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ABSTRACT: The hydroalkylation and hydroacylation 
of electron-deficient alkenes proceeded smoothly by 
using benzothiazoline derivatives as the radical 
transfer reagent under thermal conditions without 
light irradiation or any additive. Both benzyl and 
benzoyl moieties were transferred efficiently. 

1. INTRODUCTION

The alkyl or acyl radical transfer to C–C double bonds has 
attracted much attention because this reaction takes 
place under mild conditions and has high functional 
group tolerance.1,2 Stoichiometric amounts of expensive 
or toxic materials are generally required to generate 
radical species.3 Photoinduced alkyl and acyl radical 
generation reactions that use photoredox catalysts were 
reported recently.4,5 However, some photoredox 
catalysts are expensive,  and large scale reaction is not 
always a  trivial issue. In order to address these issues, 
the development of alkyl and acyl radical transfer 
reagents that function under transition-metal- and light-
free conditions is desired.  Although Hantzsch ester was 
found to function as a metal- and light-free alkyl transfer 

reagent for imines and electron-deficient alkenes,6 acidic 
conditions or radical initiators were necessary.

We found that benzothiazoline derivatives functioned as 
alkyl and acyl radical transfer reagents in combination 
with photoredox catalysts, and reported visible light 
induced hydroalkylation and hydroacylation of alkenes 
(Scheme 1A).7–9 In that study, we found that the alkyl 
radical transfer reaction slightly proceeded under dark 
conditions (24%, 24 h). This finding prompted us to 
study the hydroalkylation and hydroacylation reactions 
of alkenes under thermal conditions without any 
catalysts. 

We wish to disclose herein the hydroalkylation and 
hydroacylation of alkenes by using benzothiazoline 
derivatives under thermal conditions without transition 
metals or light irradiation (Scheme 1B).
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Scheme 1. Hydroalkylation and hydroacylation using 
benzothiazoline derivatives.

2. RESULTS AND DISCUSSIONS

First, an alkyl transfer reaction with radical acceptors 
was investigated by using benzothiazolines bearing a 2-
benzyl moiety. When a 50 mM 1,2-dichloroethane 
solution of benzalmalononitrile (2a) was treated with 2-
benzyl-2-phenylbenzothiazoline (1a) at 60 °C, desired 
alkylation product 3aa was obtained in 27% yield (Table 
1, entry 1). Use of ethanol as the solvent improved the 
yield of 3aa to 76% (entry 3). Interestingly, when the 
reaction temperature was increased to 80 °C, the yield 
dropped to 44% (entry 4). The highest yield (89%) was 
obtained when 2-propanol was used at 80 °C (entry 5). 

Table 1. Screening for hydrobenzylation 
conditions a)

Entry Solvent Temp. Yieldb)

1 DCE 60 °C 27%
2 DMF 60 °C 10%
3 EtOH 60 °C 76%
4 EtOH 80 °C 44%
5c) iPrOH 80 °C 89%
(a) Performed with 2a (0.050 mmol) and 1a (0.10 
mmol) in solvent (1.0 mL). (b) Determined by 1H NMR 
(1,1,2-trichloroethane was used as the internal 
standard). (c) Using non-degassed solvent. DCE: 1,2-
dichloroethane, DMF: N,N-dimethylformamide.

Under the optimized conditions, we investigated the 
substrate scope of the alkyl transfer reactions (Figure 1). 

Several para-substituted benzalmalononitrile 
derivatives could be applied to this reaction. Substrates 
bearing electron-donating groups (2b, –Me; 2c, –OMe) 
and electron-withdrawing groups (2d, –CF3; 2e, 2f, 
halogen; 2g, –CO2Me; 2i, –CN; 2j, –NO2) gave the 
products in moderate to high yields. It is noted that the 
formyl group was compatible to furnish desired 
hydroalkylation product 3ha in moderate yield. This 
selectivity suggests a radical pathway rather than an 
ionic one. Meta- and ortho-substituted 
benzalmalononitrile were also suitable substrates to 
furnish the products in high yields (2k, 2l). Furthermore, 
alkylidene malononitrile 2m could also be applied to 
afford corresponding adduct 3ma in 59% yield. Other 
types of electron-deficient alkenes were also applicable. 
Barbituric acid derivative 2n reacted efficiently. 

 

Figure 1. Substrate scope of 

hydrobenzylation.
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An acyl transfer reaction could also be applied to this 
system. Treatment of 2-benzyl-2-phenylbenzothiazoline 
(1b) with 2a in DCE at 80 °C furnished 
hydrobenzoylation product 3ab quantitatively (Table S2, 
see Supporting Information). The substrate scope of the 
hydrobenzoylation reaction is shown in Figure 2. 
Malononitrile derivatives underwent hydrobenzoylation 
with reasonable functional group tolerance. Barbituric 
acid 2n and naphthoquinone 2o also reacted to give 
adducts in good yields. Furthermore, simple enone 2p, 
which could not undergo hydroalkylation, gave adduct 
3pb in moderate yield. 

Figure 2. Substrate scope of 

hydrobenzoylation.

Next, the scope of the transferred alkyl and acyl groups 
was investigated (Table 2). A p-substituted benzyl group 
was transferred efficiently to give adduct 3ac in good 
yield. A tert-butyl group could be transferred efficiently 
to afford 3ad in 91% yield. It is noted that an isopropyl 
group, which was not transferred under the photoredox 
conditions, also underwent the transfer reaction to give 

3ae albeit in modest yield. Isopropyl group was not 
transferred under the photoredox conditions probably 
because heating was necessary for C–C bond cleavage in 
1e.7 

The diethoxymethyl group as a formyl equivalent could 
also be transferred and product 3af was obtained 
quantitatively.10 Benzoyl derivatives bearing electron-
rich (3ag) and electron-deficient (3ah) substituents 
were transferred efficiently in DCE to furnish the adducts 
in good yields. Furthermore, the acetyl moiety was also 
transferred to give 3ai in 88% yield. On the other hand, 
a pivaloyl group could not be transferred because it 
underwent decarbonylation into a tert-butyl radical, and 
tert-butyl adduct 3ad was obtained in 79% yield.

