Subscriber access provided by UNIV OF NEW ENGLAND ARMIDALE

Ag-mediated trifluoromethylthiolation of inert Csp3-H bond

Yue Zhao, Jin-Hong Lin, Xiao-Chun Hang, and Ji-Chang Xiao

J. Org. Chem., Just Accepted Manuscript • DOI: 10.1021/acs.joc.8b02207 • Publication Date (Web): 31 Oct 2018

Downloaded from http://pubs.acs.org on October 31, 2018

Just Accepted

Note

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Ag-mediated trifluoromethylthiolation of inert Csp³-H bond

Yue Zhao,^{ab} Jin-Hong Lin,^{b*} Xiao-Chun Hang^{a*} and Ji-Chang Xiao^{b*}

^aKey Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211800, China

^bKey Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China

Abstract

$$R-H + CF_3SOCI \xrightarrow{Ag_2CO_3, K_2S_2O_8, Ph_3P} R-SCF_3$$

Ag-Mediated trifluoromethylthiolation of inert Csp³-H bond with CF₃SOCl is described. Widely available reagents and operational simplicity make this protocol attractive.

Due to its strong electron-withdrawing nature (Hammett constants $\sigma_p = 0.50$, $\sigma_m = 0.40$) and high lipophilicity (Hansch parameter $\pi = 1.44$),¹ trifluoromethylthio group (CF₃S) has received increasing attention in medicinal chemistry, agrochemistry and material science.² Consequently, determined efforts have been devoted to the development of efficient methods for the installation of a CF₃S moiety to organic molecules.^{2d,3} As C-H functionalization is an attractive concept because of its step economy, C-H trifluoromethylthiolation has become a straightforward strategy for CF₃S

installation. Compared with trifluoromethylthiolation of Csp²-H bond⁴ and Csp-H bond⁵, trifluoromethylthiolation of insert Csp³-H bond remains a challenging task.

In 2014, Qing reported a Cu-catalyzed Csp³-H trifluoromethylthiolation, in which the Csp³-H bond has to be an activated benzylic C-H bond (Scheme 1, eq 1).⁶ Shortly afterwards, Besset disclosed a Pd-catalyzed trifluoromethylthiolation of inert Csp³-H bond. The desired products could be obtained in moderate yields, but a bulky directing group is required to be incorporated into the substrates (eq 2).⁷ Almost at the same time, Chen⁸ and Tang⁹ independently described a radical trifluoromethylthiolation of alkanes with $AgSCF_3$ under oxidative conditions (eqs 3-4). A wide substrate scope and good functional group compatibility were observed in both approaches. Recently, photocatalytic radical trifluoromethylthiolation was achieved by the group of Glorius (eq 5).¹⁰ Although good site selectivity and high yields were obtained, an expensive photocatalyst is needed. Apparently, the trifluoromethylthiolation reagents used in the above methods are expensive or have to be prepared via tedious synthetic procedures. We have been interested in the development of effective protocols for the incorporation of fluorine-containing functionalities into organic molecules.¹¹ We found that trifluoromethanesulfinic chloride (CF₃SOCl) could act as a trifluoromethylthio source to realize Ag-mediated radical trifluoromethylthiolation of inert Csp³-H bond (eq 6). All reagents in this protocol are widely available and easy to handle.

Previous work: $R \stackrel{!}{=} \stackrel{!}{\longrightarrow} \stackrel{!}{H} + AgSCF_{3} \stackrel{!}{\longrightarrow} \frac{CuTc, KCl}{oxidant} R \stackrel{!}{=} \stackrel{!}{\longrightarrow} SCF_{3} \qquad (1)$ $R \stackrel{!}{=} \stackrel{!}{\longrightarrow} \stackrel{!}{H} \stackrel{!}{\longrightarrow} (2)$ $R - H + AgSCF_{3} \stackrel{K_{2}S_{2}O_{8}}{CH_{3}CN, 60 \, ^{\circ}C, 12 \, h} R - SCF_{3} \qquad (3)$ $R - H + AgSCF_{3} \stackrel{Na_{2}S_{2}O_{8}}{MeCN/H_{2}O/DCE, 35 \, ^{\circ}C} R - SCF_{3} \qquad (4)$

$$R-H + \bigvee_{O} N-SCF_3 \xrightarrow{[Ir], PhCO_2Na}_{blue \ LEDs} R-SCF_3$$
(5)

This work:

$$R-H + CF_{3}SOCI \xrightarrow{Ag_{2}CO_{3}, K_{2}S_{2}O_{8}, Ph_{3}P}{MeCN, 60 °C, 12 h} R-SCF_{3}$$
(6)

Scheme 1. Csp³-H trifluoromethylthiolation

As it has been previously reported that phosphorus species could reduce CF₃SO₂Cl to provide active trifluoromethylthiolation intermediates,¹² Ph₃P was used as a reducing agent in our initial attempts at the trifluoromethylthiolation of octane with CF₃SOCl (Table 1). A brief survey of the metal complex (entries 1-5) revealed that Ag₂CO₃ was quite effective (entry 2). Interestingly, no desired product was observed in other solvents (entries 6-8) except CH₃CN. An oxidant is necessary in the reaction, and replacing K₂S₂O₈ with other oxidants dramatically decreased the yield (entries 9-10). A reaction temperature of 60 °C proved superior to a lower or higher temperature (entry 2 vs entries 11-12). Increasing the loading of oxidant from 1.0 equiv to 1.5 equiv increased the yield to 77% (entry 13). However, the results were not reproducible (yields varied between 47% and 77%) if substrate **1a** was used in the same equivalent with reagent **2** (entry 13). To our delight, the reaction could be well reproduced by using slight excess of substrate **1a** (entry 14). A lower yield was obtained within a shorter reaction time (entry 15). 1 equiv of Ag_2CO_3 was necessary, and decreasing the loading of Ag_2CO_3 led to the dramatic decrease in the yield (entries 16-19). No desired product was observed by replacing Ag_2CO_3 with K_2CO_3 (entry 20), suggesting that Ag_2CO_3 played a crucial role in the reaction.

