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Parallel Synthesis and Biological Evaluation of Destruxin E 
Analogs Modified with a Side Chain in the αα-Hydroxycarboxylic 
Acid Moiety 
Masahito Yoshida,[a, §] Kenta Adachi, [a] Hayato Murase, [b] Hiroshi Nakagawa, [b] and Takayuki Doi*[a] 

 

Abstract: This study demonstrates the synthesis and biological 
evaluation of destruxin E analogs possessing various functional 
groups in the α-hydroxycarboxylic acid moiety. Parallel synthesis of 
eleven analogs was successfully achieved through solution-phase 
peptide synthesis and macrolactonization. Biological evaluation of 
the synthetic analogs using osteoclast-like multi nuclear cells (OCLs) 
revealed that the epoxide group in the side chain of α-
hydroxycarboxylic acid and the orientation of the oxygen atom are 
essential factors in the desired potent activity that induces 
morphological changes in OCLs for the inhibition of bone-resorbing 
activity. 

Introduction 

19-Membered cyclodepsipeptide destruxin E (1) was isolated 
from Metarhidium anisopliae by Päis et al. in 1981 and is 
composed of five amino acids (β-Ala, MeAla, MeVal, Ile, and 
Pro), and an α-hydroxycarboxylic acid with a terminal epoxide-
containing a C3 side chain.1 Thus far, various natural and 
synthetic analogs have been reported2; in particular, 1 exhibits 
the most potent vacuolar (H+)-ATPase (V-ATPase) inhibitory 
activity.3 We recently achieved the total synthesis of 1 and have 
determined that the (S)-epoxide moiety is important for inducing 
the potent V-ATPase inhibitory activity, whereas the presence of 
(R)-epoxide significantly decreases the activity of analog 2.4 In 
addition, destruxin E (1) reversibly inhibits the bone-resorbing 
activity by inducing morphological changes in osteoclasts-like 
multinuclear cells (OCLs) at an even lower dose level without 
affecting cell viability,5 indicating that 1 and its analogs could be 
promising candidates for the development of novel anti-
resorptive agents for therapeutics used to treat osteoporosis. 
Although the structure-activity relationships (SARs) have been 
studied by altering the amino acid moieties, a SAR study 
focusing on the epoxide-containing C3 side chain in the α-

hydroxycarboxylic acid moiety has not yet been carried out, 
except for a study on the hydrophobic allyl and isobutyl groups 
shown in destruxins A (3a) and B (3b), which exhibit a potent 
activity that is 20-fold less than that found in destruxin E (1). In 
addition, destruxin E diol (3c) is inactive against OCLs, 
indicating that a hydrophilic moiety such as a hydroxy group 
could be prohibited for the biological activity (Figure 1).6 In this 
study, we achieved the synthesis of destruxin E analogs with 
modification of the epoxide side chain on the α-
hydroxycarboxylic acid and evaluated their biological activity to 
elucidate the effect of the epoxide moiety. 

 

Figure 1. Destruxin E (1), epi-destruxin E (2), destruxin A (3a), B (3b), and 
diol derivative 3c. 

Results and Discussion 

To explain the structure–activity relationship of the α-
hydroxycarboxylic acid moiety, we designed various analogs 
possessing different functional groups on the side chain, such as 
a methyl ether 4a, methyl ketone 4b, difluoromethylene 4c, 
cyclopropanes 4d–4f, and oxetanes 4g–4i. In addition, we also 
designed the synthesis of epoxide homologs 4j–4k to determine 
the role of the epoxide moiety in the biological activity. 
Retrosynthesis of the analogs is shown in Scheme 1. According 
to the total synthesis of destruxin E (1),4, 7 the desired analogs 4 
would be afforded through macrolactonization of the linear 
precursors 5, this can be prepared by amidation of acid 6, 
containing various functional groups in the side chain and the 
known tetrapeptide 7 that we reported previously. 
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Scheme 1. Retrosynthesis of destruxin E analogs. 

As detailed in the retrosynthesis described above, we initially 
attempted the preparation of the methyl ether 9a and the 
cyclopropyl derivatives 9d–9f (Scheme 2). The oxidative 
cleavage of the alkene moiety in 87 afforded aldehyde and 
reduction of the resulting aldehyde followed by O-methylation 
using Me3OBF4 provided the desired methyl ether 9a in 82% 
yield. The cyclopropyl derivatives 9d–9f were prepared as 
follows: the Simmons–Smith reaction of 8 using CH2I2/Et2Zn 
afforded 9d in 83% yield. However, the preparation of 
difluorocyclopropane moiety in dipeptide 8 using difluorocarbene 
generated from trimethylsilyl fluorosulfonyldifluoroacetate 
(TFDA)/NaF8 failed, and a complex mixture including a 
desilylated product was obtained. Fortunately, the 
difluoromethylenation of the alkene 107 using 
(bromodifluoromethyl)trimethylsilane/tetrabutylammonium 
bromide (TBAB)9 proceeded smoothly to afford 
difluorocyclopropane 11 in 59% yield as a 1:1 diastereomer 
mixture.  

 

Scheme 2. Synthesis of methyl ester 9a and cyclopropyl derivatives 9d–9f. 