Overall, present radical hydroalkylation and 
hydroacylation reaction under thermal conditions 
exhibited mostly similar reactivity and scope of 
substrate in comparison with those under photoredox 
conditions. 7

Table 2. Generation of alkyl and acyl groups.

R

(in 
iPrOH)

yield

3ac

 73%

3ad

91%

3ae

18%a

3af

34%a

R

(in 
DCE)

yield

3ag

67%a

3ah

62%a

3ai

88%

3aj

0%b

a Benzothiazoline 1’ bearing p-substituted phenyl group at 2-position 
was used. b tert-Butyl adduct 3ad was obtained in 79% yield.

Page 3 of 13

ACS Paragon Plus Environment

The Journal of Organic Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



In order to acquire mechanistic insight, a radical 
scavenging experiment was carried out in the presence 
of TEMPO. TEMPO adduct 4 was obtained and both 
hydroalkylation and hydroacylation reactions of 2a were 
completely inhibited (Scheme 2). These results support 
the radical pathway. 

Scheme 2. Radical scavenging 

experiment.

Finally, we take note of the dependence on the reaction 
temperature. When ethanol was used as the solvent in 
Table 1, the yield of the product dropped when 
temperature was increased from 60 °C (76%) to 80 °C 
(44%). We investigated the details of this phenomenon 
by performing the reaction under iPrOH at 100 °C (reflux 
conditions). Surprisingly, the desired reaction did not 
proceed at all under these conditions and starting 
materials 1a and 2a were recovered quantitatively 
(Scheme 3A). We suppose that the decrease of the 
product yield was caused by solvent degassing under 
reflux conditions.11 The hydroalkylation was retarded by 
using degassed iPrOH, and starting materials 1a and 2a 
were recovered (Scheme 3B). These results indicate that 
oxygen was inevitable for this reaction. Performing the 
reaction under oxygen gave desired product 3aa in 50% 
yield accompanied by the recovery of 
benzalmalononitrile (2a) in 46% yield (Scheme 3C). This 
is in contrast with the complete consumption of 
benzothiazoline 1a, and benzaldehyde, generated from 
benzyl radical with oxygen, was obtained in 23% yield 
(based on 1a). Therefore, a small amount of oxygen was 
inevitable to initiate the reaction by oxidizing 
benzothiazoline 1.12 

Scheme 3. Control experiments

We propose a reaction mechanism as shown in Figure 3. 
As the initiation of the reaction, benzothiazoline 1 is 
oxidized by oxygen under heating conditions to generate 
cation radical species 1•+. Generated cation radical 
species 1•+ releases radical species (R•) and the radical 
species adds to substrate 2. This is followed by a 
reduction via single-electron-transfer (SET) with 
benzothiazoline 1 to generate cation radical 1•+.13 Thus, 
the reaction proceeds as a radical chain reaction. Finally, 
the generated carbanion is protonated by 5-H+ or solvent 
to give product 3. Under an excess amount of oxygen, the 
SET with benzothiazoline does not proceed smoothly, 
and the reaction fails to advance efficiently.

Figure 3. Proposed Mechanism
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3. CONCLUSION

In conclusion, we have developed hydroalkylation and 
hydroacylation reactions of electron-deficient alkenes 
by using benzothiazoline derivatives as the radical 
transfer reagent. The use of additives, such as external 
oxidants, Lewis acids, and transition metals, was 
obviated. Furthermore, reasonable functional group 
tolerance was realized and a large-scale reaction was 
applicable. Thus, this new radical addition using 
benzothiazoline derivatives is expected to be useful in 
organic synthesis.

4. EXPERIMENTAL SECTION

4.1.  General methods. All operations were 
performed under air unless otherwise noted. NMR spectra 
for products data (1H and 13C{1H}) were recorded on a 
Bruker AVANCE-III (400 MHz for 1H, 100 MHz for 
13C{1H}) and JEOL ECZ-400 (400 MHz for 1H, 100 MHz 
for 13C{1H}) spectrometer using CDCl3 
[tetramethylsilane (0 ppm) served as an internal standard 
in 1H NMR and CDCl3 (77.0 ppm) in 13C{1H} NMR, 
hexafluorobenzene (−163 ppm) served as an external 
standard in 19F NMR]. Chemical shifts are expressed in 
parts per million (ppm). IR spectra were recorded on an 
FT/IR-4200 (JASCO Co., Ltd.). UV–Vis spectra were 
recorded on a V-670 UV–VIS–NIR spectrophotometer 
(JASCO Co., Ltd.). ESI mass analyses were performed on 
Bruker micrOTOF mass spectrometer. All solvents were 
distilled according to the usual procedures and stored over 
molecular sieves unless otherwise noted. All of the 
substrates were purified by distillation (for liquid) or 
recrystallization (for solid). Benzalmalononitrile 
derivatives,14 malonate derivatives,15–18 
benzothiazolines7 were synthesized according to the 
literature procedures. Other chemicals were purchased 
and used as received.

4.2.  General procedure of hydroalkylation 
(Procedure I). Alkenes (0.05 mmol) and 1a (30.4 mg, 
0.1 mmol) were dissolved in 2-propanol (1.0 mL), and the 
mixture was warmed at 80 °C (by EYELA Personal 
Organic Synthesizer Chemistation) for 24 h. The solvent 
was evaporated and 1,1,2-trichloroethane was added as an 

internal standard and 1H NMR was measured in CDCl3 
for the calculation of the NMR yield. Then crude products 
were purified by preparative TLC to give 3. Other 
hydroalkylation reactions in Figure 1 were performed 
based on this Procedure I.