	$ + CF_3SOCI \xrightarrow{MX} SCF_3 $			
	1a	solv	rent, 60 °C, 12 h	
entry	MX	solvent	ratio ^b	yield (%) ^c
1	AgNO ₃	CH ₃ CN	1:1:1:1.5:1	0
2	Ag ₂ CO ₃	CH ₃ CN	1:1:1:1.5:1	55
3	AgF	CH ₃ CN	1:1:1:1.5:1	21
4	CuSCN	CH ₃ CN	1:1:1:1.5:1	0
5	CuCl	CH ₃ CN	1:1:1:1.5:1	0
6	Ag ₂ CO ₃	DMF	1:1:1:1.5:1	0
7	Ag ₂ CO ₃	DCM	1:1:1:1.5:1	0
8	Ag ₂ CO ₃	PhCH ₃	1:1:1:1.5:1	0
9 ^d	Ag ₂ CO ₃	CH ₃ CN	1:1:1:1.5:1	trace
10 ^e	Ag ₂ CO ₃	CH ₃ CN	1:1:1:1.5:1	trace
$11^{\rm f}$	Ag ₂ CO ₃	CH ₃ CN	1:1:1:1.5:1	46
12 ^g	Ag ₂ CO ₃	CH ₃ CN	1:1:1:1.5:1	57
13	Ag ₂ CO ₃	CH ₃ CN	1:1:1:1.5:1.5	77
14	Ag ₂ CO ₃	CH ₃ CN	1.5:1:1:1.5:1.5	80
15 ^h	Ag ₂ CO ₃	CH ₃ CN	1.5:1:1:1.5:1.5	65
16	Ag ₂ CO ₃	CH ₃ CN	1.5:1:0.8:1.5:1.5	57
17	Ag ₂ CO ₃	CH ₃ CN	1.5:1:0.6:1.5:1.5	35
18	Ag ₂ CO ₃	CH ₃ CN	1.5:1:0.5:1.5:1.5	0
19	-	CH ₃ CN	1.5:1:0:1.5:1.5	0
20	K ₂ CO ₃	CH ₃ CN	1.5:1:1:1.5:1.5	0

Table 1. Optimization of the reaction conditions

^aReaction conditions:**1a**, **2** (0.4 mmol), MX (1 equiv), Ph₃P (1.5 equiv), and K₂S₂O₈ in CH₃CN (3 mL) at 60 °C for 12 h ; ^bMolar ratio of **1a**:**2**:MX:Ph₃P:K₂S₂O₈; ^cThe yields were determined by ¹⁹F NMR

The Journal of Organic Chemistry

With the optimized reaction conditions in hand (Table 1, entry 14), we then investigated the substrate scope of the Ag-mediated trifluoromethylthiolation of inert Csp³-H bond. As shown in Scheme 2, a variety of alkanes could be converted smoothly into the desired products in moderate to high yields. A large-scale reaction (10 mmol of CF_3SOCI) could also give the desired product in a good yield (**3a**, 75% ¹⁹F NMR yield). demonstrating the potential application of this reaction. Some trifluoromethylthiolation products are volatile and therefore lower isolated yields compared to ¹⁹F NMR yields were obtained. Although C-H bond dissociation energies decrease in the order of secondary > tertiary, both secondary and tertiary carbons were found to be quite reactive, and tertiary carbon showed a higher reactivity. If two tertiary carbons were present in the substrates, trifluoromethylthiolation would prefer to take place at the position which is remote from electron-withdrawing groups (3q-3t). A wide range of functional group could be tolerated, such as ketones, esters, amides, ethers, halides, and nitriles, demonstrating the synthetic utility of this protocol. To our surprise, the benzylic C-H bond is inert under these conditions. For instance, no desired product was observed for the conversion of toluene or 1-ethylnaphthalene.

Scheme 2. Ag-mediated trifluoromethylthiolation of inert Csp³-H bond. Isolated yields; Reaction conditions: substrate 1 (1.5 equiv), CF₃SOCl (0.4 mmol, 1 equiv), Ag₂CO₃ (1 equiv), Ph₃P (1.5 equiv), and K₂S₂O₈ (1.5 equiv) in CH₃CN (3 mL) at 60 °C for 12 h. ^aThe yields were determined by ¹⁹F NMR spectroscopy; ^bA 75% ¹⁹F NMR yield was obtained by increasing the reaction scale to 10 mmol (CF₃SOCl).

Some preliminary experimental results were collected to gain more mechanistic insights into the C-H trifluoromethylthiolation process. The reaction gave the desired product in low yields in the presence of a radical scavenger, such as TEMPO (2,2,6,6-tetramethylpiperidin-1-oxyl), hydroquinone or 1,4-dinitrobenzene, suggesting that a radical pathway may be involved (Scheme 3, eq 1). For the conversion of substrate **10**, a cyclization product (**30'**) was produced in 45% yield (eq 2), further supporting the radical mechanism. Without the presence of the CF₃SOCl/Ph₃P system, substrate **10** could also be converted into cyclization product **30'**, indicating that the $Ag_2CO_3/K_2S_2O_8$ system would lead to the generation of a radical intermediate from the substrate (eq 3).

Scheme 3. Mechanistic evidence. ^{*a*}The yield was determined by ¹⁹F NMR spectroscopy; ^{*b*}Isolated yield.

