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A new series of 2,4-diamino pyrimidine derivatives with a sulfone-substituted pyrazole right side-chain
were discovered as potent anaplastic lymphoma kinase inhibitors. Structure–activity relationship of the
left side-chain on phenyl substitutions were explored which delivered many potent ALK inhibitors.
Among them, 29a showed favorable pharmacokinetic profiles in rats and dogs together with significant
antitumor efficacy in EML4-ALK fusion xenograft model.

� 2015 Elsevier Ltd. All rights reserved.
Anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase
that belongs to the insulin receptor superfamily, which contains
other members such as IGF-1 receptor (IGF-1R), insulin related
receptor (IR) and leukocyte tyrosine kinase (LTK). The kinase was
firstly identified in 1994 as a part of the nucleophosmin (NPM)–
ALK fusion protein found in around 75% of ALK-positive anaplastic
large cell lymphoma (ALCL) cases.1 In adult mice, ALK expression is
low and primarily expressed in brain tissue and plays an important
role in the development and function of the central nervous sys-
tem.2 Although the physiological function of ALK in the normal
body is unclear, ALK fusion proteins have been found in many
human cancers.3

Most recently, ALK has become a hot drug target4 in cancer
therapy along with the identification of the oncogenic fusion gene
echinoderm micro-tubule-associated protein-like 4 (EML4)—ALK
in around 5% non-small cell lung cancer (NSCLC) patients.5

Notably, EML4-ALK translocation is almost mutually exclusive
with the other oncogenes such as epidermal growth factor receptor
(EGFR) and v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog
(KRAS) mutations.6 Thus the development of selective ALK inhibi-
tors would be a promising treatment option for ALK-driven
cancers.

As the first ALK inhibitor approved by FDA in 2011, crizotinib (1,
PF2341066) was initially designed and developed as a c-Met
inhibitor which also showed good antitumor efficacy in ALK-de-
pendent xenograft models.7 After the initial dramatic responses
to crizotinib, however, the patients eventually developed drug
resistance within 12 months after treatment with crizotinib. The
proposed mechanisms of acquired resistance include secondary
(point) mutations (especially for gatekeeper mutation L1196M),
ALK gene amplification, and up-regulation of ‘ALK-independent’
cell-signaling bypass.8 Now several second generation ALK inhibi-
tors have been or are being developed at different clinical stages,9

including the second ALK inhibitor ceritinib (2, LDK-378) approved
by FDA in April, 2014.

The 2,4-diarylamino pyrimidine analogs (DAAPs) were exten-
sively explored in this area, resulting in the discovery of several
potent and selective ALK inhibitors (Fig. 1) such as LDK-378
(2),10 NVP-TAE-684 (3),11 AP-26113 (4),12 CEP-37440,13 etc (among
them, the development of 3 was discontinued.10). These inhibitors
share the common 2,4-diarylamino unit.
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Figure 1. Known ALK inhibitors.
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Recently, by applying a bioisosteric strategy, we discovered a
series of potent ALK inhibitors with a unique amino pyrazole
side-chain replacing 4-aryl on DAAPs scaffold, exemplified by the
molecule 6 and 7 (Fig. 2) which showed good in vitro potency
against ALK in enzyme and cellular assays.14

In the left hand of the structures, there is a structural feature,
4-amino aniline. However, it is generally considered to be a
structural alert for creating potential safety liability through the
formation of the reactive p-diiminoquinone species A (Scheme 1).
This metabolic liability has been investigated by Novartis10 and
Cephalon15 during their studies of ALK inhibitors.

To avoid this problem, we decided to optimize our leading
compound by moving out N on morpholine (Fig. 3) to deliver a
new ALK inhibitor with good anti-tumor efficacy and improved
PK properties.