2-(1,2-Diphenylethyl)propanedinitrile (3aa). Yield 84% 
(10.3 mg), colorless oil. 1H NMR (400 MHz, CDCl3): δ 
7.45–7.37 (m, 5 H), 7.34–7.27 (m, 3H), 7.21–7.17 (m, 
2H), 3.85 (d, J = 4.8 Hz, 1H), 3.50–3.42 (m, 1H), 3.27–
3.21 (m, 2H) ppm; 13C{1H} NMR (100 MHz, CDCl3): δ 
136.6, 136.4, 129.23, 129.19, 129.1, 128.9, 128.0, 127.6, 
112.1, 111.4, 48.3, 38.5, 28.5 ppm.19

2-[1-(4-Methylphenyl)-2-phenylethyl]propanedinitrile 
(3ba). Yield 69% (NMR yield), colorless oil. 1H NMR 
(400 MHz, CDCl3): δ 7.35–7.27 (m, 5H), 7.24–7.18 (m, 
4H), 3.82 (d, J = 4.8 Hz, 1H), 3.50–3.40 (m, 1H), 3.31–
3.18 (m, 2H), 2.37 (s, 3H) ppm; 13C{1H} NMR (100 
MHz, CDCl3): δ 139.0, 136.8, 133.4, 129.9, 129.2, 128.9, 
127.8, 127.6, 112.2, 111.5, 48.0, 38.5, 28.7, 21.2 ppm.7

2-[1-(4-Methoxylphenyl)-2-phenylethyl]propanedinitrile 
(3ca). Yield 88% (12.2 mg), colorless oil. 1H NMR (400 
MHz, CDCl3): δ 7.89 (d, J = 8.4 Hz, 2H), 7.55 (t, J = 7.6 
Hz, 1H), 7.41 (d, J = 7.6 Hz, 2H), 7.29–7.21 (m, 2H), 6.92 
(d, J = 9.2 Hz, 2H), 5.06 (d, J = 8.4 Hz, 1H), 4.50 (d, J = 
8.8 Hz, 1H), 3.78 (s, 3H) ppm; 13C{1H} NMR (100 MHz, 
CDCl3): δ 193.1, 160.6, 134.3, 133.9, 129.9, 129.3, 128.9, 
123.8, 115.5, 112.2, 111.7, 55.3, 54.2, 26.9 ppm; IR (neat, 
cm−1): 2916, 1682, 1609, 1512, 1258, 1181, 1030, 755, 
689; LRMS (ESI): m/z = 313 [M+H] HRMS (ESI) Calcd 
for C18H14N2O2Na: 313.0947. Found 313.0947.

2-[1-(4-Trifluoromethylphenyl)-2-
phenylethyl]propanedinitrile (3da). Yield 80% (12.6 
mg), colorless oil. 1H NMR (400 MHz, CDCl3): δ 7.70 
(d, J = 8.0 Hz, 2H), 7.54 (d, J = 8.4 Hz, 2H), 7.39–7.29 
(m, 3H), 7.14–7.10 (m, 2H), 3.88 (d, J = 5.2 Hz, 1H), 
3.57–3.50 (m, 1H), 3.34–3.21 (m, 2H) ppm; 13C{1H} 
NMR (100 MHz, CDCl3): δ 140.2, 135.9, 131.4 (q, 2JC–F 
= 32 Hz), 129.4, 129.0, 128.9, 128.6, 127.9,126.2 (q, 
3JC–F = 3.7 Hz), 123.6 (q, 1JC–F = 271 Hz), 111.2, 111.1, 
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48.0, 38.3, 28.2 ppm; 19F NMR (376 MHz, CDCl3): δ 
−64.29 (s, 3F) ppm.7

2-[1-(4-Chlorophenyl)-2-phenylethyl]propanedinitrile 
(3ea). Yield 92% (12.9 mg), colorless oil. 1H NMR (400 
MHz, CDCl3): δ 7.87 (d, J = 8.4 Hz, 2H), 7.58 (t, J = 7.6 
Hz, 1H), 7.50–7.35 (m, 4H), 7.35–7.27 (m, 2H), 5.10 (d, 
J = 8.0 Hz, 1H), 4.52 (d, J = 8.4 Hz, 1H) ppm; 13C{1H} 
NMR (100 MHz, CDCl3): δ 192.7, 136.3, 134.7, 133.6, 
130.5, 130.4, 130.0, 129.2, 129.1, 111.9, 111.3, 54.0, 26.7 
ppm; IR (neat, cm−1): 2916, 1682, 1595, 1493, 1449, 
1256, 1223, 1094, 758, 718, 685; LRMS (ESI): m/z = 317 
[M+H] HRMS (ESI) Calcd for C17H11ClN2ONa: 
317.0452. Found 317.0443.

2-[1-(4-Bromophenyl)-2-phenylethyl]propanedinitrile 
(3fa). Yield 62% (10.1 mg), colorless oil. 1H NMR (400 
MHz, CDCl3): δ 7.56 (d, J = 8.4 Hz, 2H), 7.38–7.25 (m, 
5H), 7.18 (d, J = 6.8 Hz, 2H), 3.83 (d, J = 4.8 Hz, 1H), 
3.47–3.40 (m, 1H), 3.29–3.18 (m, 2H) ppm; 13C{1H} 
NMR (100 MHz, CDCl3): δ 136.2, 135.3, 132.4, 129.7, 
129.3, 127.8, 123.3, 111.8, 111.2, 47.8, 38.4, 28.3 ppm.7

Methyl 4-[2,2-Dicyano-1-(phenylmethyl)ethyl]benzoate 
(3ga). Yield 91% (13.8 mg), colorless oil. 1H NMR (400 
MHz, CDCl3): δ 8.11–8.07 (m, 2H), 7.49–7.45 (m, 2H), 
7.34–7.27 (m, 3H), 7.20–7.16 (m, 2H), 3.93 (s, 3H), 3.89 
(d, J = 5.2 Hz, 1H), 3.55–3.51 (m, 1H), 3.51–3.25 (m, 2H) 
ppm; 13C{1H} NMR (100 MHz, CDCl3): δ 166.4, 141.2, 
136.1, 120.9, 120.4, 129.3, 128.9, 128.2, 127.8, 111.8, 
111.2, 52.3, 48.2, 38.4, 28.2 ppm.7