After hydrolysis of the methyl ester in 11, amidation of the 
resulting acid with H-Pro-OBn was performed using 
PyBrop10/DIEA, gave the less polar 9e (27% yield) and polar 9f 
(29% yield), respectively, isolated by silica gel column 
chromatography. The absolute configurations of the newly 
formed stereocenters in 9e and 9f are not determined. 
 
Oxetane derivatives of 9g–9i were prepared from commercially 
available (±)-glycidol (12), and the details of the reaction are 
illustrated in Schemes 3 and 4. A hydrolytic kinetic resolution of 
the racemic epoxide 13 was carried out using the (S, S)-Salen-
Co complex as a catalyst, and an enantio-enriched epoxide (R)-
13 was afforded in 47% yield concomitantly with diol (S)-14, 
obtained in 48% yield.11,12 Alkenylation of (R)-13 using 
vinylcuprate provided alkene 15 that was converted to a 1:1 
diastereomeric mixture of epoxide 16 in 97% yield via 
epoxidation with m-CPBA and by protecting the resulting alcohol 
with a TBS group. A hydrolytic kinetic resolution of the epoxide 
moiety in 16 using the (S, S)-Salen-Co complex resulted in the 
formation of the diol (2R, 4S)-1713 (48% yield) and the remaining 
epoxide (2S, 4S)-16a (41% yield) as a single diastereomer. The 
obtained diol (2R, 4S)-17 was converted via two steps into the 
corresponding epoxide (2S, 4R)-16b in 72% yield. 

 

Scheme 3. Preparation of epoxides (2S, 4S)-16a and (2S, 4R)-16b. 

After synthesizing the desired epoxides, 16a and 16b, formation 
of oxetane was carried out by treatment with trimethylsulfonium 
iodide14 under basic conditions to afford (2S, 4R)-18a and (2S, 
4S)-18b, respectively (Scheme 4). THP group was removed, 
and the resulting alcohol was oxidized to acid, followed by 
amidation with H-Pro-OBn to produce the oxetane-containing 
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acylproline derivatives 9g and 9h in moderate yields. In addition, 
we also attempted to prepare the oxetane derivative 9i from (S)-
14. Protection of the diol in (S)-14 with TBS groups, followed by 
removal of the THP group using Et2AlCl afforded alcohol 19 in 
92% yield.12 After conversion of the resulting alcohol to mesylate, 
substitution with dimethyl malonate under basic conditions 
afforded dimethyl ester 20 in 90% yield. Treatment of dimethyl 
ester 20 with LiAlH4 afforded diol 21, and formation of an 
oxetane moiety was achieved smoothly using TsCl/BuLi15 to 
provide 22 in 81% yield. Finally, the selective removal of the 
TBS group on the primary alcohol lead to 23, this was then 
followed by coupling with H-Pro-OBn via three steps to produce 
9i, which possessed a symmetrical oxetane moiety. 

 

Scheme 4. Synthesis of oxetane derivatives 9g–9i. 

Next, we investigated the synthesis of acylproline derivatives 9b, 
9c, 9l, and 9m, side-chains of which were elongated with one-
carbon unit when compared with natural product 1 (Scheme 5). 
Nucleophilic addition of allyl copper reagent to epoxide (R)-13 
provided 24, which was converted via two steps to afford 
primary alcohol 25. Methyl ester 26 was prepared from 25 via 
three steps in 60% yield. Wacker oxidation of terminal alkene in 

26 proceeded smoothly, leading to methyl ketone 27, which was 
treated with diethylaminosulfur trifluoride (DAST) at room 
temperature to afford 28 in 34% yield. To achieve the synthesis 
of epoxide-containing analogs 4j and 4k, diol-containing 
acylprolines 9l and 9m were prepared from methyl hexenoate 
derivative 26. Dihydroxylation of the terminal alkene 26 was 
performed by treatment with OsO4/N-methylmorpholine N-oxide 
(NMO) to provide diols as a 1:1 mixture of diastereomers. The 
resulting mixture was subsequently subjected to basic conditions, 
and the primary alcohol in the resulting lactone was acylated 
with benzoyl chloride to afford benzoates (2S, 5S)-29a and (2S, 
5R)-29b, respectively.16 After separation of the above 
diastereomers by column chromatography, solvolysis was 
carried out under basic conditions, followed by protection of the 
resulting diol that provided methyl esters (2S, 5S)-30a and (2S, 
5R)-30b. Finally, acylprolines 9 were synthesized as follows; 
hydrolysis of the methyl esters in 27, 28, and 30 using LiOH in 
the mixed solvents afforded the corresponding acids that were 
subsequently amidated with H-Pro-OBn using PyBroP/DIEA to 
provide the desired 9b, 9c, 9l, and 9m in moderate yields. 

