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ABSTRACT: Self-assembling peptides and oligonucleotides 

have given rise to synthetic materials with several applications in 

nanotechnology. Aggregation of synthetic oligosaccharides into 

well-defined architectures has not been reported even though 

natural polysaccharides, such as cellulose and chitin, are key 

structural components of biomaterials. Here, we report that six 

synthetic oligosaccharides, ranging from dimers to hexamers, self-

assemble into nanostructures of varying morphologies and emit 

within the visible spectrum in an excitation-dependent manner. 

Well-defined differences in chain length, monomer modification, 

and aggregation methods yield glycomaterials with distinct shapes 

and properties. The excitation-dependent fluorescence in a broad 

range within the visible spectrum illustrates their potential for use 

in optical devices and imaging applications. We anticipate that 

our systematic approach of studying well-defined synthetic oligo-

saccharides will form the foundation of our understanding of 

carbohydrate interactions in nature.  

Simple peptides1 and nucleic acids2 can spontaneously self-

assemble to form defined supramolecular patterns. These supra-

molecular architectures are the essence of modern bionanotech-

nology, with implications in the medical3 and energy1d, 4 fields.  

The discovery that peptide dimers (i.e. diphenyl alanine) self-

assemble provided fundamental insights into the progression of 

important diseases.5 The main limitation to the use of these sys-

tems is often associated with the modest quantities that can be 

produced. In contrast, natural polysaccharides comprise 80% of 

biomass, where they serve mainly structural roles.6 These materi-

als, including cellulose7 and chitin,8 have a strong tendency to 

aggregate in well-defined architectures with different physical 

properties. Chemical modification tunes polysaccharide proper-

ties9 to serve as biocompatible,6, 7c cheap, and renewable self-

assembling materials for application in nanotechnology,10 optical 

components,7b, 11 drug delivery systems,12 and tissue 

engineering.8a However, the use of polysaccharide materials is 

limited by poor quality control and reproducibility, owing to the 

polydispersity of chain length and modifications. While synthetic 

oligosaccharides should be able to self-assemble into tunable 

materials, this process has not been observed for structurally-

defined oligosaccharides as access to pure glycans has been chal-

lenging. Chemical synthesis of oligosaccharides provides an 

attractive alternative to the modification of natural polysaccha-

rides; however, it was extremely laborious prior to recent advanc-

es in automated synthesis.13 Rapid access to synthetic oligo- and 

polysaccharides provided material for systematic structural stud-

ies, showing that synthetic hexasaccharides may adopt defined 

shapes in solution.14  

Here, we report that synthetic oligosaccharides self-assemble into 

defined structures. The systematic approach confirmed that differ-

ences in chain length and modification yield glycomaterials with 

distinct shapes and properties. This finding is particularly im-

portant in the prospective of creating novel carbohydrate materials 

with tunable properties. Moreover, these materials exhibit unex-

pected excitation-dependent intrinsic optical properties that can 

expand the applications of these materials even further and may 

result in new, cheap, and biocompatible optical devices. The 

dramatic differences in the aggregates morphologies stress the 

importance of a better knowledge of glycan presentation in bio-

logical systems, where carbohydrate-carbohydrate interactions 

regulate several cellular processes.15 We suggest that our ap-

proach, based on the study of the interaction of well-defined 

synthetic oligosaccharides, could shed light upon the rules that 

regulate cellular recognition and uptake.  

Self-assemby. Hexamer 4 (Figure 1A) proved so poorly soluble 

in many organic solvents that further chemical manipulations are 

impossible, while a similar compound that carries fewer benzyl 

ethers (i.e. hexamer 5) encountered fewer solubility and reactivity 

issues.14 These differences likely are a consequence of the for-

mation of supramolecular structures due to strong intermolecular 

interactions, such as hydrogen bonding, together with π-π interac-

tions of the benzyl ether modification. Exploiting such interac-

tions to drive the self-assembly should give rise to novel oligosac-

charides materials. Three dimers (1-3) as well as one additional 
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hexasaccharide (6) were prepared to probe the influence of chain 

length, linkage, and modification on self-assembly (Figure 1A). 