Although Ph_3P is a reducing agent and $K_2S_2O_8$ is an oxidizing agent, the reaction between them is quite slow, whereas the reaction of Ph_3P with CF_3SOC1 occurred rapidly. Almost no Ph_3P was converted by heating the mixture of Ph_3P and $K_2S_2O_8$ at 60 °C for 10 min. But after stirring the mixture of Ph_3P and CF_3SOC1 for 10 min, CF_3SOC1 was completely consumed to produce a major product, CF_3SSCF_3 , which was confirmed by ¹⁹F NMR spectroscopy (δ : -46.2 ppm)¹³ and GC-MS (M⁺: 201.9) (Scheme 4, eq 1). ³¹P NMR analysis of the reaction mixture revealed that Ph₃P was completely converted into two species, Ph₃P=O and (Ph₃P⁺Cl Cl⁻) (δ : +65 ppm)¹⁴ (eq 1). The molar ratio of these two species determined by ³¹P NMR spectroscopy was 3.4:1 [Ph₃P=O : (Ph₃P⁺Cl Cl⁻)]. After the complete conversion of CF₃SOCl into CF₃SSCF₃, substrate **1a** and the Ag₂CO₃/K₂S₂O₈ reagent system were added and the resultant mixture was stirred at 60 °C for 12 h (eq 2). A 60% ¹⁹F NMR yield of the desired product was obtained, suggesting that CF₃SSCF₃ is a key intermediate for this trifluoromethylthiolation process.

$$\begin{array}{c} CF_{3}SOCI + Ph_{3}P & 10 \text{ min} \\ (0.4 \text{ mmol}) & (1.5 \text{ equiv}) \\ \hline CF_{3}SOCI + Ph_{3}P & 10 \text{ min} \\ (0.4 \text{ mmol}) & (1.5 \text{ equiv}) \\ \hline CF_{3}SOCI + Ph_{3}P & 10 \text{ min} \\ (0.4 \text{ mmol}) & (1.5 \text{ equiv}) \\ \hline CH_{3}CN, 60 \\ \hline CF_{3}SSCF_{3} \\ \hline CF_{3}SSCF_{3} \\ \hline CF_{3}SSCF_{3} \\ \hline CF_{3}SSCF_{3} \\ \hline CH_{3}CN, 60 \\ \hline CF_{3}SSCF_{3} \\ \hline CF_{3}SS$$

Scheme 4. Mechanistic investigations. *a*The yield was determined by ¹⁹F NMR spectroscopy; *b*Molar ratio determined by ³¹P NMR spectroscopy;

On the basis of the above results, the plausible mechanism is proposed as shown in Scheme 5. CF₃SOCl could be reduced by Ph₃P to form CF₃SCl (trifluoromethanesulfenyl chloride) via a halogen bonding process to form chlorophosphonium salt (ClP+Ph₃) and an Arbuzov conversion to release Ph₃P=O.¹² A further halogen bonding process between Ph₃P and CF₃SCl generates chlorophosphonium salt (ClP+Ph₃) and trifluoromethylthio

anion (CF₃S⁻), which attacks CF₃SCl to produce CF₃SSCF₃ and a chloride anion. The disproportionation of peroxydisulfate anion in the presence of a Ag⁺ salt gives sulfate radical anion.¹⁵ The abstraction of a hydrogen atom from the substrates by the sulfate radical anion would readily occur to generate an alkyl radical. The reaction of the alkyl radical with CF₃SSCF₃ provides the final trifluoromethylthiolation product and a trifluoromethylthio radical (CF₃S⁻), the combination of which with the alkyl radical also furnishes the trifluoromethylthiolation product.

Scheme 5. The proposed reaction mechanism

In summary, we have described the Ag-mediate trifluoromethylthiolation of inert Csp³-H bond with CF₃SOCl. All reagents used in this process were widely available, and the reactions occurred smoothly under mild conditions. A broad substrate scope and good functional group compatibility were observed, demonstrating the synthetic utility of this trifluoromethylthiolation protocol. Due to its operational convenience and step economy, the protocol may find application in the synthesis of CF_3S -containing pharmaceuticals and agrochemicals.

General information.¹H, ¹³C and ¹⁹F NMR spectra were detected on a 500 MHz, 400 MHz or 300 MHz NMR spectrometer. Data for ¹H NMR, ¹³C NMR and ¹⁹F NMR were recorded as follows: chemical shift (δ , ppm), multiplicity(s = singlet, d = doublet, t = triplet, m = multiplet, q = quartet, coupling constant (s) in Hz). Mass spectra were obtained on GC-MS or LC-MS (ESI). High resolution mass data were recorded on a high resolution mass spectrometer in the ESI mode. The mass analyzer type for HRMS-ESI is Fourier transform mass spectrometer. Unless otherwise noted, all reagents including CF₃SOC1 (95% purity) were obtained commercially and used without further purification.

General procedure for trifluoromethylthiolation. Under a N₂ atmosphere, into a 15 mL sealed tube was added triphenylphosphine (0.6 mmol, 1.5 equiv), $K_2S_2O_8$ (0.6 mmol, 1.5 equiv), Ag_2CO_3 (0.4 mmol, 1.0 equiv), CH_3CN (3 mL), alkane substrate (0.6 mmol, 1.5 equiv), and trifluoromethanesulfinic chloride (0.4 mmol, 1.0 equiv). The tube was sealed and the mixture was stirred at 60 °C for 12 h. After being cooled to room temperature, the mixture was filtered to remove the solid. The solid was washed with dichloromethane, and the combined organic phase was concentrated to remove the