 

Scheme 5. Preparation of the acylprolines 9b, 9c, 9l, and 9m.   
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Scheme 6. Total synthesis of destruxin E analogs 4 

 
Successfully having the desired 9, we synthesized destruxin E 
analogs 4, details of which are illustrated in Scheme 6. 
Hydrogenolysis or hydrolysis of benzyl ester in 9a–9i, 9l, and 
9m were performed leading to the corresponding acids, which 
were subsequently amidated with the tetrapeptide 77 using N-(3-
dimethylaminopropyl)-N'-ethylcarbodiimide (EDCI)/1-hydroxy-7-
azabenzotriazole (HOAt) to afford hexapeptides 5a–5i, 5l, and 
5m in good to excellent yields. After removal of the protecting 
groups at the N- and C-terminus, macrolactonization of the 
resulting precursors was successfully achieved using 2-methyl-
6-nitrobenzoic anhydride (MNBA)/4-(dimethylamino)pyridine N-
oxide (DMAPO)17 to provide the desired analogs 4a–4i, 4l, and 
4m in moderate yields (34–85%). In addition, the formation of 
epoxide from 4l and 4m, as well as the previously reported 
procedure,4,7 furnished 4j and 4k, respectively. 
 
The synthetic analogs were then evaluated for the morphological 
changes in OCLs,18 and the results are summarized in Table 1. 
As we have previously reported, destruxin E (1), epi-2, and 
destruxin A (3a) and B (3b) induce morphological changes at 
minimum concentrations of 0.04, 5.0, 1.6, and 0.80 µM, 
respectively (entries 1–4). Biological activities of methyl ether 4a, 
methyl ketone 4b, difluoromethylene 4c, and cyclopropyl analog 
4d were found to be similar to destruxin B (3b) (entries 5–8). In 
contrast, the biological activity of difluorocyclopropyl analogs 4e 
and 4f significantly decreased to 3.1 µM (entries 9 and 10), 
indicating that gem-difluorocyclopropane is not a bioisostere of 
the corresponding epoxide. Notably, the activity was not retained 
after the substitution of the epoxide by an oxetane moiety 
(entries 11–13). In addition, the (S)-epoxide homolog 4j 
exhibited 10-fold less activity than destruxin E (1) and the (R)-
epoxide homolog 4k further diminished the activity (entries 14 
and 15), although 4j was found to be the most potent among the 
analogs 4a–4k. Therefore, the epoxide moiety in the side chain 
of the α-hydroxy acid could play a crucial role in inducing the 

morphological changes at a lower concentration, and a target for 
destruxins in OCLs would recognize the orientation of the 
epoxide moiety to exhibit the desired biological activity. 

 

Table 1. Biological Evaluation of Destruxin E Analogs for Morphological 
Changes in OCLs 

Entry Analog R Activity [µM][a] 
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2[b] 2 
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11 4g 
 

6.3 

12 4h 
 

13 

13 4i 
 

25 

14 4j 
 

0.40 

15 4k 
 

3.1 

aMinimum concentration for morphological changes. b See ref 5b. c See ref 
6. 

Conclusions 

In conclusion, we investigated the synthesis and biological 
evaluation of destruxin E analogs that were replaced with 
various α-hydroxycarboxylic acid derivatives. Acylproline 
derivatives 9, key components for the synthesis of the analog, 
were successfully prepared, and amidation of the resulting 9 
with tetrapeptide, followed by macrolactonization in parallel 
furnished eleven analogs 4a–4k, each possessed different 
functional groups in the side chain of α-hydroxycarboxylic acid 
moiety. Biological evaluation of the synthetic analogs against 
OCLs indicated that the modification of the side chain did not 
allow the biological activity of the parent destruxin E to be 
retained. Although, (S)-epoxide homolog 4j was the most potent 
among the synthetic analogs, meaning that the (S)-epoxide 
moiety in the side chain of α-hydroxycarboxylic acid could be an 
essential factor for the induction of morphological changes of 
OCLs at a lower concentration. Destruxin E reversibly inhibits 
the bone-resorbing activity of OCLs, therefore elucidation of the 
mode of action could be interesting, in particular, to determine 
whether destruxin E binds to a target molecule in OCLs by a 
covalent linkage or not. Further investigation of the mode of 
action is underway by a chemical biology approach using a 
molecular probe of the destruxin E analogs. 

Experimental Section 

General 

All commercially available reagents were used as received. Dry THF and 
CH2Cl2 (Kanto Chemical Co.) were obtained through commercially 
available pre-dried, oxygen-free formulations, and through activated 
alumina columns. MeOH was distilled from iodide and magnesium 
turnings. DMF was purchased from Wako (for peptide synthesis, grade: 
99.5%). All reactions in the solution-phase were monitored by thin-layer 
chromatography carried out on 0.2 mm E. Merck silica gel plates (60F-
254) with UV light, and visualized with anisaldehyde, or 10% ethanolic 
phosphomolybdic acid. Silica gel 60N (Kanto Chemical Co. 100–210 µm) 
was used for column chromatography. 1H NMR spectra (400 or 600 MHz) 
and 13C spectra (100 or 150 MHz) were recorded on JEOL JNM-AL400 

