SELECTIVITY IN MULTIPLE METHYLATION OF MCl_n(PR₃)_m COMPOUNDS

ERIC G. THALER, ERIC G. LUNDQUIST and KENNETH G. CAULTON*

Department of Chemistry, Indiana University, Bloomington, IN 47405, U.S.A.

(Received 5 May 1989; accepted 20 June 1989)

Abstract—Reaction of RhCl₃L₃ (L = PMe₂Ph or PMePh₂) with excess MeLi or MeMgCl reveals a distinct tendency to stop at the RhMe₂ClL₃ stage. This behaviour is attributed to the concentration of all Cl \rightarrow Rh π -donation into the single remaining metal-halogen bond, and is shown to be a phenomenon of even broader occurrence and greater potential generality. For *cis,mer*-RhMe₂ClL₃ containing the bulkier ligand PMePh₂, variable temperature ¹H and ³¹P NMR studies reveal the occurrence of two dynamic processes : hindered rotation about Rh—P and P—C bonds and also dissociation of the unique phosphine *trans* to one methyl group.

We report separately¹ that the reaction of (tripod)CrCl₃ (tripod = MeC(CH₂PMe₂)₃) with excess *n*-BuLi (6 mol/mol Cr), run under mild conditions to avoid decomposition of the chromium alkyl product, reveals a considerable selectivity to stop at the *di*alkylation stage: (tripod)Cr(*n*-Bu)₂Cl. We report here sufficient additional examples of this behaviour to qualify it as a consistent pattern and offer an explanation subject to further experimental test.

EXPERIMENTAL

All manipulations were carried out using standard Schlenk and glove-box techniques under purified nitrogen. Methyl lithium and methyl magnesium chloride solutions were purchased from Aldrich Chemicals, methyldiphenyl phosphine from Strem Chemicals, and chlorine gas from Matheson Gas Company. Benzene, pentane and tetrahydrofuran were dried and distilled prior to use from solutions containing sodium/potassium benzophenone ketyl. ¹H and ³¹P NMR spectra were recorded on a Nicolet NT-360 spectrometer at 360 and 146 MHz, respectively. mer-RhCl₃(PMe₂Ph)₃

This was made according to a literature procedure.² ¹H NMR (360 MHz, C₆D₆, 25°C): 1.1 ppm (d, PMe, J = 11 Hz), 2.0 ppm (vt, PMe, line spacing = 4.2 Hz), 6.7–7.6 ppm (m, Ph). ³¹P{¹H} NMR (146 MHz, C₆D₆, 25°C): 7.3 ppm (d of t, $J_{P-Rh} = 113$ Hz; $J_{P-P'} = 25$ Hz); -4.7 ppm (d of d, $J_{P'-Rh} = 85$ Hz; $J_{P-P'} = 25$ Hz).

$mer-RhCl_3(PMePh_2)_3$

Into an ethanol slurry of $RhCl_3 \cdot nH_2O(1.0 \text{ g}, 3.8 \text{ mmol})$ was syringed PMePh₂ (2.28 g, 11.43 mmol). The solution was then stirred and refluxed for 1 h. Allowing this solution to cool to room temperature yielded large amounts of a yellow-orange precipitate.

This precipitate, a 50:50 mixture of RhCl₃ (PMePh₂)₃ and RhHCl₂(PMePh₂)₃, was collected by filtration and dried *in vacuo*. This mixture was dissolved in CH₂Cl₂ and converted completely to *mer*-RhCl₃(PMePh₂)₃ by slow addition of Cl₂ (0.5 cm³ portions) using a gas-tight syringe. Reaction progress is conveniently monitored by ³¹P{¹H} NMR. After complete conversion, the volume of CH₂Cl₂ was reduced to 15 cm³, the product was precipitated using pentane, and yellow–orange *mer*-RhCl₃(PMePh₂)₃ was collected by fil-

^{*} Author to whom correspondence should be addressed.

tration. ³¹P{¹H} NMR (CH₂Cl₂): -3.5 ppm (d of t, $J_{P-Rh} = 114$ Hz, $J_{PP} = 24$ Hz); -5.7 ppm (d of d, $J_{P-Rh} = 85$ Hz).