The Journal of Organic Chemistry

solvent. The residue was subjected to flash column chromatography to give the pure product. cyclooctyl(trifluoromethyl)sulfane (3a)⁸: 64% yield; 54mg; ; ¹H NMR (400 MHz, CDCl₃) δ 3.53-3.46 (m, 1H), 2.11 – 2.04 (m, 2H), 1.83 – 1.69 (m, 4H), 1.63 – 1.49 (m, 8H). ¹³C NMR (101 MHz, $CDCl_3$) δ 131.7 (q, J = 306.1 Hz), 45.9, 32.9, 27.5, 25.9, 25.0.¹⁹F NMR $(376 \text{ MHz}, CDCl_3) \delta$ -39.70 (s, 3F). GC-MS (EI): m/z = 212.2 (M⁺). cycloheptyl(trifluoromethyl)sulfane (**3b**)⁸: 37% yield; 29mg; ¹H NMR (400 MHz, $CDCl_3$ δ 3.49-3.42 (m, 1H), 2.13-2.06 (m, 2H), 1.78-1.66 (m, 4H), 1.63 - 1.49 (m, 6H). ¹³C NMR (101 MHz, *CDCl*₃) δ 131.6 (q, *J* = 306.2 Hz), 46.3, 35.8, 28.4, 25.7.¹⁹F NMR $(376 \text{ MHz}, CDCl_3) \delta$ -39.68 (s, 3F). GC-MS (EI): m/z = 198.1 (M⁺). cyclodecyl(trifluoromethyl)sulfane (3c)⁸: 58% yield; 56mg; ¹H NMR (400 MHz, CDCl₃) δ 3.59 – 3.53 (m, 1H), 1.97-1.79 (m, 4H), 1.71-1.61 (m, 4H), 1.57-1.52 (m, 10H). ¹³C NMR (101 MHz, $CDCl_3$) δ 131.7 (q, J = 306.1 Hz), 44.0, 32.2, 25.6, 25.1, 24.9, 23.7.¹⁹F NMR (376 MHz, $CDCl_3$) δ -39.61 (s, 3F). GC-MS (EI): m/z = 240.2 (M⁺). cvclododecvl(trifluoromethyl)sulfane (**3d**)⁸: 55% vield; 59mg; ¹H NMR (400 MHz, CDCl₃) § 3.35-3.29 (m, 1H), 1.86-1.77 (m, 2H), 1.69-1.61 (m, 2H), 1.57-1.50 (m, 2H), 1.42 - 1.31 (m, 16H). ¹³C NMR (101 MHz, *CDCl*₃) δ 131.8 (q, *J* = 306.1 Hz), 42.9, 31.3, 24.2, 24.0, 23.8, 23.7, 22.3.¹⁹F NMR (376 MHz, CDCl₃) δ -39.59 (s, 3F). GC-MS (EI): $m/z = 268.1 (M^+).$

5-methyl-5-((trifluoromethyl)thio)hexan-2-one (**3e**)⁸: 67% yield; 57mg; ¹H NMR (400 MHz, *CDCl₃*) δ 2.60 (t, *J* = 8.1 Hz, 2H), 2.15 (s, 3H), 1.92 (t, *J* = 7.6 Hz, 2H), 1.41 (s, 6H) . ¹³C NMR (101 MHz, *CDCl₃*) δ 207.6, 131.1 (q, *J* = 308.1 Hz), 51.7, 39.4, 36.4, 30.2, 29.7.¹⁹F NMR (376 MHz, *CDCl₃*) δ -35.97(s, 3F). **GC-MS (EI):** m/z = **214.0 (M⁺).** 4-methyl-4-((trifluoromethyl)thio)pentan-2-one (**3f**)⁸: 23% yield; 18mg; ¹H NMR (400 MHz, *CDCl₃*) δ 2.90 (s, 2H), 2.16 (s, 3H),1.58 (s, 6H). ¹³C NMR (101 MHz, *CDCl₃*) δ 205.5, 131.2 (q, *J* = 307.7 Hz), 54.8, 49.4, 32.1, 29.2.¹⁹F NMR (376 MHz, *CDCl₃*) δ -35.68 (s, 3F). **GC-MS (EI):** m/z = **200.0 (M⁺).** 4-((trifluoromethyl)thio)pentanenitrile (**3g**)⁸: 37% yield; 27mg; ¹H NMR (400 MHz, 200 MHz, 200 MHz, 200 MHz).

4-((undoronediy))(no)pentanemine (**3g**) : 37/6 yield, 27mg, 11 NWR (400 MHz, *CDCl*₃) δ 3.42-3.34 (m, 1H), 2.54 (t, *J* = 7.3 Hz, 2H), 2.07-1.91 (m, 2H), 1.49 (d, *J* = 7.0 Hz, 3H). ¹³C NMR (101 MHz, *CDCl*₃) δ 130.9 (q, *J* = 308.1 Hz), 118.8, 40.2, 32.7, 22.4, 15.1.¹⁹F NMR (376 MHz, *CDCl*₃) δ -38.94 (s, 3F). **GC-MS (EI):** m/z = **183.0 (M**⁺). (4-bromo-2-methylbutan-2-yl)(trifluoromethyl)sulfane (**3h**)⁸: 38% yield; 38mg; ¹H NMR (400 MHz, *CDCl*₃) δ 3.48 (t, *J* = 8.3 Hz, 2H), 2.28 (t, *J* = 8.0 Hz, 2H), 1.48 (s, 6H). ¹³C NMR (101 MHz, *CDCl*₃) δ 130.9 (q, *J* = 307.9 Hz), 52.0, 46.4, 29.7, 27.5.¹⁹F NMR (376 MHz, *CDCl*₃) δ -35.95 (s, 3F). **GC-MS (EI):** m/z = **251.9 (M⁺)**.

2-methyl-2-((trifluoromethyl)thio)propyl acetate (**3i**): 44% yield; 38mg; Colorless liquid; ¹H NMR(400 MHz, *CDCl*₃) δ 4.14 (s, 2H), 2.10 (s, 3H), 1.46 (s, 6H). ¹³C NMR (101 MHz, *CDCl*₃) δ 170.8, 130.9 (q, *J* = 309.1 Hz), 71.1, 50.1, 26.5, 21.0.¹⁹F NMR (376 MHz, *CDCl*₃) δ -35.45 (s, 3F). HRMS-ESI (m/z): Calcd for C₇H₁₅F₃O₂SN [M + NH₄]⁺, 234.0770. Found, 234.0770. IR(KBr): 2962, 1261, 1096, 1027, 799, 704 cm⁻¹.