or JEOL JNM-ECA600 spectrometers in the indicated solvent. Chemical 
shifts (δ) are reported in units parts per million (ppm), relative to the 
signal for the internal standard tetramethylsilane (0 ppm for 1H) for 
solutions in CDCl3. NMR spectral data are reported as follows: 
chloroform (7.26 ppm for 1H) or chloroform-d (77.0 ppm for 13C), DMSO 
(2.49 ppm for 1H), DMSO-d6 (39.5 ppm for 13C) when the internal 
standard is not indicated. Multiplicities are reported by the following 
abbreviations: s (singlet), d (doublet), t (triplet), q (quartet), quin (quintet), 
m (multiplet) dd (double doublet), dt (double triplet), ddd (double double 
doublet), br (broad singlet), and J (coupling constants in Herts). IR 
spectra were recorded on a JASCO FT/IR-4100. Only the strongest 
and/or structurally important absorption are recorded as the IR data 
afforded in cm−1. Optical rotations were measured on a JASCO P-1000 
polarimeter. Melting points were recorded on a Round Science RFS-10 
instrument and are uncorrected. Mass spectra and high-resolution mass 
spectra were measured on ThermoScienificTM ExactiveTM Plus Orbitrap 
Mass Spectrometer (for ESI), JEOL JMS-DX303 (for EI) and JMS-700 
(for FAB). 

General procedure I: Macrolactonization Using MNBA/DMAPO 

To a solution of hexapeptide 5 (1.00 equiv) in THF (5 mL/mmol) was 
slowly added a solution of TBAF (1 M in THF solution, 3 equiv) in THF at 
0 ºC under an argon atmosphere. After the mixture was stirred at room 
temperature for 9 h, DOWEX 80WX8-400 (1 mg/µmol) was added at 0 ºC. 
The reaction mixture was filtered through a pad of Celite®, and the filtrate 
was concentrated in vacuo. The crude cyclization precursor was used for 
next reaction after short pass silica gel column chromatography. 

To a solution of the crude cyclization precursor and DMAPO (2.00 equiv) 
in dry CH2Cl2 (330 mL/mmol) was added MNBA (3.00 equiv) at 0 ºC 
under an argon atmosphere. After being stirred 30 ºC for 48 h, the 
reaction mixture was poured into saturated aqueous NaHCO3 and the 
aqueous layer was extracted with CHCl3. The organic layer was washed 
with brine, dried over MgSO4 and filtered. The filtrate was concentrated in 
vacuo, and the resulting residue was purified by silica gel column 
chromatography (eluted with CHCl3/MeOH = 100/1) to afford 
macrolactone 4 as a yellow oil. 

4a: Yield (2 steps): 73% (19.3 mg, 0.0324 mmol); 1H NMR (600 MHz, 
CDCl3) δ 8.21 (1H, d, J = 8.5 Hz), 7.18 (1H, d, J = 9.2 Hz), 5.18 (1H, q, J 
= 6.7 Hz), 5.05 (1H, dd, J = 5.1, 8.5 Hz). 4.96 (1H, d, J = 10.9 Hz), 4.89 
(1H, dd, J = 6.7, 9.2 Hz), 4.68 (1H, d, J = 7.5 Hz), 4.02–4.08 (1H, m), 
3.90 (1H, brt, J = 9.2 Hz), 3.52–3.58 (2H, m), 3.42–3.46 (1H, m), 3.33 
(3H, s), 3.23 (3H, s, j), 3.08 (1H, brt, J = 12.1 Hz), 2.73 (3H, s), 2.67 (1H, 
ddd, J = 1.9, 11.5, 18.4 Hz), 2.57 (1H, dd, J = 4.3, 18.4 Hz), 2.44–2.49 
(1H, m), 2.28–2.35 (1H, m), 1.88–2.14 (6H, m), 1.39–1.45 (1H, m), 1.27–
1.35 (4H, m), 0.93 (3H, d, J = 6.5 Hz), 0.89 (3H, d, J = 6.5 Hz), 0.84–0.87 
(6H, m); 13C NMR (150 MHz, CDCl3) δ 173.6, 173.5, 171.1, 170.9, 169.7, 
169.4, 70.6, 67.6, 60.7, 58.7, 58.0, 55.5, 53.6, 46.4, 37.5, 34.4, 33.2, 
30.9, 30.8, 29.1, 28.1, 27.2, 24.4, 24.0, 20.0, 19.6, 15.4, 15.2, 11.4; IR 
(neat) 2965, 1731, 1668, 1631, 1517, 1444, 1180, 1120, 752 cm−1; [α]24

D 
–211 (c 0.634, CHCl3); HRMS [ESI] calcd for C29H49N5O8Na [M+Na]+ 
618.3473, found 618.3466. 

4b: Yield (2 steps): 64% (23.1 mg, 0.0378 mmol); 1H NMR (600 MHz, 
CDCl3) δ 8.17 (1H, d, J = 8.2 Hz), 7.16 (1H, d, J = 9.2 Hz), 5.20 (1H, q, J 
= 6.8 Hz), 4.93–4.95 (2H, m), 4.86 (1H, dd, J = 6.7, 9.2 Hz), 4.63 (1H, d, 
J = 7.2 Hz), 4.03–4.08 (1H, m), 3.85 (1H, dd, J = 1.8, 9.3 Hz), 3.65–3.70 
(1H, m), 3.22 (3H, s), 3.04–3.09 (1H, m), 2.64–2.78 (6H, m), 2.56 (1H, m), 
2.47–2.50 (1H, m), 2.28–2.36 (1H, m), 2.16 (3H, s), 1.89–2.11 (6H, m), 
1.39–1.44 (1H, m), 1.26–1.32 (4H, m), 0.93 (3H, d, J = 6.5 Hz), 0.89 (3H, 
d, J = 6.5 Hz), 0.83–0.86 (6H, m); 13C NMR (150 MHz, CDCl3) δ 207.7, 
173.7, 173.5, 171.1, 171.0, 169.8, 169.0, 72.0, 60.7, 58.1, 55.5, 53.7, 
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46.6, 37.7, 37.5, 34.4, 33.2, 30.9, 30.1, 28.9, 28.1, 27.3, 24.5, 24.1, 23.5, 
20.1, 19.6, 15.4, 15.3, 11.4; IR (neat) 3385, 3296, 2966, 1731, 1667, 
1630, 1519, 1443 cm−1; [α]28