Reaction of RhCl₃(PMe₂Ph)₃ with MeMgCl

To RhCl₃(PMe₂Ph)₃ (2.75 g) in 50 cm³ of benzene was added 25 cm³ of 2.7 M MeMgCl in Et₂O. The volume was reduced in vacuo to 50 cm³ to remove most of the ether, and the solution was refluxed for 3 h. Excess Grignard was hydrolysed by the addition of 10 cm³ of water and stirring. The benzene layer was separated from the aqueous layer and was retained. The aqueous layer and associated solids were extracted with 2×50 cm³ of CH₂Cl₂. From the dried (MgSO₄)CH₂Cl₂ extracts was isolated 0.75 g of colourless RhMe₃(PMe₂Ph)₃. ¹H NMR (360 MHz, 25°C, CD_2Cl_2): -0.28 (m, 9H); 1.10 (d, $J_{Me-P} = 8$ Hz, 18H); 7.0–7.5 (m, Ph-P). ³¹P{¹H} NMR (146 MHz, 25°C, C₆D₆): -8.9 (d, $J_{P-Rh} = 80$ Hz). From the dried benzene phase was isolated 1.25 g of yellow cis,mer-RhMe₂Cl $(PMe_2Ph)_3$. ¹H NMR (360 MHz, 25°C, CD_2Cl_2): -0.03 (m, 3H); 0.48 (q, 3H); 0.85 (d, PMe); 1.20 (t, PMe); 1.40 (t, PMe); 7.0-7.5 (m, Ph-P). ³¹P{¹H} NMR (146 MHz, 25°C, C₆D₆): -0.1 (d of d, $J_{P-Rh} = 110$ Hz), -18.0 (d of t, $J_{P-Rh} = 83$ Hz, $J_{P-P'} = 25$ Hz).

Reaction of RhCl₃(PMePh₂)₃ with MeLi

To a homogeneous THF solution of RhCl₃ $(PMePh_2)_3$ (0.57 g, 0.7 mmol) was added a diethyl ether solution of MeLi (1.4 M, 12.6 mmol). The solution immediately turned deep red-brown and then gradually lightened over a period of 3 h. At this stage, the solution was cooled to 0°C and the unreacted MeLi was hydrolysed with THF- H_2O (60:40). The volatiles were removed in vacuo and the resulting off-white solid was extracted with 60 cm³ of CH_2Cl_2 and filtered to yield a yellow homogeneous solution. The volume of CH_2Cl_2 was reduced to 15 cm³ and pentane added to precipitate $RhMe_2Cl(PMePh_2)_3$ as a pale yellow powder. ¹H NMR (360 MHz, -30° C, CD₂Cl₂): -0.55 (m, 3H); 0.23 (br q, line spacing 10 Hz, 3H), 1.27 (d, $J_{P-CH_3} = 7$ Hz, 3H); 1.9 (br. s, 6H); 7-7.8 (m, P-Ph). ³¹P (146 MHz, -10°C, CH_2Cl_2 : -12.8 (d or t, $J_{P-Rh} = 76$ Hz, $J_{P-P} =$ 21 Hz); 11.5 (br d, $J_{P-Rh} = 110$ Hz).

RESULTS

Polyalkylation of RhCl₃L₃

We find that reaction of $mer-RhCl_3(PMe_2Ph)_3$ with an excess (15 mol/mol Rh) of MeMgCl in benzene at 80°C gives only a low (28%) yield of the *per*-alkyl compound, RhMe₃(PMe₂Ph)₃. The major product is the compound *cis,mer*-RhClMe₂ (PMe₂Ph)₃, which is easily separated from RhMe₃ (PMe₂Ph)₃ by its higher solubility in benzene; the trimethyl compound may be dissolved in CH₂Cl₂.