Colorless

ethyl 3-methyl-3-((trifluoromethyl)thio)butanoate (3j): 55% yield; 51mg;

liquid; ¹H NMR (400 MHz, *CDCl*₃) δ 4.15 (q, J = 7.1 Hz, 2H), 2.75 (s, 2H), 1.59 (s, 6H), 1.26 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, $CDCl_3$) δ 169.9, 131.1 (q, J = 307.9 Hz), 61.0, 49.2, 47.8, 29.4, 14.5.¹⁹F NMR (376 MHz, CDCl₃) δ -35.91 (s, 3F). HRMS-ESI (m/z): Calcd for C₈H₁₇F₃O₂SN [M + NH₄]⁺, 248.0927. Found, 248.0926. IR(KBr): 2962, 2929, 1734, 1466, 1371, 1119, 1035, 869, 805, 756, 721 cm⁻¹. methyl 4-methyl-4-((trifluoromethyl)thio)pentanoate (3k)⁹: 64% yield; 59mg; $^{1}\mathrm{H}$ NMR (400 MHz, $CDCl_3$) δ 3.66 (s, 3H), 2.47 (t, J = 8.3 Hz, 2H), 2.01 (t, J = 8.1 Hz, 2H), 1.43 (s, 6H). ¹³C NMR (101 MHz, $CDCl_3$) δ 173.7, 131.1 (q, J = 307.6 Hz), 52.1, 51.5, 37.9, 30.1, 29.5.¹⁹F NMR (376 MHz, *CDCl*₃) δ -35.97 (s, 3F). GC-MS (EI): m/z = 129.1 $([M-SCF_3]^+).$ 4-(2-((trifluoromethyl)thio)propan-2-yl)cyclohexan-1-one (**31**)¹⁰: 19% yield; 18mg; $^{1}\mathrm{H}$ NMR (400 MHz, CDCl₃) δ 2.45 – 2.21 (m, 6H), 2.05-1.99 (m, 1H), 1.62-1.51 (m, 2H), 1.46 (s, 6H). ¹³C NMR (101 MHz, $CDCl_3$) δ 210.9, 131.3 (q, J = 309.1 Hz), 55.5, 46.4, 40.9, 27.7, 27.2.¹⁹F NMR (376 MHz, *CDCl*₃) δ -35.01 (s, 3F). GC-MS (EI): m/z = 240.1 (M⁺). 2-(3-methyl-3-((trifluoromethyl)thio)butoxy)isoindoline-1,3-dione (3m)⁸: 54% yield; 72 mg; ¹H NMR (400 MHz, $CDCl_3$) δ 7.83-7.79 (m, 2H), 7.76-7.73 (m, 2H), 4.38 (t, J = 6.4Hz, 2H), 2.22 (t, J = 6.4 Hz, 2H), 1.56 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 163.7,

134.9, 131.0 (q, J = 307.6 Hz), 129.2, 123.9, 75.5, 50.8, 40.9, 30.0.¹⁹F NMR (376 MHz,

 $CDCl_3$) δ -35.89 (s, 3F). MS (EI): m/z = 232.1 ([M-SCF₃]⁺).

2-(3-methyl-3-((trifluoromethyl)thio)butyl)isoindoline-1,3-dione (**3n**)⁸: 81% yield; 103 mg; ¹H NMR (400 MHz, *CDCl₃*) δ 7.82-7.80 (m, 2H), 7.70-7.68 (m, 2H), 3.82 (t, *J* = 7.9 Hz, 2H), 2.04 (t, *J* = 7.9 Hz, 2H), 1.52 (s, 6H). ¹³C NMR (101 MHz, *CDCl₃*) δ 168.3, 134.3, 132.4, 131.0 (q, *J* = 307.9 Hz), 123.5, 50.4, 41.1, 34.5, 29.6.¹⁹F NMR (376 MHz, *CDCl₃*) δ -35.76 (s, 3F). **GC-MS (EI):** m/z = **317.1 (M⁺).**

1-(4-(tert-butyl)phenyl)-4-methyl-4-((trifluoromethyl)thio)pentan-1-one (**3o**): 47% yield; 62 mg; Colorless liquid; ¹H NMR (400 MHz, *CDCl₃*) δ 7.92 (d, *J* = 8.5 Hz, 2H), 7.49 (d, *J* = 8.5 Hz, 2H), 3.14 (t, *J* = 7.8 Hz, 2H), 2.14 (t, *J* = 7.7 Hz, 2H), 1.51 (s, 6H), 1.35 (s, 9H).¹³C NMR (101 MHz, *CDCl₃*) δ 199.1 , 157.3 , 134.5 , 131.3 (q, *J* = 309.1 Hz), 128.4 , 125.9 , 52.1 , 37.1 , 35.5 , 34.4 , 31.4 , 30.0 . ¹⁹F NMR (376 MHz, *CDCl₃*) δ -35.77(s, 3F) . HRMS-ESI (m/z): Calcd for C₁₇H₂₄F₃OS [M + H]⁺, 333.1494. Found, 333.1494. IR(KBr): 2967, 2907,2870, 1683, 1606, 1568, 1470, 1392, 1318, 1225, 1098, 999, 842, 755, 583 cm⁻¹.