D –191 (c 0.426, CHCl3); HRMS [ESI] calcd 
for C30H49N5O8Na [M+Na]+ 630.3473, found 630.3468. 

4c: Yield (2 steps): 78% (13.6 mg, 0.0216 mmol); 1H NMR (600 MHz, 
CDCl3) δ 8.18 (1H, d, J = 8.2 Hz), 7.16 (1H, d, J = 9.2 Hz), 5.19 (1H, q, J 
= 6.8 Hz), 4.94–4.96 (2H, m), 4.87 (1H, dd, J = 6.7, 9.2 Hz), 4.67 (1H, d, 
J = 7.9 Hz), 4.03–4.08 (1H, m), 3.90 (1H, brt, J = 8.2 Hz), 3.44–3.49 (1H, 
m), 3.25 (3H, s), 3.08 (1H, brt, J = 13.0 Hz), 2.73 (3H, s), 2.67 (1H, ddd, J 
= 2.0, 11.5, 18.5 Hz), 2.58 (1H, dd, J = 3.8, 18.5 Hz), 2.49–2.52 (1H, m), 
2.29–2.35 (1H, m), 1.90–2.14 (8H, m), 1.63 (3H, t, J = 18.5 Hz), 1.40–
1.44 (1H, m), 1.27–1.31 (4H, m), 0.93 (3H, d, J = 6.5 Hz), 0.89 (3H, d, J 
= 6.5 Hz), 0.84–0.88 (6H, m); 13C NMR (150 MHz, CDCl3) δ 173.6, 173.5, 
171.1, 170.8, 169.7, 168.8, 123.8 (t, J = 238.1 Hz), 72.3, 60.8, 58.1, 55.5, 
53.7, 46.6, 37.5, 34.4, 33.2, 32.9 (t, J = 25.1 Hz), 30.9, 28.9, 28.1, 27.2, 
24.5, 24.1, 23.8 (t, J = 28.0 Hz), 23.2, 20.0, 19.6, 15.4, 15.2, 11.4; IR 
(neat) 3385, 3297, 2964, 2931, 1732, 1668, 1630, 1441, 1181 cm−1; 
[α]29

D –184 (c 0.381, CHCl3); HRMS [ESI] calcd for C30H49F2N5O7Na 
[M+Na]+ 652.3492, found 652.3468. 

4d: Yield (2 steps): 70% (17.6 mg, 0.0297 mmol); 1H NMR (600 MHz, 
CDCl3) δ 8.21 (1H, d, J = 8.5 Hz), 7.19 (1H, d, J = 9.2 Hz), 5.17 (1H, q, J 
= 6.8 Hz), 4.96 (1H, d, J = 10.9 Hz), 4.92 (1H, t, J = 7.2 Hz), 4.89 (1H, dd, 
J = 6.7, 9.2 Hz), 4.67 (1H, d, J = 6.8 Hz), 4.02–4.06 (1H, m), 3.96 (1H, t, 
J =8.4 Hz), 3.55–3.39 (1H, m), 3.22 (3H, s), 3.09 (1H, m), 2.73 (3H, s), 
2.67 (1H, ddd, J = 1.7, 11.8, 18.2 Hz), 2.56 (1H, dd, J = 4.8, 18.2 Hz), 
2.48 (1H, d, J = 6.5 Hz), 2.29–2.34 (1H, m), 1.89–2.07 (5H, m), 1.53–
1.58 (1H, m), 1.40–1.46 (1H, m), 1.28–1.34 (4H, m), 0.93 (3H, d, J = 6.5 
Hz), 0.89 (3H, d, J = 6.5 Hz), 0.85–0.87 (6H, m), 0.75–0.81 (1H, m), 
0.51–0.56 (1H, m), 0.44–0.48 (1H, m), 0.16–0.20 (1H, m), 0.08–0.12 (1H, 
m); 13C NMR (150 MHz, CDCl3) δ 173.64, 173.56, 171.1, 171.0, 169.7, 
169.6, 73.6, 60.9, 58.1, 55.5, 53.7, 46.6, 37.5, 35.8, 34.5, 33.3, 30.9, 
29.1, 28.1, 27.3, 24.4, 24.1, 20.0, 19.7, 15.4, 15.2, 11.4, 6.7, 4.8, 4.3; IR 
(neat) 2965, 1730, 1668, 1631, 1516, 1447, 1181, 753 cm−1; [α]26

D –216 
(c 0.712, CHCl3); HRMS [ESI] calcd for C30H49N5O7Na [M+Na]+ 614.3524, 
found 614.3518. 