2-[1-(4-Formylphenyl)-2-phenylethyl]propanedinitrile 
(3ha). Yield 55% (7.5 mg), colorless oil. 1H NMR (400 
MHz, CDCl3): δ 10.04 (s, 1H), 7.97–7.92 (m, 2H), 7.60–
7.56 (m, 2H), 7.34 (m, 3H), 7.21–7.17 (m, 2H), 3.92 (d, J 
= 5.2 Hz, 1H), 3.60–3.53 (m, 1H), 3.36–3.23 (m, 2H) 
ppm; 13C{1H} NMR (100 MHz, CDCl3): δ 191.5, 142.8, 
136.8, 135.9, 130.4, 129.3, 128.90, 128.88, 127.9, 
111.7,111.1, 48.3, 38.4, 28.1 ppm.7

2-[1-(4-Cyanophenyl)-2-phenylethyl]propanedinitrile 
(3ia). Yield 90% (12.2 mg), colorless oil. 1H NMR (400 
MHz, CDCl3): δ 7.85 (d, J = 8.8 Hz, 2H), 7.73 (d, J = 8.4 

Hz, 2H), 7.60 (t, J = 7.6 Hz, 1H), 7.51 (d, J = 8.4 Hz, 2H), 
7.49–7.40 (m, 2H), 5.19 (d, J = 8.0 Hz, 1H), 4.58 (d, J = 
7.6 Hz, 1H) ppm; 13C{1H} NMR (100 MHz, CDCl3): δ 
192.1, 136.9, 135.1, 133.7, 133.3, 129.6, 129.2, 117.6, 
114.2, 111.5, 111.0, 54.2, 26.5 ppm; IR (neat, cm−1): 
2914, 2232, 1684, 1597, 1449, 1260, 1223, 758, 687; 
LRMS (ESI): m/z = 308 [M+H] HRMS (ESI) Calcd for 
C18H11N3ONa: 308.0794. Found 308.0805.

2-[1-(4-Nitrophenyl)-2-phenylethyl]propanedinitrile 
(3ja). Yield 70% (10.2 mg), yellow oil. 1H NMR (400 
MHz, CDCl3): δ 8.32–8.28 (m, 2H), 7.62–7.58 (m, 2H), 
7.37–7.30 (m, 3H), 7.21–7.17 (m, 2H), 3.92 (d, J = 2.4 
Hz, 1H), 3.64–3.57 (m, 1H), 3.36–3.23 (m, 2H) ppm; 
13C{1H} NMR (100 MHz, CDCl3): δ 148.4, 143.3. 135.9, 
129.5, 129.3, 128.8, 128.1, 124.4, 111.5, 110.8, 47.7, 
38.3, 28.0 ppm.7

2-[1-(3-Methylphenyl)-2-phenylethyl]propanedinitrile 
(3ka). Yield 79% (10.3 mg), colorless oil. 1H NMR (400 
MHz, CDCl3): δ 7.36–7.27 (m, 4H), 7.22–7.17 (m, 5H), 
3.83 (d, J = 4.8 Hz, 1H), 3.42 (td, J = 8.0, 4.8 Hz, 1H), 
3.25 (d, J = 8.0 Hz, 2H), 2.39 (s, 3H) ppm; 13C{1H} NMR 
(100 MHz, CDCl3): δ 138.9, 136.7, 136.4, 129.8, 129.1, 
129.0, 128.9, 128.7, 127.6, 125.0, 112.1, 111.5, 48.3, 
38.5, 28.5, 21.5 ppm; IR (neat, cm-1): 3030, 2922, 2254, 
2230, 1672, 1606, 1494, 1454, 1030, 786, 756, 704; 
LRMS (ESI): m/z = 283 [M+Na]; HRMS (ESI): Calcd for 
C18H16N2Na: 283.1206. Found 283.1208.

2-[1-(2-Methylphenyl)-2-phenylethyl]propanedinitrile 
(3la).Yield 68% (8.9 mg), colorless oil. 1H NMR (400 
MHz, CDCl3): δ 7.47 (d, J = 7.6 Hz, 1H), 7.33–7.21 (m, 
5H), 7.18 (d, J = 7.2 Hz, 1H), 7.13–7.09 (m, 2H), 3.89–
3.80 (m, 2H), 3.29 (dd, J = 14.0, 7.2 Hz, 1H), 3.15 (dd, J 
= 14.0, 7.2 Hz, 1H), 2.24 (s, 3H) ppm; 13C{1H} NMR 
(100 MHz, CDCl3): δ 136.6, 136.5, 135.0, 131.2, 128.9, 
128.5, 127.4, 126.9, 125.8, 112.1, 111.8, 42.9, 39.2, 28.0, 
19.6 ppm; IR (neat, cm-1): 3064, 3028, 2914, 2254, 1732, 
1604, 1494, 1454, 1248, 1030, 762, 700, 566; LRMS 
(ESI): m/z = 283 [M+Na]; HRMS (ESI): Calcd for 
C18H16N2: 283.1206. Found 283.1206.
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2-[2,2-Dimethyl-1-
(phenylmethyl)propyl]propanedinitrile (3ma). Yield 
59% (6.7 mg), colorless oil. 1H NMR (400 MHz, CDCl3): 

δ 7.40–7.27 (m, 5H), 3.87 (d, J = 2.0 Hz, 1H), 3.20 (dd, J 
=14.2, 4.0 Hz, 1H), 2.73 (dd, J = 14.4, 11.2 Hz, 1H), 
2.19–2.15 (m, 1H), 1.91–1.78 (m, 1H), 1.74–1.61 (m, 
1H), 1.13 (t, J = 7.2 Hz, 3H) ppm; 13C{1H} NMR (100 
MHz, CDCl3): δ 137.8, 129.22, 129.18, 127.6, 113.1, 
112.2, 53.0, 34.6, 34.5, 28.2, 22.3 ppm.7