A similar tendency to leave one chloride unreacted is demonstrated by *mer*-RhCl₃(PMePh₂)₃, which reacts with 18 mol MeLi/mol Rh in THF in the temperature range 0–25°C to give only *cis,mer*-RhClMe₂(PMePh₂)₃. Since RhClMe₂(PMePh₂)₃ readily dissociates phosphine in solution (see below), the resistance of the last chloride to alkylation cannot be due to the coordinatively saturated character of this compound. That is, the mechanism in eq. (1) (P = PMePh₂) remains available

 $RhClMe_{2}P_{3} \rightleftharpoons RhClMe_{2}P_{2} + P$ $RhClMe_{2}P_{2} + MeLi \rightarrow Li[RhClMe_{3}P_{2}]$ $Li[RhClMe_{3}P_{2}] \rightarrow RhMe_{3}P_{2} + LiCl$ $RhMe_{3}P_{2} + P \rightarrow RhMe_{3}P_{3}.$ (1)

Solution dynamics of cis,mer-RhClMe₂(PMePh₂)₃

This molecule shows two PMe⁻¹H NMR signals at and below 25°C in CD₂Cl₂. At -30° C, there are two Rh/Me signals, one a pseudoquartet and the other an unresolved multiplet. At -25° C, however, each Rh/Me signal is very broad ($\Delta v_{1/2} = 68$ Hz). The ${}^{31}P{}^{1}H$ NMR spectrum of RhClMe₂ $(PMePh_2)_3$ shows two resonances (intensity, 2:1) at 25°C, the less intense one is a broad singlet (i.e. neither P-Rh nor P-P' coupling is resolved) and the more intense one is a broad doublet $(J_{\rm Rh-P} = 110 \text{ Hz})$. This behaviour we attribute to selective dissociation of P_A in eq. (2), due both to the steric bulk of diphenylmethyl phosphine and its location opposite the strong trans-directing methyl ligand. The importance of the trans-methyl group rests on the observation that $mer-RhCl_3(PMePh_2)_3$ shows no line broadening in the ${}^{31}P{}^{1}H{}$ NMR; a sharp AM₂X pattern is observed.

RhMe₂Cl(PMePh₂)₃ reveals its crowded character in yet another way (Fig. 1). The P_A—Rh and P_A—P_B coupling which is absent in the P_A resonance at and above 25°C is restored at -10° C; a sharp doublet ($J(P_A$ —Rh) = 76 Hz) of triplets ($J(P_A$ —P_B) = 21 Hz) is observed. However, at

Fig. 1. Variable temperature ³¹P{¹H} NMR spectra of RhMe₂Cl(PMe₂Ph₂)₃ in CD₂Cl₂. The consistently sharp peaks between 10 and 15 ppm are impurities.

 -10° C, the P_B resonance is still a doublet of broad lines. At -25 and -40° C, the ³¹P{¹H} NMR resonance of PA remains a sharp doublet of triplets, but the P_B doublet becomes increasingly broad. Nevertheless, the sharp $P_A - P_B$ coupling in the P_A resonances assures the lack of significant phosphine dissociation at these temperatures. Finally, at -85° C, the P_A resonance is one unresolved broad line and the P_B region now contains several broad lines (no J(P-Rh) observed) indicative of several closely spaced chemical shifts undergoing dynamic exchange at an intermediate rate. This we interpret as the freezing out of an ABCX spin system, where B and C are the axial phosphines in RhMe₂Cl $(PMePh_2)_3$, made inequivalent by the freezing out of distinct rotational conformations about the Rh-P and P-C bonds in the T-shaped Rh(PMePh₂)₃ substructure. Similar phenomena have been reported by Bushweller for M(CO) $Cl[P(^{t}Bu)_{2}R]_{2}$ compounds.³ Note that no ³¹P NMR signal of free PMePh₂ is seen at (or above) -85°C.