4e: Yield (2 steps): 72% (7.8 mg, 0.0124 mmol); 1H NMR (600 MHz, 
CDCl3) δ 8.18 (1H, d, J = 8.2 Hz), 7.15 (1H, d, J = 8.9 Hz), 5.17 (1H, q, J 
= 6.8 Hz), 4.96 (1H, d, J = 10.9 Hz), 4.88–4.93 (2H, m), 4.68 (1H, d, J = 
7.2 Hz), 4.03–4.08 (1H, m), 3.95 (1H, t, J = 8.2 Hz), 3.47–3.51 (1H, m), 
3.23 (3H, s), 3.06–3.11 (1H, m), 2.66–2.72 (4H, m), 2.57 (1H, dd, J = 3.8, 
18.5 Hz), 2.50 (1H, d, J = 6.5 Hz), 2.29–2.35 (1H, m), 1.88–2.01 (5H, m), 
1.60–1.68 (1H, m), 1.43–1.46 (1H, m), 1.48–1.42 (1H, m), 1.27–1.33 (4H, 
m), 0.99–1.14 (1H, m), 0.93 (3H, d, J = 6.5 Hz), 0.89 (3H, d, J = 6.8 Hz), 
0.84–0.87 (6H, m); 13C NMR (150 MHz, CDCl3) δ 173.5, 173.4, 171.0, 
170.7, 169.7, 168.4, 113.4 (t, J = 284 Hz), 71.8, 60.9, 58.1, 55.5, 53.6, 
46.6, 37.5, 34.4, 33.2, 30.8, 29.0, 28.10, 28.07, 27.2, 24.3, 24.0, 20.0, 
19.6, 18.0 (t, J = 11.5 Hz), 16.0 (t, J = 10.8 Hz), 15.4, 15.2, 11.3; IR 
(neat) 2965, 1732, 1668, 1632, 1475, 1446, 1179, 754 cm−1; [α]32

D –183 
(c 0.451, CHCl3); HRMS [ESI] calcd for C30H47F2N5O7Na [M+Na]+ 
650.3336, found 650.3317. 

4f: Yield (2 steps): 85% (5.6 mg, 8.92 µmol); 1H NMR (600 MHz, CDCl3) 
δ 8.19 (1H, d, J = 8.2 Hz), 7.15 (1H, d, J = 9.2 Hz), 5.18 (1H, q, J = 6.8 
Hz), 4.95 (1H, d, J = 10.9 Hz), 4.91 (1H, dd, J = 3.8, 9.2 Hz), 4.88 (1H, 
dd, J = 6.7, 9.2 Hz), 4.66 (1H, d, J = 7.5 Hz), 4.04–4.09 (1H, m), 3.92 (1H, 
t, J = 8.9 Hz), 3.44–3.48 (1H, m), 3.23 (3H, s), 3.09 (1H, m), 2.67–2.73 
(4H, m), 2.60 (1H, dd, J = 4.4, 17.8 Hz), 2.49–2.52 (1H, m), 2.26–2.35 
(2H, m), 2.04–2.08 (1H, m), 1.90–2.00 (3H, m), 1.75–1.83 (1H, m), 1.64–
1.69 (1H, m), 1.51–1.57 (1H, m), 1.38–1.46 (1H, m), 1.26–1.32 (4H, m), 
1.03–1.08 (1H, m), 0.93 (3H, d, J = 6.5 Hz), 0.89 (3H, d, J = 6.8 Hz), 
0.85–0.87 (6H, m); 13C NMR (150 MHz, CDCl3) δ 173.6, 173.5, 171.1, 

170.8, 169.7, 168.5, 113.7 (t, J = 284 Hz), 72.9, 60.8, 58.1, 55.5, 53.7, 
46.6, 37.5, 34.4, 33.2, 30.8, 28.9, 28.6, 28.1, 27.2, 24.4, 24.0, 20.0, 19.6, 
18.5 (t, J = 10.0 Hz), 16.5 (t, J = 10.8 Hz), 15.4, 15.2, 11.4; IR (neat) 
2966, 1732, 1668, 1632, 1474, 1447, 1180, 754 cm−1; [α]31

D –177 (c 
0.287, CHCl3); HRMS [ESI] calcd for C30H47F2N5O7Na [M+Na]+ 650.3336, 
found 650.3320. 