3-methyl-3-((trifluoromethyl)thio)butyl benzoate (**3p**)⁹: 83% yield; 97 mg; ¹H NMR (400 MHz, *CDCl₃*) δ 8.03 (d, *J* = 8.0 Hz, 1H), 7.56 (t, *J* = 7.6 Hz, 1H), 7.44 (t, *J* = 7.7 Hz, 2H), 4.52 (t, *J* = 6.7 Hz, 2H), 2.21 (t, *J* = 6.7 Hz, 2H), 1.56 (s, 6H). ¹³C NMR (101 MHz, *CDCl₃*) δ 166.7, 133.4, 131.1 (q, *J* = 307.6 Hz), 130.4, 129.9, 128.7, 61.9, 50.6, 41.6, 30.1.¹⁹F NMR (376 MHz, *CDCl₃*) δ -35.76 (s, 3F). **GC-MS (EI):** m/z = **292.1 (M**⁺). 5-methyl-5-((trifluoromethyl)thio)hexan-2-yl 4-cyanobenzoate (**3q**)⁹: 86% yield; 119 mg; ¹H NMR (400 MHz, *CDCl₃*) δ 8.11 (d, *J* = 8.2 Hz, 2H), 7.73 (d, *J* = 8.2 Hz, 2H), 5.18-5.13 (m, 1H), 1.95 – 1.68 (m, 4H), 1.44 (s, 6H), 1.37 (d, *J* = 6.3 Hz, 3H). ¹³C NMR

(101 MHz, *CDCl₃*) δ 164.7, 134.7, 132.5, 131.2 (q, *J* = 307.6 Hz), 130.3, 118.3, 116.6, 72.8, 51.8, 38.9, 31.4, 29.7, 20.2.¹⁹F NMR (376 MHz, *CDCl₃*) δ -35.80 (s, 3F). **GC-MS (EI):** m/z = **244.1** ([M-SCF₃]⁺).

5-methyl-5-((trifluoromethyl)thio)hexan-2-yl 4-(trifluoromethyl)benzoate (**3r**)⁹: 76% yield; 118 mg; ¹H NMR (400 MHz, *CDCl₃*) δ 8.14 (d, *J* = 8.1 Hz, 2H), 7.71 (d, *J* = 8.1 Hz, 2H), 5.30 – 4.93 (m, 1H), 1.98 – 1.66 (m, 4H), 1.46 (s, 6H), 1.39 (d, *J* = 6.3 Hz, 3H).¹³C NMR (101 MHz, *CDCl₃*) δ 165.3, 134.7 (q, *J* = 32.7 Hz), 134.2, 131.3 (q, *J* = 309.1), 130.3, 125.7 (q, *J* = 3.7 Hz), 124.0 (q, *J* = 272.6 Hz),72.5, 51.9, 39.0, 31.5, 29.8, 20.4.¹⁹F NMR (376 MHz, *CDCl₃*) δ -35.83 (s, 3F), -63.18 (s, 3F). ESI (m/z): C₁₆H₁₈F₆O₂SNa [M + Na]⁺, 411.1.

5-methyl-5-((trifluoromethyl)thio)hexan-2-yl 4-methoxybenzoate **(3s)**⁹: 67% yield; 93 mg; ¹H NMR (400 MHz, *CDCl*₃) δ 7.98 (d, *J* = 8.6 Hz, 2H), 6.91 (d, *J* = 8.8 Hz, 2H), 5.13-5.09 (m, 1H), 3.85 (s, 3H), 1.93 – 1.67 (m, 4H), 1.45 (s, 6H), 1.35 (d, *J* = 6.2 Hz, 3H).¹³C NMR (101 MHz, *CDCl*₃) δ 166.2, 163.6, 131.8, 131.3 (q, *J* = 307.6 Hz), 123.3, 113.9, 71.2, 55.7, 52.0, 39.1, 31.6, 29.8, 20.4.¹⁹F NMR (376 MHz, *CDCl*₃) δ -35.76 (s, 3F). **GC-MS (EI):** m/z = **350.2 (M**⁺).

5-methyl-5-((trifluoromethyl)thio)hexan-2-yl 4-fluorobenzoate **(3t)**⁹: 83% yield; 112 mg; ¹H NMR (400 MHz, *CDCl₃*) δ 8.06-8.02 (m, 2H), 7.10 (t, *J* = 8.5 Hz, 2H), 5.15-5.11 (m, 1H), 1.92– 1.68 (m, 4H), 1.45 (s, 6H), 1.36 (d, *J* = 6.2 Hz, 3H). ¹³C NMR (101 MHz, *CDCl₃*) δ 166.1 (d, *J* = 253.5 Hz), 165.5, 132.4 (d, *J* = 9.8 Hz), 131.3 (q, *J* = 307.6 Hz), 127.2 (d, J = 3.4 Hz), 115.8 (d, J = 21.9 Hz), 71.9, 51.9, 39.0, 31.6, 29.8, 20.4.¹⁹F NMR (376 MHz, *CDCl*₃) δ -35.80 (s, 3F) , -105.96 ~ -106.05 (m, 1F). **GC-MS (EI):** m/z = **237.1** ([M-SCF₃]⁺).

6-(tert-butyl)-4,4-dimethyl-3,4-dihydronaphthalen-1(2H)-one (**30**)': 45% yield; 41 mg; Colorless liquid; ¹H NMR (400 MHz, *CDCl₃*) δ 7.95 (d, *J* = 8.3 Hz, 1H), 7.42 (d, *J* = 1.9 Hz, 1H), 7.33 (dd, *J* = 8.3, 19 Hz, 1H), 2.70 (t, *J* = 6.8 Hz, 2H), 2.01 (t, *J* = 6.8 Hz, 2H), 1.39 (s, 6H), 1.34 (s, 9H).¹³C NMR (101 MHz, *CDCl₃*) δ 198.5 ,157.7, 152.3, 129.1, 127.5, 123.9, 122.6, 37.6, 35.6, 35.4, 34.4, 31.4, 30.1. HRMS-ESI (m/z): Calcd for C₁₆H₂₃O [M + H]⁺, 231.1743. Found, 231.1743. IR(KBr): 3351, 2961, 2868, 1685, 1604, 1465, 1387, 1285, 1198, 1092, 1021, 880, 837, 810, 696, 655, 569, 485 cm⁻¹.