5-(1,2-Diphenylethyl)-1,3-dimethyl-2,4,6(1H,3H,5H)-
pyrimidinetrione (3na). Yield 70% (11.8 mg), colorless 
oil. 1H NMR (400 MHz, CDCl3): δ 7.40–7.37 (m, 2H), 
7.34–7.19 (m, 6H), 7.10–7.04 (m, 2H), 3.88–3.82 (m, 
1H), 3.61–3.52 (m, 2H), 3.21–3.04 (m, 1H), 3.04 (s, 3H), 
3.01 (s, 3H) ppm; 13C{1H} NMR (100 MHz, CDCl3): δ 
169.0, 167.3, 150.9, 138.8, 138.2, 129.6, 128.9, 128.64, 
128.59, 128.4, 127.3, 126.7, 52.3, 52.3, 37.6, 28.1, 27.9 
ppm.7

2-[2-(4-Methylphenyl)-1-phenylethyl]propanedinitrile 
(3ac). Yield 73% (9.5 mg), colorless oil. 1H NMR (400 
MHz, CDCl3): δ 7.46–7.36 (m, 5H), 7.14 (d, J = 8.0 Hz, 
2H), 7.08 (d, J = 8.0 Hz, 2H), 3.84 (d, J = 5.2 Hz, 1H), 
3.46–3.39 (m, 1H), 3.21 (d, J = 14.4 Hz, 2H), 2.33 (s, 3H) 
ppm; 13C{1H} NMR (100 MHz, CDCl3): δ 137.3, 136.5, 
133.5, 129.9, 129.1, 129.2, 128.8, 128.1, 112.1, 111.5, 
48.4, 38.1, 28.4, 21.1 ppm.7

2-[2,2-Dimethyl-1-phenylpropyl]propanedinitrile (3ad). 
Yield 91% (9.7 mg), colorless oil. 1H NMR (400 MHz, 
CDCl3): δ 7.39 (s, 5H), 4.22 (d, J = 5.6 Hz, 1H), 3.01 (d, 
J = 5.6 Hz, 1H), 1.11 (s, 9H) ppm; 13C{1H} NMR (100 
MHz, CDCl3): δ 136.2, 129.3, 128.7, 128.6, 56.8, 35.0, 
28.5, 25.1 ppm.7

2-[2-Methyl-1-phenylpropyl]propanedinitrile (3ae). 
Yield 18% (1.8 mg), colorless oil. 1H NMR (400 MHz, 
CDCl3) δ 7.44–7.38 (m, 3H), 7.33–7.31 (m, 2 H), 4.17 (d, 
J = 5.6 Hz, 1H), 2.86–2.82 (m, 1H), 2.42–2.37 (m, 1H), 
1.14 (d, J = 6.4 Hz, 3H), 0.83 (d, J = 6.8 Hz, 3H) ppm. 
13C{1H} NMR (100 MHz, CDCl3) δ 136.6, 129.1, 128.8, 
128.3, 112.1, 111.8, 53.4, 30.24, 27.8, 20.9, 20.4 ppm.20

2-(2,2-Diethoxy-1-phenylethyl)propanedinitrile (3af). 
Yield 34% (4.4 mg), colorless oil. 1H NMR (400 MHz, 
CDCl3): δ 7.45–7.38 (m, 5H), 4.90 (d, J = 6.4 Hz, 1H), 
4.39 (d, J = 5.6 Hz, 1H), 3.91–3.81 (m, 1H), 3.67–3.53 
(m, 2H), 3.45–3.34 (m, 2H), 1.29 (t, J = 7.0 Hz, 3H), 1.06 
(t, J = 7.0 Hz, 3H) ppm; 13C{1H} NMR (100 MHz, 
CDCl3): δ 133.8, 129.1, 128.8, 112.1, 112.0, 102.4, 64.7, 
64.0, 50.0, 25.7, 15.10, 15.07 ppm.7

4.3.  General procedure of hydroacylation 
(Procedure II). Alkenes (0.05 mmol), 1b (31.7 mg, 0.1 
mmol) were dissolved 1,2-dichloroethane (1.0 mL), and 
mixture was warmed at 80 °C (by EYELA Personal 
Organic Synthesizer Chemistation) for 24 h. The solvent 
was evaporated and 1,1,2-trichloroethane was added as an 
internal standard and 1H NMR was measured in CDCl3 
for the calculation of the NMR yield. Then crude products 
were purified by preparative TLC to give 3. Other 
acylation reactions in Figure 2 were performed based on 
this Procedure II.

2-(2-Oxo-1,2-diphenylethyl)propanedinitrile (3ab). 
Yield 86% (11.2 mg), colorless oil. 1H NMR (400 MHz, 
CDCl3): δ 7.90 (d, J = 7.2 Hz, 2H), 7.55 (t, J = 7.6 Hz, 
1H), 7.46–7.30 (m, 7H), 5.11 (d, J = 8.4 Hz, 1H), 4.54 (d, 
J = 8.4 Hz, 1H) ppm; 13C{1H} NMR (100 MHz, CDCl3): 
δ 193.0, 134.4, 133.9, 132.1, 130.1, 129.9, 129.3, 129.0, 
128.6, 112.1, 111.6, 54.8, 26.8 ppm.19

2-[1-(4-Methylphenyl)-2-oxo-2-
phenylethyl]propanedinitrile (3bb). Yield 82% (11.2 
mg), colorless oil. 1H NMR (400 MHz, CDCl3): δ 7.92–
7.88 (m, 2H), 7.57–7.51 (m, 1H), 7.44–7.38 (m, 2H), 
7.26–7.19 (m, 4H), 5.07 (d, J = 8.4 Hz, 1H), 4.51 (d, J = 
8.4 Hz), 2.32 (s, 1H) ppm; 13C{1H} NMR (100 MHz, 
CDCl3): δ 193.1, 140.1, 134.4, 133.9, 130.8, 129.3, 129.0, 
128.9, 128.4, 112.2, 111.7, 54.6, 26.9, 21.2 ppm.7