4g: Yield (2 steps): 34% (6.5 mg, 0.0107 mmol); 1H NMR (600 MHz, 
CDCl3) δ 8.21 (1H, d, J = 7.9 Hz), 7.13 Hz, d, J = 9.2 Hz), 5.15 (1H, q, J = 
6.8 Hz), 5.03 (1H, dd, J = 5.6, 8.4 Hz), 4.97 (1H, d, J = 10.9 Hz), 4.90 
(1H, dd, J = 6.2, 9.2 Hz), 4.80–4.85 (1H, m), 4.66–4.71 (2H, m), 4.55 (1H, 
dt, J = 4.5, 11.2 Hz), 4.01–4.07 (1H, m), 3.88 (1H, brt, J = 8.4 Hz), 3.57–
3.62 (1H, m), 3.22 (3H, s), 3.08 (1H, brt, J =13.3 Hz), 2.74–2.79 (1H, m), 
2.72 (3H, s), 2.67 (1H, ddd, J = 1.7, 11.3, 18.4 Hz), 2.56 (1H, dd, J = 3.9, 
18.4 Hz), 2.38–2.47 (3H, m), 2.29–2.35 (1H, m), 2.21 (1H, ddd, J = 4.1, 
8.4, 14.0 Hz), 1.87–2.07 (4H, m), 1.39–1.43 (1H, m), 1.28–1.31 (4H, m), 
0.93 (3H, d, J = 6.8 Hz), 0.89 (3H, d, J = 6.8 Hz), 0.84–0.87 (6H, m); 13C 
NMR (150 MHz, CDCl3) δ 173.57, 173.55, 171.1, 170.9, 169.7, 169.0, 
78.1, 69.0, 68.6, 60.9, 58.0, 55.5, 53.6, 46.5, 38.7, 37.4, 34.5, 33.2, 30.8, 
29.3, 28.1, 27.4, 27.2, 24.3, 24.0, 20.0, 19.6, 15.4, 15.2, 11.4; IR (neat) 
2963, 2926, 1732, 1667, 1632, 1519, 1446, 1180 cm−1; [α]31

D –171 (c 
0.344, CHCl3); HRMS [ESI] calcd for C30H49N5O8Na [M+Na]+ 630.3473, 
found 630.3458. 

4h: Yield (2 steps) : 35% (3.2 mg, 5.27 µmol); 1H NMR (600 MHz, CDCl3) 
δ 8.18 (1H, d, J = 8.5 Hz), 7.17 (1H, d, J = 9.2 Hz), 5.18 (1H, q, J = 6.8 
Hz), 5.00–5.05 (1H, m), 4.94–4.97 (2H, m), 4.87 (1H, dd, J = 6.7, 9.2 Hz), 
4.67–4.72 (2H, m), 4.55 (1H, dt, J = 4.6, 11.1 Hz), 4.01–4.06 (1H, m), 
3.89 (1H, brt, J = 8.2 Hz), 3.52–3.56 (1H, m), 3.22 (3H, s), 3.06 (1H, brt, 
J = 13.0 Hz), 2.77–2.83 (1H, m), 2.72 (3H, s), 2.65 (1H, ddd, J = 2.0, 
11.5, 18.4 Hz), 2.55 (1H, dd, J = 3.9, 18.4 Hz), 2.47–2.50 (1H, m), 2.28–
2.40 (2H, m), 2.22 (1H, ddd, J = 3.1, 10.7, 14.4 Hz), 2.14 (1H, ddd, J = 
2.4, 9.7, 14.4 Hz), 2.05–2.09 (1H, m), 1.89–2.02 (3H, m), 1.38–1.45 (1H, 
m), 1.27–1.31 (4H, m), 0.93 (3H, d, J = 6.5 Hz), 0.89 (3H, d, J = 6.5 Hz), 
0.83–0.86 (6H, m; 13C NMR (150 MHz, CDCl3) δ 173.6, 173.4, 171.1, 
170.9, 169.8, 169.1, 78.2, 69.5, 68.4, 60.8, 58.1, 55.5, 53.7, 46.6, 38.8, 
37.5, 34.4, 33.2, 30.9, 29.0, 28.1, 27.5, 27.3, 24.5, 24.0, 20.1, 19.7, 15.4, 
15.3, 11.4; IR (neat) 2964, 2932, 1732, 1669, 1632, 1519, 1443, 1178 
cm−1; [α]27

D –174 (c 0.163, CHCl3); HRMS [ESI] calcd for C30H49N5O8Na 
[M+Na]+ 630.3473, found 630.3456. 

4i: Yield (2 steps): 66% (5.3 mg, 8.72 µmol); 1H NMR (600 MHz, CDCl3) 
δ 8.14 (1H, d, J = 7.9 Hz), 7.13 (1H, d, J = 9.2 Hz), 5.19 (1H, q, J = 6.8 
Hz), 4.95 (1H, d, J = 10.9 Hz), 4.87 (1H, dd, J = 6.7, 9.2 Hz), 4.80–4.83 
(3H, m), 4.65 (1H, d, J = 7.5 Hz), 4.39–4.42 (2H, m), 4.02–4.07 (1H, m), 
3.89 (1H, brt, J = 8.0 Hz), 3.42 (1H, m), 3.24–3.30 (1H, m), 3.22 (3H, s), 
3.60 (1H, brt, J = 12.5 Hz), 2.72 (3H, s), 2.64 (1H, ddd, J = 1.9, 11.5, 
18.6 Hz), 2.52–2.56 (2H, m), 2.27–2.34 (2H, m), 2.17 (1H, ddd, J = 4.0, 
7.8, 14.4 Hz), 1.89–2.09 (4H, m), 1.38–1.42 (1H, m), 1.27–1.31 (4H, m), 
0.93 (3H, d, J = 6.5 Hz), 0,89 (3H, d, J = 6.5 Hz), 0.83–0.85 (6H, m); 13C 
NMR (150 MHz, CDCl3) δ 173.6, 173.5, 171.1, 170.7, 169.8, 168.6, 77.5, 
76.8, 71.8, 60.9, 58.1, 55.5, 53.8, 46.6, .37.5, 34.4, 33.9, 33.2, 31.7, 30.9, 
28.9, 28.1, 27.3, 24.5, 24.1, 20.1, 19.6, 15.4, 15.2, 11.4; IR (neat) 2964, 
2931, 1731, 1667, 1631, 1445, 1180 cm−1; [α]28

D –210 (c 0.137, CHCl3); 
HRMS [ESI] calcd for C30H49N5O8Na [M+Na]+ 630.3473, found 630.3455. 