ASSOCIATED CONTENT

Supporting Information Available. Copies of ¹H/¹⁹F/¹³C NMR spectra of compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding author

* Dr. Jin-Hong Lin

Email: jlin@sioc.ac.cn.

* Prof. Xiao-Chun Hang

Email: <u>iamxchhang@njtech.edu.cn.</u>

* Prof. Ji-Chang Xiao

Email: jchxiao@sioc.ac.cn

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The authors thank National Basic Research Program of China (2015CB931903), the National Natural Science Foundation (21421002, 21472222, 21502214, 21672242), the Chinese Academy of Sciences (XDA02020105, XDA02020106), and Key Research Program of Frontier Sciences (CAS) (QYZDJ-SSW-SLH049) for financial support.

<u>REFERENCES</u>

- (1) (a) Leo, A.; Hansch, C.; Elkins, D. Partition coefficients and their uses. Chem. Rev. 1971, 71, 525-616;
 (b) Hansch, C.; Leo, A.; Unger, S. H.; Kim, K. H.; Nikaitani, D.; Lien, E. J. Aromatic substituent constants for structure-activity correlations. J. Med. Chem. 1973, 16, 1207-1216; (c) Hansch, C.; Leo, A.; Taft, R. W. A survey of Hammett substituent constants and resonance and field parameters. Chem. Rev. 1991, 91, 165-195.
- (2) (a) Leroux, F.; Jeschke, P.; Schlosser, M. α-Fluorinated Ethers, Thioethers, and Amines: Anomerically Biased Species. Chem. Rev. 2005, 105, 827-856; (b) Kirsch, P. *Modern Fluoroorganic Chemistry: Synthesis, Reactivity, Applications*; Second ed.; Wiley-VCH: Weinheim, Germany, 2013; (c) Landelle, G.; Panossian, A.; Leroux, F. Trifluoromethyl ethers and -thioethers as tools for medicinal chemistry and drug discovery. Curr. Top. Med. Chem. 2014, 14, 941-951; (d) Xu, X.-H.; Matsuzaki, K.; Shibata, N. Synthetic Methods for Compounds Having CF₃-S Units on Carbon by Trifluoromethylation, Trifluoromethylthiolation, Triflylation, and Related Reactions. Chem. Rev. 2015, 115, 731-764.
- (3) (a) Tlili, A.; Billard, T. Formation of C-SCF₃ Bonds through Direct Trifluoromethylthiolation. Angew. Chem. Int. Ed. 2013, 52, 6818-6819; (b) Chu, L.; Qing, F.-L. Oxidative Trifluoromethylation and Trifluoromethylthiolation Reactions Using (Trifluoromethyl)trimethylsilane as a Nucleophilic CF₃ Source. Acc. Chem. Res. 2014, 47, 1513-1522; (c) Yang, X.; Wu, T.; Phipps, R. J.; Toste, F. D. Advances in Catalytic Enantioselective Fluorination, Mono-, Di-, and Trifluoromethylation, and Trifluoromethylthiolation Reactions. Chem. Rev. 2015, 115, 826-870; (d) Shao, X.; Xu, C.; Lu, L.; Shen,

Q. Shelf-Stable Electrophilic Reagents for Trifluoromethylthiolation. Acc. Chem. Res. 2015, 48, 1227-1236; (e) Chachignon, H. I. n.; Cahard, D. State-of-the-Art in Electrophilic Trifluoromethylthiolation Reagents. Chin. J. Chem . 2016, 34, 445 - 454; (f) Zhang, P.; Lu, L.; Shen, Q. Recent Progress on Direct Trifluoromethylthiolating Reagents and Methods. Acta Chim. Sinica 2017, 75, 744 - 769.