Supramolecular aggregation was induced by slow dialysis (D) or 

fast solvent-switch (S).16 Oligosaccharides dissolved in a dime-

thylacetamide (DMAc)/water mixture and dialyzed against water 

aggregated into nanoparticles with diameters of 40-60 nm (Figure 

2A-(a-f)). These particles exist in solution as confirmed by Cryo-

SEM of 2-D (Figure S1) and dynamic light scattering (DLS) 

measurements (Figure S2). Direct injection of water into a glycan 

solution in HFIP (fast solvent switch) results in faster mixing, 

higher oligosaccharide concentration and altered self-assembly 

behavior (Figure 2A-(g-l)).17 Needle-like structures were found 

for 2-S-HFIP (5-10 µm length, 10-50 nm height and 100-500 nm 

width, Figure 2A-h and Figure S3) and a spheroidal architecture 

(1-2 µm diameter) for the hexamer 5-S-HFIP analogue (Figure 

2A-k). These supramolecular structures were stable for one month 

at ambient conditions and resisted dilution and sonication (Figure 

S4). 1-S-HFIP assembled into a mixture of rods and toroid struc-

tures (Figure 2A-g), while 4-S-DMAc formed clusters of nanopar-

ticles (Figure 2A-j). Differences in oligosaccharide structure such 

as linkage and modification patterns fundamentally affect the 

material morphology as 3-S-HFIP (Figure 2A-i) and 6-S-DMAc 

(Figure 2A-l) aggregated randomly and did not form any ordered 

supramolecular structure. Compounds 3 and 6 are based on a 

fairly rigid 1,4 glycosydic linkage (secondary alcohol) and there-

fore can adopt a limited number of conformations in solution. The 

flexibility of the 1,6 linkage allows for higher conformational 

diversity, permitting the formation of fundamentally different 

nanostructures.    

The effects of assembly conditions on structure were studied in 

detail using dimer 2 that forms well-defined, disperse, and stable 

needle-like structures (Figure 2B). 2-S-HFIP presents an ordered 

morphology as it showed intense birefringence under polarized 

light, typical of anisotropic materials (Figure S7). Moreover, 

staining with Congo red,18 a commonly-used dye to detect highly-

ordered amyloid fibrils, gave intense gold-green birefringence 

(Figure S8). Dialysis using a higher concentration of 2 (2 mg 

mL−1) led to the formation of nanofibers (Figure 2B-a), likely due 

to the further association of the spherical particles existing in the 

diluted solution. The solvent exchange method generated longer 

needles when a lower concentration of compound 2 was employed 

(0.1 mg mL−1) (Figure 2B-b). A higher HFIP content (20%) did 

not change the shape or length of the supramolecular structures 

(Figure 2B-c). In this case, the selective solvation properties of 

HFIP, in a HFIP–H2O system,19 result in a similar local HFIP 

concentration, limiting aggregation diversity. A similar elongated 

morphology was obtained when isopropyl alcohol was used in-

stead of HFIP (Figure 2B-d) and a gel-like microwire material 

was obtained in acetone (Figure 2B-f). The diversity observed is 

ascribed to the different conformations adopted by compound 2, 

when solvated by different solvents. In particular, the well-known 

ability of HFIP to cluster the hydrophobic regions of peptides and 

affect their folding (HFIP-induced enhancement of the hydropho-

bic effect)19-20 is responsible for the dramatic differences of the 

generated nanostructures. 

