mross, E. Holtz, P. Langer, J. Org. Chem., 2006, 71, 8045. (b) F. Feist, Chem. Ber., 1902, 35, 1537. (c) E. Bénary, Chem. Ber., 1911, 44, 489.
- 6 For gold(III) catalysts, see: (a) T. Yao, X. Zhang, R. C. Larock, J. Am. Chem. Soc., 2004, **126**, 11164. (b) A. S. K. Hashmi, T. M. Frost, J. W. Bats, J. Am. Chem. Soc., 2000, **122**, 11553. (c) A. S. K. Hashmi, L. Schwarz, J.-H. Choi, T. M. Frost, Angew. Chem., Int. Ed., 2000, **39**, 2285. For Pd(II) catalysts, see: (d) Y. Fukuda, H. Shiragami, K. Utimoto, H. Nozaki, J. Org. Chem., 1991, **56**, 5812. For Ag(I) catalysts, see: (e) J. A. Marshall, C. A. Sehon, J. Org. Chem., 1995, **60**, 5966. For Cu(I) catalysts, see: (f) A. W. Sromek, A. V. Kel'in, V. Gevorgyan, Angew. Chem., Int. Ed., 2004, **43**, 2280. (g) J. T. Kim, A. V. Kel'in, V. Gevorgyan, Angew. Chem., Int. Ed., 2003, **42**, 98.
- 7 (a) T.-T. Kao, S. Syu, Y.-W. Jhang, W. Lin, Org. Lett., 2010, 12, 3066.
 (b) M. H. Suhre, M. Reif, S. F. Kirsch, Org. Lett., 2005, 7, 3925. (c) J. Lou, Q. Wang, K. Wu, P. Wu, Z. Yu, Org. Lett., 2017, 19, 3287. (d) M. Nakano, H. Tsurugi, T. Satoh, M. Org. Lett., 2008, 10, 1851. (e) H. Cao, H. Jiang, W. Yao, X. Liu, Org. Lett., 2009, 11, 1931. (f) C. R. Reddy, M. D. Reddy, J. Org. Chem., 2014, 79, 106. (g) Y. Zhao, S. Li, X. Zheng, J. Tang, Z. She, G. Gao, J. You, Angew. Chem., Int. Ed., 2017, 56, 4286.

(h) S. Mao, X.-Q. Zhu, Y.-R. Gao, D.-D. Guo, Y.-Q. Wang, *Chem. Eur. J.* 2015, **21**, 11335. DOI: 10.1039/C9OB0081J

- (a) M. D. Shair, T. Y. Yoon, K. K. Mosny, T. C. Chou, S. J. Danishefsky, J. Am. Chem. Soc., 1996, 118, 9509; (b) Y. Kita, K. Higuchi, Y. Yoshida, K. lio, S. Kitagaki, K. Akai, S. Ueda, H. Fujioka, J. Am. Chem. Soc., 2001, 123, 3214; (c) V. Nair, A. N. Pillai, R. S. Menon, E. Suresh, Org. Lett., 2005, 7, 1189.
- 9 (a) F. Zhang, Q. Yao, Y. Yuan, M. Xu, L. Kong, Y. Li, Org. Biomol. Chem., 2017, 15, 2497. (b) X. Cheng, Y. Zhou, F. Zhang, K. Zhu, Y. Liu, Y. Li, Chem. Eur. J., 2016, 22, 12655. (c) Y. Zhou, X. Tao, Q. Yao, Y. Zhao, Y. Li, Chem. Eur. J., 2016, 22, 17936. (d) Q. Yao, L. Kong, M. Wang, Y. Yuan, R. Sun, Y. Li, Org. Lett., 2018, 20, 1744. (e) Q. Yao, L. Kong, F. Zhang, X. Tao, Y. Li, Adv. Synth. Catal., 2017, 359, 3079. (f) Z. Zheng, Q. Tao, Y. Ao, M. Xu, Y. Li, Org. Lett., 2018, 20, 3907. (g) Z. Zheng, Y. Wang, M. Xu, L. Kong, M. Wang, Y. Li, Chem. Commun., 2018, 54, 6192. (h) L. Kong, M. Wang, Y. Wang, B. Song, Y. Yang, Y. Li, Chem. Commun., 2018, 54, 11009. (i) M. Wang, L. Kong, Y. Wang, B. Song, Y. Sun, R. Tang, Y. Li, Org. Lett., 2018, 20, 6130. (j) Y. Yang, J. Huang, H. Tan, L. Kong, M. Wang, Y. Yuan, Y. Li, Org. Chem., 2009, 74, 6797.
- (a) Q. Wang, L. He, K. K. Li, G. C. Tsui, *Org. Lett.*, 2017, **19**, 658. (b) Y. Sadamitsu, K. Komatsuki, K. Saito, T. Yamada, *Org. Lett.*, 2017, **19**, 3191.

8 | J. Name., 2012, 00, 1-3