- (4) (a) Tran, L. D.; Popov, I.; Daugulis, O. Copper-promoted sulfenylation of sp² C-H bonds. J. Am. Chem. Soc. 2012, 134, 18237 18240,18234; (b) Yang, Y.-D.; Azuma, A.; Tokunaga, E.; Yamasaki, M.; Shiro, M.; Shibata, N. Trifluoromethanesulfonyl hypervalent iodonium ylide for copper-catalyzed trifluoromethylthiolation of enamines, indoles, and beta-keto esters. J. Am. Chem. Soc. 2013, 135, 8782 8785; (c) Xu, C.; Shen, Q. Palladium-Catalyzed Trifluoromethylthiolation of Aryl C-H Bonds. Org. Lett. 2014, 16, 2046-2049; (d) Yin, W.; Wang, Z.; Huang, Y. Highly ortho-selective trifluoromethylthiolation reactions using a ligand exchange strategy. Adv. Synth. Catal. 2014, 356, 2998-3006; (e) Huang, Z.; Yang, Y.-D.; Tokunaga, E.; Shibata, N. Copper-Catalyzed Regioselective Trifluoromethylthiolation of Pyrroles by Trifluoromethanesulfonyl Hypervalent Iodonium Ylide. Org. Lett. 2015, 17, 1094-1097; (f) Alazet, S.; Billard, T. Electrophilic aromatic trifluoromethylthiolation with the second generation of trifluoromethanesulfenamide. Synlett 2015, 25, 76–78; (g) Wang, Q.; Qi, Z.; Xie, F.; Li, X. Lewis Acid-Catalyzed Electrophilic Trifluoromethylthiolation of (Hetero)Arenes. Adv. Synth. Catal. 2015, 357, 355-360; (h) Yoshida, M.; Kawai, K.; Tanaka, R.; Yoshino, T.; Matsunaga, S. Cp*Co(III)-catalyzed directed C-H trifluoromethylthiolation of 2-phenylpyridines and 6-arylpurines. Chem. Commun. 2017, 53, 5974-5977.
- (5) (a) Chen, C.; Chu, L.; Qing, F.-L. Metal-free oxidative trifluoromethylthiolation of terminal alkynes with CF3SiMe3 and elemental sulfur. J. Am. Chem. Soc. 2012, 134, 12454 12457; (b) Alazet, S.; Zimmer, L.; Billard, T. Base-catalyzed electrophilic trifluoromethylthiolation of terminal alkynes. Angew. Chem. Int. Ed. 2013, 52, 10814 10817; (c) Pluta, R.; Nikolaienko, P.; Rueping, M. Direct catalytic trifluoromethylthiolation of boronic acids and alkynes employing electrophilic shelf-stable N-(trifluoromethylthio)phthalimide. Angew. Chem. Int. Ed. 2014, 53, 1650 1653.
- (6) Chen, C.; Xu, X.-H.; Yang, B.; Qing, F.-L. Copper-Catalyzed Direct Trifluoromethylthiolation of Benzylic
 C-H Bonds via Nondirected Oxidative C(sp³)-H Activation. Org. Lett. 2014, 16, 3372-3375.
- (7) Xiong, H.-Y.; Besset, T.; Cahard, D.; Pannecoucke, X. Palladium(II)-Catalyzed Directed Trifluoromethylthiolation of Unactivated C(sp³)-H Bonds. J. Org. Chem. 2015, 80, 4204-4212.
- (8) Wu, H.; Xiao, Z.; Wu, J.; Guo, Y.; Xiao, J.-C.; Liu, C.; Chen, Q.-Y. Direct trifluoromethylthiolation of unactivated C(sp³)-H using silver(I) trifluoromethanethiolate and potassium persulfate. Angew. Chem. Int. Ed. 2015, 54, 4070 - 4074.
- (9) Guo, S.; Zhang, X.; Tang, P. Silver-mediated oxidative aliphatic C-H trifluoromethylthiolation. Angew. Chem. Int. Ed. 2015, 54, 4065 - 4069.
- (10) Mukherjee, S.; Maji, B.; Tlahuext-Aca, A.; Glorius, F. Visible-Light-Promoted Activation of Unactivated C(sp(3))-H Bonds and Their Selective Trifluoromethylthiolation. J Am Chem Soc 2016, 138, 16200-16203.
- (11) (a) Zheng, J.; Cai, J.; Lin, J.-H.; Guo, Y.; Xiao, J.-C. Synthesis and decarboxylative Wittig reaction of difluoromethylene phosphobetaine. Chem. Commun. 2013, 49, 7513-7515; (b) Zheng, J.; Lin, J.-H.; Cai, J.; Xiao, J.-C. Conversion between Difluorocarbene and Difluoromethylene Ylide. Chem. Eur. J. 2013,

19, 15261-15266; (c) Zheng, J.; Wang, L.; Lin, J.-H.; Xiao, J.-C.; Liang, S. H. Difluorocarbene-Derived Trifluoromethylthiolation and [18F]Trifluoromethylthiolation of Aliphatic Electrophiles. Angew. Chem. Int. Ed. 2015, 54, 13236-13240; (d) Deng, Z.; Lin, J.-H.; Cai, J.; Xiao, J.-C. Direct Nucleophilic Difluoromethylation of Carbonyl Compounds. Org. Lett. 2016, 18, 3206-3209; (e) Deng, X.-Y.; Lin, J.-H.; Xiao, J.-C. Pd-Catalyzed Transfer of Difluorocarbene. Org. Lett. 2016, 18, 4384-4387; (f) Zheng, J.; Cheng, R.; Lin, J.-H.; Yu, D. H.; Ma, L.; Jia, L.; Zhang, L.; Wang, L.; Xiao, J.-C.; Liang, S. H. An Unconventional Mechanistic Insight into SCF₃ Formation from Difluorocarbene: Preparation of ¹⁸F-Labeled alpha-SCF₃ Carbonyl Compounds. Angew. Chem. Int. Ed. 2017, 56, 3196-3200; (g) Yu, J.; Lin, J.-H.; Xiao, J.-C. Reaction of Thiocarbonyl Fluoride Generated from Difluorocarbene with Amines. Angew. Chem. Int. Ed. 2017, 56, 16669 - 16673. (12) (a) Chachignon, H.; Maeno, M.; Kondo, H.; Shibata, N.; Cahard, D. Novel Use of CF₃SO₂Cl for the Metal-Free Electrophilic Trifluoromethylthiolation. Org. Lett. 2016, 18, 2467-2470; (b) Lu, K.; Deng, Z.; Li, M.; Li, T.; Zhao, X. Transition metal-free direct trifluoromethylthiolation of indoles using trifluoromethanesulfonyl chloride in the presence of triphenylphosphine. Org. Biomol. Chem. 2017, 15, 1254 - 1260; (c) Jiang, L.; Yi, W.; Liu, Q. Direct Phosphorus-Induced Fluoroalkylthiolation with Fluoroalkylsulfonyl Chlorides. Adv. Synth. Catal. 2016, 358, 3700-3705.

- (13) Jiang, L.; Qian, J.; Yi, W.; Lu, G.; Cai, C.; Zhang, W. Direct trifluoromethylthiolation and perfluoroalkylthiolation of C(sp²)-H bonds with CF₃SO₂Na and RfSO₂Na. Angew. Chem. Int. Ed. 2015, 54, 14965 - 14969.
- (14) Vetter, A. C.; Nikitin, K.; Gilheany, D. G. Long sought synthesis of quaternary phosphonium salts from phosphine oxides: inverse reactivity approach. Chem. Commun. 2018, 54, 5843-5846.
- (15) House, D. A. Kinetics and Mechanism of Oxidations by Peroxydisulfate. Chem. Rev. 1962, 62, 185-203.

ACS Paragon Plus Environment