 

 

 

Figure 1. Chemical structure of well-defined oligosaccharides (A) and illustration of sample preparation methods (B). The sample names 

indicate the sugar oligomer (e.g. 2), the assembly method (D, S, or F), and the solvent used (e.g. HFIP). For example, 2-S-HFIP means 

compound 2 prepared by solvent switch method with HFIP as good solvent.  
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Figure 2. (A) Supramolecular structure formation with two different methods. (a-f) TEM images (scale bars: 100 nm) of samples prepared 

by dialysis method (0.1 mg mL−1) for (a) 1-D, (b) 2-D, (c) 3-D, (d) 4-D*, (e) 5-D, and (f) 6-D*. *0.01 mg mL−1 due to poor solubility of 

the starting material. (g-l) SEM images (scale bars: 2 µm) of samples prepared by solvent-switch method for (g) 1-S-HFIP-low (0.1 mg 

mL−1), (h) 2-S-HFIP, (i) 3-S-HFIP, (j) 4-S-DMAc, (k) 5-S-HFIP, and (l) 6-S-DMAc. (B) Screening of assembly conditions for com-

pound 2. (a) TEM image (scale bar: 500 nm) for 2-D-high (2 mg mL−1). (b-f) SEM images (scale bars: 2 µm) for (b) 2-S-HFIP-low (0.1 

mg mL−1), (c) 2-S-HFIP-20%, (d) 2-S-iPrOH-20%, (e) 2-S-DMAc, and (f) 2-S-Ace-20%. If not mentioned, the standard concentration 

for the solvent switch method (S) is 2 mg mL−1 and the content of organic solvent is 2%. 

 

Real-time measurement. The self-assembly of 2-S-HFIP was 

captured in real-time using bright-field microscopy (Figure 3, 

Movie S1) by injecting a freshly-prepared solution into a cell 

counting slide. Needle-like structures diffuse from the HFIP 

droplets containing the oligosaccharide into the surrounding 

water. The contact between the needles and a second HFIP droplet 

(Figure 3, time 06:52) disrupt the droplet to release the oligosac-

charide and results in further needle growth. Surprisingly, glycan-

containing HFIP droplets are intensely fluorescent. We believe 

that this phenomenon is the result of the formation of supramo-

lecular chromophores within the material, as previously observed 

for self-assembled peptides, nucleic acids, and amino acids.17, 21 

An extended π-conjugation system and/or charge delocalization 

through a dense hydrogen-bonding network are generally respon-

sible for this behavior.21b 

 

Figure 3. Real-time merged bright-field (scale of gray) and fluo-

rescence (magenta) images illustrate the self-assembly process for 

2-S-HFIP. Excitation wavelength at 405 nm and detection range 

410-676 nm (scale bar: 20 µm).  

Photophysical characterization. Confocal microscopy anal-

ysis of different morphologies revealed that thin films prepared by 

direct evaporation of a glycan solution in HFIP on a slide glass (2-

F-HFIP) emit strongly in four different channels (Figure 4A) 

upon visible light irradiation. Films prepared in other organic 

solvents showed a similar fluorescence behavior (Figure S10). 

Aggregates obtained via the solvent switch method are only week-

ly emissive (Figure 4A). This observation agrees with the supra-

molecular chromophore hypothesis, since emission intensity is 

strong in organic solvents, where a dense H-bonding network is 

favored and quenching occurs when the H-bonding pattern is 

disrupted by water. The morphology of these materials was fur-

ther probed with X-ray powder diffraction (XRD) (Figure. 4B). 2-

S-HFIP exhibited sharp peaks, as typical for crystalline struc-

tures; in contrast, 2-F-HFIP shows broad peaks. This confirms 

the drastic change in morphology upon interaction with water (2-

S-HFIP). To better evaluate the causes of this phenomenon, 

compounds (7-11) were prepared. To probe the importance of 

aromatic groups for the emissive behavior, compound 7 was 

synthesized. This amphiphilic, partially methylated analogue 

allows for the formation of a dense hydrogen bonding network, in 

the absence of aromatic groups. Upon film formation (7-F-HFIP), 

compound 7 showed a similar optical behavior, confirming that 

the optical properties are not merely a result of π-π stacking. 
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Figure 4. (A) Confocal microscopy images of 2 prepared by HFIP film-forming F (scale bars: 100 µm), solvent-switch S (scale bars: 10 

µm), and compounds 7-11 prepared by film-forming method (scale bars: 100 µm) in four different channels (blue(ex/em): 405/451 nm, 

green: 488/529 nm, yellow: 561/597 nm, and red: 633/709 nm). (B) XRD profiles of 2-F-HFIP (red) and 2-S-HFIP (black) and com-

pounds 7-11. 