2-[1-(4-Methoxylphenyl)-2-oxo-2-
phenylethyl]propanedinitrile (3cb). Yield 40% (5.8 mg), 
colorless oil. 1H NMR (400 MHz, CDCl3): δ 7.89 (d, J = 
8.4 Hz, 2H), 7.55 (t, J = 7.6 Hz, 1H), 7.41 (d, J = 7.6 Hz, 
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2H), 7.29–7.21 (m, 2H), 6.92 (d, J = 9.2 Hz, 2H), 5.06 (d, 
J = 8.4 Hz, 1H), 4.50 (d, J = 8.8 Hz, 1H), 3.78 (s, 3H) 
ppm; 13C{1H} NMR (100 MHz, CDCl3): δ 193.1, 160.6, 
134.3, 133.9, 129.9, 129.3, 128.9, 123.8, 115.5, 112.2, 
111.7, 55.3, 54.2, 26.9 ppm; IR (neat, cm−1): 2916, 1682, 
1609, 1512, 1258, 1181, 1030, 755, 689; LRMS (ESI): 
m/z = 313 [M+H] HRMS (ESI) Calcd for C18H14N2O2Na: 
313.0947. Found 313.0947.8

2-[1-(4-Trifluoromethylphenyl)-2-oxo-2-
phenylethyl]propanedinitrile (3db). Yield 79% (13.0 
mg), colorless oil. 1H NMR (400 MHz, CDCl3): δ 7.90–
7.86 (m, 2H), 7.72–7.66 (m, 2H), 7.62–7.56 (m, 1H), 7.51 
(d, J = 8.0 Hz, 2H), 7.47–7.40 (m, 2H), 5.19 (d, J = 8.0 
Hz, 1H), 4.57 (d, J = 8.0 Hz, 1H) ppm; 13C{1H} NMR 
(100 MHz, CDCl3): δ 192.4, 135.8, 134.9, 133.4, 132.3 
(q, 2JC–F = 33 Hz), 129.24, 129.17, 127.14, 127.10, 
127.07, 127.0, 123.1 (q, 1JC–F = 271 Hz), 111.7, 111.1, 
54.2 ppm; 19F NMR (376 MHz, CDCl3): δ −64.35 (s, 3F) 
ppm.7

2-[1-(4-Chlorophenyl)-2-oxo-2-
phenylethyl]propanedinitrile (3eb). Yield 73% (10.8 
mg), colorless oil. 1H NMR (400 MHz, CDCl3): δ 7.87 (d, 
J = 8.4 Hz, 2H), 7.58 (t, J = 7.6 Hz, 1H), 7.50–7.35 (m, 
4H), 7.35–7.27 (m, 2H), 5.10 (d, J = 8.0 Hz, 1H), 4.52 (d, 
J = 8.4 Hz, 1H) ppm; 13C{1H} NMR (100 MHz, CDCl3): 
δ 192.7, 136.3, 134.7, 133.6, 130.5, 130.4, 130.0, 129.2, 
129.1, 111.9, 111.3, 54.0, 26.7 ppm; IR (neat, cm−1): 
2916, 1682, 1595, 1493, 1449, 1256, 1223, 1094, 758, 
718, 685; LRMS (ESI): m/z = 317 [M+H] HRMS (ESI) 
Calcd for C17H11ClN2ONa: 317.0452. Found 317.0443.8

2-[1-(4-Bromophenyl)-2-oxo-2-
phenylethyl]propanedinitrile (3fb). Yield 87% (14.8 mg), 
colorless oil. 1H NMR (400 MHz, CDCl3): δ 7.89–7.85 
(m, 2H), 7.60–7.53 (m, 3H), 7.46–7.40 (m, 2H), 7.26–
7.22 (m, 2H), 5.08 (d, J = 8.0 Hz, 1H), 4.52 (d, J = 8.0 
Hz, 1H) ppm; 13C{1H} NMR (100 MHz, CDCl3): δ 192.6, 
134.7, 133.6, 122.4, 131.0, 130.2, 129.2, 129.1, 124.5, 
111.9, 111.3, 54.1, 26.6 ppm.7

Methyl 4-(1-benzoyl-2,2-dicyanoethyl)benzoate (3gb). 
Yield 98% (15.6 mg), colorless oil. 1H NMR (400 MHz, 

CDCl3): δ 8.11–8.07 (m, 2H), 7.90–7.85 (m, 2H), 7.60–
7.54 (m, 1H), 7.47–7.39 (m, 4H), 5.16 (d, J = 8.4 Hz, 1H), 
4.57 (d, J = 8.0 Hz, 1H), 3.91 (s, 3H) ppm; 13C{1H} NMR 
(100 MHz, CDCl3): δ 192.5, 165.9, 136.6, 134.7, 133.6, 
131.7, 131.2, 129.2, 129.1, 128.8, 111.8, 111.2, 54.6, 
52.4, 26.5 ppm.7

2-[1-(4-Formylphenyl)-2-oxo-2-
phenylethyl]propanedinitrile (3hb). Yield 91% (13.1 
mg), colorless oil. 1H NMR (400 MHz, CDCl3): δ 10.01 
(s, 1H), 7.97–7.93 (m, 2H), 7.91–7.86 (m, 2H), 7.61–7.54 
(m, 3H), 7.46–7.40 (m, 2H), 5.20 (d, J = 8.4 Hz, 1H), 4.60 
(d, J = 8.4 Hz, 1H) ppm; 13C{1H} NMR (100 MHz, 
CDCl3): δ 192.3, 190.9, 138.0, 137.2, 134.9, 133.5, 131.1, 
129.5, 129.2, 129.2, 111.7, 111.1, 54.6, 26.5 ppm.7

2-[1-(4-Cyanophenyl)-2-oxo-2-
phenylethyl]propanedinitrile (3ib). Yield 89% (12.7 mg), 
colorless oil. 1H NMR (400 MHz, CDCl3): δ 7.85 (d, J = 
8.8 Hz, 2H), 7.73 (d, J = 8.4 Hz, 2H), 7.60 (t, J = 7.6 Hz, 
1H), 7.51 (d, J = 8.4 Hz, 2H), 7.49–7.40 (m, 2H), 5.19 (d, 
J = 8.0 Hz, 1H), 4.58 (d, J = 7.6 Hz, 1H) ppm; 13C{1H} 
NMR (100 MHz, CDCl3): δ 192.1, 136.9, 135.1, 133.7, 
133.3, 129.6, 129.3, 129.2, 117.6, 114.2, 111.5, 111.0, 
54.2, 26.5 ppm; IR (neat, cm−1): 2914, 2232, 1684, 1597, 
1449, 1260, 1223, 758, 687; LRMS (ESI): m/z = 308 
[M+H] HRMS (ESI) Calcd for C18H11N3ONa: 308.0794. 
Found 308.0805.