General synthetic routes of new ALK inhibitors are shown in
Schemes 2 and 3. The left side-chain anilines were synthesized in
several steps. As shown in Scheme 2, SNAr substitution of fluoride
8 with different alcohols in DMF under basic condition afforded 9
in good yield. Intermediate 13 containing fluorine was prepared
from phenol 12 through an etherification followed by the nitration
using HNO3. With 9 and 13 in hand, Suzuki coupling followed by
catalytic hydrogenation using PtO2 or Pd/C provided key alkoxy
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Figure 2. Our early ALK inhibitors.
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substituted anilines 11a–11i. The intermediates 11j–11l contain-
ing trifluoromethoxy, trifluoromethyl and isopropyl groups were
obtained from 16 through bromination using NBS, followed by
Suzuki coupling and subsequent hydrogenation. Anilines 16 were
in turn prepared from starting materials 14, 15 and 18 respectively.
The Negishi coupling between in situ formed organozinc reagent
21 and bromide 9 provided the product 22 with a total 25% yield.
The last hydrogenation on 22 afforded aniline 11m.

Scheme 3 summarized the synthesis of the right hand piece and
its coupling with the left hand piece to provide the final products.
Starting from 3-nitropyrazole 23, methylation followed by nitra-
tion produced dinitro compound 24. Subsequent nucleophilic sub-
stitution by isopropyl thiol, oxidation with m-CPBA and reduction
of the nitro compound 25 afforded amino pyrazole 26, which
reacted with trichloropyrimidine to provide key intermediate 27.
Buchwald coupling between 27 and amines 11 followed by depro-
tection afforded desired molecules 28, which were further func-
tionalized to deliver the final products 29.

For those compounds containing different R1 substitution, we
firstly evaluated their potency against ALK in enzyme16 and cellu-
lar17 assays. As shown in Table 1, the simple alkoxy substitution
was tolerated and compounds 28b and 29b containing
cyclopropyloxy displayed the best activities. Slightly bulky substi-
tutions in compounds such as 29c, 29d and 29e diminished the
potencies in H2228 cell line. By the comparison between 28a,
28b and 29a, 29b, N-methylation contributed to improve the activ-
ities, especially in cellular assays. In addition, the targets 29f and
29g with carbon attached to the phenyl ring directly were 3 to 5
folds less potent, demonstrating the importance of oxygen linkage.
Based on the structure of ALK and known literatures,10,18 we
believe that the relatively bulky R1 substitutions in Table 1 should
provide good ALK selectivities and these will be studied in the
future.

With the best cyclopropyloxy group set on R1, the effect of R2

substitution was then explored. R2 is at the para-position of R1

and might have some potential metabolic liabilities. As shown in
Table 2, several substitutions were tested against ALK. Molecules
29h and 29b with H and Me respectively showed the most potent
profiles but 29h displayed much higher in vivo clearance in rat
ett. (2015), http://dx.doi.org/10.1016/j.bmcl.2015.06.021
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than 29b (79.8 vs 22.7 mL/min/kg), possibly due to the existence of
the metabolically labile para-H. The substitutions with electro-
withdrawing groups such as F, Cl and CN did not improve the
potency.

Piperidine substitution in molecule points to the solvent area
once bound to the ALK enzyme and SAR on this region is summa-
rized on Table 3. Compared with piperidine, molecules 28l, 29l,
28m and 29m containing the 4-member and 5-member hetero-
cyclic substitutions showed slightly less potency than 28a and
28b. The simple alkylated piperidines such as 29n, 29o and 29p
showed very good ALK inhibition while compound 29q with
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pinacol ester, Pd(PPh3)2Cl2, Na2CO3, dioxane/H2O, 100 �C, 80–90%; (c) PtO2 or Pd/C,
3, Ac2O, �5 �C, 72%; (f) Fe, NH4Cl, 80 �C, 98%; (g) methyl boronic acid, Pd(dppf)Cl2,
er, Pd(dppf)Cl2, NaHCO3, dioxane/H2O, 95 �C, 85%; (j) Pd/C, H2, MeOH, rt, 79%; (k) Zn,
m) Pd/C, H2, MeOH, rt, 55%.
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Table 1
SAR of ortho-substitution of aniline
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Compound R1 R ALK
WT