 

Compounds 8-10 are fully functionalized, blocking the formation 

of a dense hydrogen bonding network within the material. Differ-

ent substituents (Bn vs Me vs Ac) were tested. Surprisingly, con-

focal microscopy analysis showed emissive behavior for com-

pound 8-F-HFIP and 9-F-HFIP. We suspect that such com-

pounds, even in the absence of a strong hydrogen bonding net-

work, maintain a self-organization tendency. On the other hand, 

the per-acetylated analogue 10, as well as the fully deprotected 

compound 11, showed no emission. XRD analysis of all the mate-

rials suggested a correlation between the broad XRD profile and 

the emissive behavior. Similarly, the appearance of sharp peaks in 

the XRD profiles, indicating high crystallinity, is associated with 

emission quenching.  

Further photophysical characterization showed a broad absorption 

band for compound 2-F-HFIP, associated with the formation of 

new self-assembled entities upon film formation. The broadening 

of the absorption spectrum is not observed for compound 2 in 

solution, nor for the low emissive, crystalline sample 2-S-HFIP 

(Figure 5A). Excitation spectra (Figures S13 and S14) confirmed 

that the emissive species are linked to this spectral region (350 – 

500 nm). Emission quantum yield was calculated for 2-F-HFIP 

(Ф(λex = 360 nm) = 0.85 ± 0.01 %). Moreover, unlike commonly-used 

dyes, where the emission peak position is independent of the 

excitation wavelength, the emission spectrum of 2-F-HFIP is 

drastically affected by the excitation wavelength (Figure 5B). A 

broad fluorescence emission profile was observed with maxima 

shifting from 410 to 490 nm as the excitation is changed from 340 

to 410 nm. This red edge excitation shift (REES) is a common 

phenomenon observed in graphene oxide,21c ionic liquids,21d and 

highly ordered assemblies,17 suggesting potential applications of 

self-assembling oligosaccharides for optical devices, semiconduc-

tors, and nanotechnology.1d, 17, 21a, 21b 
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Figure 5. (A) Absorption spectra of 2-F-HFIP, 2-S-HFIP (recorded for the solid samples), and compound 2 in HFIP solution. (B) Nor-

malized emission spectra of 2-F-HFIP at excitation wavelengths of 340, 350, 360, 370, 380, 390, 400, 410, 420, and 430 nm, showing the 

red shifting of the emission maxima. Spectra acquired at RT. 

 

In conclusion, we successfully generated supramolecular struc-

tures from fully synthetic well-defined oligosaccharides, and 

demonstrated that the fine-tuning of the oligosaccharide structure 

has a tremendous effect on the material morphology. The three 

dimer and hexamer analogues with different glycosidic linkages 

and protective group patterns form similar nanospheres when 

generated by the slow dialysis method, whereas distinctive micro-

structures are obtained with the fast solvent switch method. These 

compounds show unique optical properties such as broad emis-

sion profiles and red edge excitation shift. Further studies to 

modulate the fluorescent properties of such materials are currently 

underway, with potential applications for optical devices and 

nanotechnology. These findings suggest that synthetic oligosac-

charides are viable substrates for the fundamental study of the 

forces that guide the polysaccharide aggregation in nature. For 

example, tuning glycomaterial properties through the synthesis of 

well-defined structures will be relevant for drug delivery systems, 

where carbohydrate-carbohydrate interactions play a significant 

role in cellular uptake. 

The Supporting Information is available free of charge on the 

ACS Publications website. 

 

Materials and Methods, Figures S1 to S16, Movie S1. 
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