2-[1-(4-Nitrophenyl)-2-oxo-2-
phenylethyl]propanedinitrile (3jb). Yield 43% (6.6 mg), 
yellow oil. 1H NMR (400 MHz, CDCl3): δ 8.30 (d, J = 
8.0 Hz, 2H), 7.87 (dd, J = 7.6, 1.2 Hz, 1H), 7.62–7.57 (m, 
3H), 7.45 (t, J = 8.0 Hz, 2H), 5.23 (d, J = 8.0 Hz, 1H), 
4.60 (d, J = 7.2 Hz, 1H) ppm; 13C{1H} NMR (100 MHz, 
CDCl3): δ 192.0, 148.8, 138.6, 135.1, 133.3, 129.9, 129.3, 
129.2, 125.2, 111.4, 110.9, 54.0, 26.5 ppm.7

2-[1-(3-Methylphenyl)-2-oxo-2-
phenylethyl]propanedinitrile (3kb). Yield 82% (11.2 
mg), colorless oil. 1H NMR (400 MHz, CDCl3): δ 7.91 (d, 
J = 8.4 Hz, 2H), 7.56 (t, J = 8.0 Hz, 1H), 7.42 (t, J = 8.0 
Hz, 2H), 7.35-7.10 (m, 4H), 5.07 (d, J = 8.8 Hz, 1H), 4.53 
(d, J = 8.8 Hz, 1H), 2.34 (s, 3H) ppm; 13C{1H} NMR (100 
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MHz, CDCl3): δ 193.0, 140.1, 134.4, 133.9. 131.9, 130.8, 
129.9, 129.3, 129.0, 128.9, 125.8, 112.2, 111.6, 54.8, 
26.9, 21.5 ppm; IR (neat, cm−1): 3385, 3063, 3026, 2918, 
2257, 2209, 1680, 1597, 1449, 1260, 753, 691; LRMS 
(ESI): m/z = 297 [M+H] HRMS (ESI) Calcd for 
C18H14N2NaO: 297.0998. Found 297.0998.

2-[1-(2-Methylphenyl)-2-oxo-2-
phenylethyl]propanedinitrile (3lb). Yield 63% (8.6 mg), 
colorless oil. 1H NMR (400 MHz, CDCl3): δ 7.77 (d, J = 
8.4 Hz, 2H), 7.54 (t, J = 7.6 Hz, 1H), 7.45–7.23 (m, 4H), 
7.16 (t, J = 7.6 Hz, 1H), 7.02 (d, J = 8.0 Hz, 1H), 5.34 (d, 
J = 8.8 Hz, 1H), 4.52 (d, J = 8.8 Hz, 1H), 2.71 (s, 3H) 
ppm; 13C{1H} NMR (100 MHz, CDCl3): δ 193.7, 136.3, 
134.4, 134.0, 132.3, 130.7, 129.9, 129.0, 128.8, 127.7, 
127.2, 112.2, 111.6, 50.8, 26.1, 20.0 ppm; IR (neat, cm−1): 
3375, 2916, 2257, 2209, 1680, 1449, 1256, 753, 689; 
LRMS (ESI): m/z = 297 [M+H] HRMS (ESI) Calcd for 
C18H14N2NaO: 297.0998. Found 297.1006.

2-(1-Benzoyl-2,2-dimethylpropyl)propanedinitrile 
(3mb). Yield 26% (3.1 mg), colorless oil. 1H NMR (400 
MHz, CDCl3): δ 7.96 (dd, J = 10.0, 4.0 Hz, 2H), 7.66 (td, 
J = 8.0, 1.2 Hz, 1H), 7.53 (t, J = 8.0 Hz, 2H), 4.28 (d, J 
= 8.0 Hz, 1H), 4.07 (d, J = 8.0 Hz, 1H), 1.14 (s, 9H) ppm; 

13C{1H} NMR (100 MHz, CDCl3): δ = 198.2, 137.4, 
134.4, 129.1, 128.6, 113.2, 112.5, 54.1, 34.8, 28.6, 22.3 
ppm.7

1,3-Dimethyl-5-(2-oxo-1,2-diphenylethyl)-
2,4,6(1H,3H,5H)-pyrimidinetrione (3nb). Yield 60% 
(10.5 mg), colorless oil. 1H NMR (400 MHz, CDCl3): δ 
7.79 (d, J = 7.2 Hz, 2H), 7.48 (t, J = 7.4 Hz, 1H), 7.37–
7.20 (m, 7H), 5.82 (d, J = 3.2 Hz, 1H), 3.83 (d, J = 3.2 
Hz, 1H), 3.33 (s, 3H), 3.30 (s, 3H) ppm; 13C{1H} NMR 
(100 MHz, CDCl3): δ 198.1, 167.7, 167.1, 151.5, 137.0, 
134.9, 133.6, 130.2, 129.4, 128.59, 128.58, 127.7, 56.7, 
51.4, 28.9, 28.6 ppm.7

2-Benzoyl-1,4-dihydroxynaphthalene (3ob). Yield 70% 
(9.2 mg), colorless oil. 1H NMR (400 MHz, CDCl3): δ 
13.56 (s, 1H), 8.52 (d, J = 8.0 Hz, 1H), 8.13 (d, J = 8.4 
Hz, 1H), 7.77–7.40 (m, 7H), 6.86 (s, 1H), 5.10 (brs, 1H) 
ppm; 13C{1H} NMR (100 MHz, CDCl3): δ 200.9, 158.8, 

142.6, 138.2, 131.6, 130.1, 129.4, 128.9, 128.4, 126.6, 
126.1, 124.7, 121.7, 111.5, 108.0 ppm.21