DISCUSSION

We feel that the isolation of monohalopolyalkyl compounds during attempted per-alkylation of $(\mathbf{R}_{3}\mathbf{P})_{m}\mathbf{MCl}_{n}$ compounds under mild conditions of temperature is a kinetic effect due to the sequential strengthening of the M-Cl bonds (increased $Cl \rightarrow M \pi$ -donation) as the number of π -donor ligands decline. Thus, at the stage of $(R_3P)_m MR'_{n-1}$ Cl, all π -donation is concentrated in the single remaining M-Cl bond (there being no other π -donor ligands present), and this bond is therefore uniquely resistant to replacement by alkyl. The effect is subtle; there is no evidence of Ir-Cl bond length shortening along the series $IrCl_{3-n}H_n$ (PMe₂Ph)₃,⁴ so it has only kinetic (not ground state) manifestations, but it may well occur in the unsaturated RhMe₂ClP₂ intermediate. Increasing alkylation also would be expected to increase steric suppression of the rate of alkylation.

Based on the above reasoning, we anticipate that this phenomenon would be of even greater importance in the alkylation of *unsaturated* metal halides, where ground-state bond shortening is evident (e.g. TiCl₄, where $d(Ti-Cl) = 2.170 \text{ Å}^5$ and TiCl₃(CH₃), where $d(Ti-Cl) = 2.185 \text{ Å}^6$ vs Cp₂TiCl₂, where $d(Ti-Cl) = 2.366 \text{ Å},^7$ and Ti(Me₂ PC₂H₄PMe₂)Cl₃R, where d(Ti-Cl) = 2.30-2.32Å⁸) and thus kinetic effects should be magnified.* This effect should, of course, also be evident whenever π -donor ligands are replaced by purely σ -ligands (e.g. hydrides).

The special tendency of PMePh₂ to promote phosphine dissociation in $L_mM(PMePh_2)_n$ complexes $(n \ge 3)$ is worthy of note, particularly in comparison to the (perhaps) more frequently used PMe₂Ph. The benefits of using this bulky phosphine to furnish 16-electron species are evident in, for example, the C/O multiple bond splitting reactions of Mayer and co-workers^{9,10} using WCl₂ (PMePh₂)₄ (but not the PMe₃ analogue). The close relationship between PMePh₂ and PPh₃ is also evident in that RhMeI₂(PPh₃)₂, analogous to the transient RhMe₂Cl(PMePh₂)₂ implicated above, is an isolable compound.¹¹

Acknowledgement—This work was supported by the National Science Foundation.

REFERENCES

- 1. E. G. Thaler and K. G. Caulton, J. Organomet. Chem., in press.
- J. Chatt, N. R. Johnson and B. L. Shaw, J. Chem. Soc. 1964, 2508.
- 3. C. H. Bushweller, C. D. Rithner and D. J. Butcher, Inorg. Chem. 1986, 25, 1610.
- 4. G. B. Robertson and P. A. Tucker, J. Am. Chem. Soc. 1982, 104, 317.
- 5. Y. Morino and V. Uehara, J. Chem. Phys. 1966, 45, 4543.
- 6. A. Haaland and K. Rypdal, private communication.
- A. Clearfield, D. K. Warner, C. H. Saldarriága-Molina, R. Ropal and I. Bernal, *Can. J. Chem.* 1975, 53, 1622.
- Z. Dawoodi, M. L. H. Green, V. S. B. Mtetwa, K. Prout, A. J. Schultz, J. Williams and T. F. Koetzle, J. Chem. Soc., Dalton Trans. 1986, 1629.
- J. C. Bryan, S. J. Geib, A. L. Rheingold and J. M. Mayer, J. Am. Chem. Soc. 1987, 109, 2826.
- J. C. Bryan and J. M. Mayer, J. Am. Chem. Soc. 1987, 109, 7213.
- 11. P. G. H. Troughton and A. C. Skapski, *Chem. Comm.* 1968, 575.

^{*} In this regard, note the successful synthesis of (dmpe)-TiCl₃R (R = Me, Et).⁸