ALK
(L1196M)

Karpas-299
cell

H2228
cell

IC50

(nM)
IC50 (nM) IC50 (nM) IC50

(nM)

28a PrOi
∗

H 8 20 17 225
29a Me 4 8 10 96
28b O

∗
H 2 4 9 122

29b Me 2 4 6 52

28c
O

∗
H 10 17 43 262

29c Me 15 48 74 226

29d

O
F

F

∗
Me 10 23 62 403

29e F3CO ∗ Me 6 10 20 374

29f F3C ∗ Me 22 49 74 1078

29g Pri
∗ Me 12 28 — 660

Table 2
SAR of R2 substitution
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Compound R2 ALK WT
IC50 (nM)

ALK (L1196M)
IC50 (nM)

Karpas-299
cell
IC50 (nM)

H2228
cell
IC50 (nM)

29h H 3 5 7 36
29b Me 2 4 6 52
29i F 3 4 17 125
29j Cl 4 10 15 103
29k CN 8 13 100 165
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(dimethylamino)ethyl did not improve the potency. Molecules 29r,
29s and 29t containing electro-withdrawing groups also main-
tained the ALK potency but with much lower in vivo
exposure which might be due to stability issue (data not shown).
Lastly, the 3-substituted piperidine 29u demonstrated very good
cell activity. However, one enantiomer of 29u did not show
promising in vivo efficacy and the other one displayed unfavorable
hERG tolerability.
Please cite this article in press as: Zhang, P.; et al. Bioorg. Med. Chem. L
The pharmacokinetic19 properties of 29a were evaluated in rats
and dogs and the compound showed favorable clearance, accept-
able half life and good bio-availabilities in both species (Table 4).
Then this compound was evaluated on a well-established NCI-
H2228 (EML4-ALK NSCLC) xenograft model in mice. As shown in
Figure 4, compound 29a showed dose-dependent antitumor effi-
cacy20 when the animals were treated orally once daily for two
weeks. There was almost no anti-tumor inhibition at 3 mg/kg,
however, a significant tumor regression was observed at the dose
of 30 mg/kg without obvious body weight loss. Notably, almost
complete tumor regression at 30 mg/kg was observed after the
dosing was stopped for several days.

In summary, we disclosed the discovery of a series of new 2,4-
diarylaminopyrimides (DAAPs) with a novel 3-sulfonyl-4-amino
pyrazole side-chain as potent ALK inhibitors. We performed exten-
sive SAR exploration on the left hand side of the scaffold and deliv-
ered many active compounds displaying nanomolar inhibitory
activity against ALK enzymes in wild-type and mutant assays.
ett. (2015), http://dx.doi.org/10.1016/j.bmcl.2015.06.021
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SAR of R3
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Table 4
Pharmacokinetic properties of 29a in Sprague-Dawley rats and beagle dogs

PK parametersa Ratb Dogc

i.v.
Dose (mg/kg) 1 1
t1/2 (h) 5.1 4.9
AUC0-1 (ng h/mL) 988 637
Vd (L/kg) 7.5 11
CL (mL/min/kg) 16.9 26.2

p.o.
Dose (mg/kg) 5 3
Cmax(ng/mL) 199 85.8
tmax(h) 6.7 2.0
AUC0-1 (ng h/mL) 3122 952
F (%) 63.2 49.2

a Values are means data from three animals.
b Vehicle: DMSO (10%) + 20% HP-b-CD (90%).
c Vehicle: 20% HP-b-CD.
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These compounds also showed very good cell anti-proliferation
activity. Compound 29a showed good pharmacokinetic properties
in rats and dogs. Meanwhile, 29a also demonstrated good dose-de-
pendent anti-tumor efficacy in xenograft mice model. Currently,
our efforts toward the identification of a drug candidate are ongo-
ing and the result will be reported in the future.
Please cite this article in press as: Zhang, P.; et al. Bioorg. Med. Chem. L
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