3-Benzoylcyclohexanone (3pb). Yield 26% (2.6 mg), 
colorless oil. 1H NMR (400 MHz, CDCl3): δ 7.95 (d, J = 
7.6 Hz, 2H), 7.60 (t, J = 7.2 Hz, 1H), 7.49 (t, J = 7.6 Hz, 
2H), 3.90–3.75 (m, 1H), 2.73 (dd, J = 14.4, 11.0 Hz, 1H), 
2.54–2.30 (m, 3H), 2.20–2.05 (m, 2H), 1.95–1.78 (m, 2H) 
ppm; 13C{1H} NMR (100 MHz, CDCl3): δ 210.2, 200.4, 
135.4, 133.5, 128.9, 128.4, 45.2, 43.2, 41.0, 28.4, 24.8 
ppm.22

2-[2-Oxo-2-(4-methylphenyl)-1-
phenylethyl]propanedinitrile (3ag). Yield 67% (9.2 mg), 
colorless oil. 1H NMR (400 MHz, CDCl3): δ 7.80 (d, J = 
8.4 Hz, 2H), 7.45–7.30 (m, 5H), 7.20 (d, J = 8.0 Hz, 2H), 
5.08 (d, J = 8.4 Hz, 1H), 4.53 (d, J = 8.4 Hz, 1H), 2.36 (s, 
3H) ppm; 13C{1H} NMR (100 MHz, CDCl3): δ 192.6, 
145.7, 132.3, 131.4, 130.0, 129.8, 129.7, 129.4, 128.6, 
112.2, 111.6, 54.7, 26.8, 21.8 ppm; IR (neat, cm−1): 3032, 
2918, 2257, 1680, 1605, 1455, 1262, 1177, 756, 704; 
LRMS (ESI): m/z = 297 [M+H] HRMS (ESI) Calcd for 
C18H14N2ONa: 297.0998. Found 297.0997.

2-[2-Oxo-2-(4-bromophenyl)-1-
phenylethyl]propanedinitrile (3ah). Yield 62% (10.5 
mg), colorless oil. 1H NMR (400 MHz, CDCl3): δ 7.75 (d, 
J = 8.8 Hz, 2H), 7.55 (d, J = 8.8 Hz, 2H), 7.50–7.28 (m, 
5H), 5.04 (d, J = 8.0 Hz, 1H), 4.51 (d, J = 8.4 Hz, 1H) 
ppm; 13C{1H} NMR (100 MHz, CDCl3): δ 192.1, 132.5, 
131.7, 131.3, 130.6, 130.2, 130.1, 130.0, 128.6, 120.0, 
111.3, 54.9, 26.8 ppm; IR (neat, cm−1): 2918, 1682, 1586, 
1399, 1256, 1071, 1009, 755, 701; LRMS (ESI): m/z = 
361 [M+H] HRMS (ESI) Calcd for C17H11BrN2ONa: 
360.9947. Found 360.9947.

2-(2-Oxo-1-phenylpropyl)propanedinitrile (3ai). Yield 
88% (8.7 mg), colorless oil. 1H NMR (400 MHz, CDCl3): 
δ 7.51–7.45 (m, 3H), 7.30–7.24 (m, 2H), 4.37 (d, J = 8.4 
Hz, 1H), 4.26 (d, J = 8.4 Hz, 1H), 2.18 (s, 3H) ppm; 
13C{1H} NMR (100 MHz, CDCl3): δ 201.4, 131.0, 130.2, 
130.1, 128.7, 111.9, 111.3, 59.0, 28.3, 25.5 ppm; IR (neat, 
cm−1): 2916, 1715, 1360, 1165, 756, 701; LRMS (ESI): 
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m/z = 221 [M+H] HRMS (ESI) Calcd for C12H10N2ONa: 
221.0685. Found 221.0692.

4.4.  1 mmol scale experiment. 2a (154 mg, 1 mmol), 
1a (607 mg, 2 mmol) were dissolved 2-propanol (5.0 mL), 
and mixture was warmed at 80 °C (oil bath) for 24 h. Then 
1a (304 mg, 1 mmol) was added to the mixture and stirred 
for further 48 h at 80 °C. The solvent was evaporated and 
then crude products were purified by silica gel column 
chromatography to give 3 (173 mg, 0.702 mmol, 70%).

4.5.  Radical scavenging experiments. According 
to the general procedure of alkylation and acylation. 
Benzalmalononitrile 2a (15.4 mg, 0.10 mmol), 
benzothiazoline 1a or 1b (0.20 mmol) and TEMPO (19.8 
mg, 0.127 mmol) was dissolved in 2-propanol or 1,2-
dichloroethane (2.0 mL), and the mixture was warmed at 
80 °C for 24 h. Then crude products were purified by 
preparative TLC (hexane: AcOEt = 10:1) to give 4.

2,2,6,6-Tetramethyl-1-(phenylmethoxy)piperidine (4a). 
Yield 33% (8.2 mg), colorless oil. 1H NMR (400 MHz, 
CDCl3): δ 7.38–7.32 (m, 4H), 7.28 (d, J=6.4 Hz, 1H), 
4.83 (s, 2H), 1.63–1.32 (m, 6H), 1.26 (s, 6H), 1.15 (s, 6H) 
ppm; 13C{1H} NMR (100 MHz, CDCl3): δ 138.3, 128.2, 
127.5, 127.3, 78.7, 60.0, 39.7, 33.1, 20.3, 17.1 ppm.23

2,2,6,6-Tetramethyl-1-piperidinyl benzoate (4b). Yield 
38% (9.9 mg), colorless oil. 1H NMR (400 MHz, CDCl3): 

δ 8.08 (d, J = 7.2 Hz, 2H), 7.58 (t, J = 7.4 Hz, 1H), 7.47 
(t, J = 7.6 Hz, 2H), 1.85–1.53 (m, 4H), 1.50–1.41 (m, 1H), 
1.28 (s, 6H), 1.12 (s, 6H) ppm; 13C{1H} NMR (100 MHz, 
CDCl3): δ 166.4, 132.9, 129.8, 129.6, 128.5, 60.4, 39.1, 
32.0, 20.9, 17.0 ppm.24
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