4l: Yield (2 steps): 58% (29.0 mg, 0.0436 mmol); 1H NMR (600 MHz, 
CDCl3) δ 8.19 (1H, d, J = 8.2 Hz), 7.17 (1H, d, J = 9.2 Hz), 5.19 (1H, q, J 
= 6.7 Hz), 4.95 (1H, d, J = 10.9 Hz), 4.92 (1H, dd, J = 4.3, 8.7 Hz), 4.87 
(1H, dd, J = 6.8, 9.2 Hz), 4.65 (1H, d, J = 7.5 Hz), 4.03–4.12 (3H, m), 
3.91 (1H, brt, J = 8.9 Hz), 3.54 (1H, t, J = 7.2 Hz), 3.45–3.50 (1H, m), 
3.22 (3H, s), 3.08 (1H, brt, J = 12.1 Hz), 2.73 (3H, s), 2.67 (1H, ddd, J = 
1.9, 11.5, 18.4 Hz), 2.56 (1H, dd, J = 4.4, 18.4 Hz), 2.49–2.51 (1H, m), 
2.29–2.36 (1H, m), 2.04–2.08 (1H, m), 1.87–2.00 (6H, m), 1.79–1.84 (1H, 
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m), 1.60–1.68 (1H, m), 1.27–1.45 (11H, m), 0.93 (3H, d, J = 6.5 Hz), 0.89 
(3H, d, J = 6.5 Hz), 0.84–0.87 (6H, m); 13C NMR (150 MHz, CDCl3) δ 
173.6, 173.5, 171.0, 170.9, 169.7, 169.2, 109.0, 75.8, 73.1, 69.2, 60.8, 
58.1, 55.4, 53.6, 46.6, 37.5, 34.4, 33.2, 30.8, 29.1, 28.9, 28.1, 27.2, 27.0, 
26.9, 25.6, 24.4, 24.1, 20.0, 19.6, 15.4, 15.2, 11.3; IR (neat) 3384, 3298, 
2966, 1730, 1670, 1630, 1442, 1181 cm−1; [α]19

D –184 (c 1.00, CHCl3); 
HRMS [ESI] calcd for C33H55N5O9Na [M+Na]+ 688.3892, found 688.3882. 

4m: Yield (2 steps): 75% (47.0 mg, 0.0706 mmol); 1H NMR (600 MHz, 
CDCl3) δ 8.19 (1H, d, J = 9.9 Hz), 7.17 (1H, d, J = 6.8 Hz), 5.18 (1H, q, J 
= 6.8 Hz), 4,95 (1H, d, J = 11.3 Hz), 4.90 (1H, dd, J = 5.0, 8.4 Hz), 4.88 
(1H, dd, J = 6.8, 9.2 Hz), 4.67 (1H, d, J = 7.2 Hz), 4.11–4.15 (1H, m), 
4.03–4.07 (2H, m), 3.90 (1H, brt, J = 8.4 Hz), 3.49–3.55 (2H, m), 3.22 
(3H, s), 3.08 (1H, brt, J = 12.6 Hz), 2.72 (3H, s), 2.67 (1H, ddd, J = 1.7, 
11.5, 18.0 Hz), 2.56 (1H, dd. J = 4.6, 18.0 Hz), 2.49–2.51 (1H, m), 2.29–
2.36 (1H, m), 1.84–2.06 (6H, m), 1.66–1.79 (2H, m), 1.27–1.44 (11H, m), 
0.93 (3H, d, J = 6.5 Hz), 0.89 (3H, d, J = 6.5 Hz), 0.84–0.87 (6H, m); 13C 
NMR (150 MHz, CDCl3) δ 173.61, 173.60, 171.1, 170.9, 169.7, 169.1, 
109.0, 74.9, 72.7, 69.1, 60.8, 58.1, 55.5, 53.7, 46.6, 37.5, 34.5, 33.2, 
30.9, 29.0, 28.5, 28.1, 27.3, 27.0, 26.3, 25.6, 24.5, 24.1, 20.1, 19.7, 15.4, 
15.3, 11.4; IR (neat) 3384, 3299, 2966, 1730, 1670, 1629, 1442, 1180 
cm−1; [α]25

D –176 (c 0.969, CHCl3); HRMS [ESI] calcd for C33H55N5O9Na 
[M+Na]+ 688.3892, found 688.3883. 

General procedure II: Formation of the Epoxide 

To a solution of the macrolactones 4l and 4m (1.00 equiv) in dioxane (1.0 
mL) was added 1 M aqueous HCl (2.00 mL) at 0 °C. After being stirred at 
the same temperature for 1 h, the reaction mixture was poured into 
saturated aqueous NaHCO3 and the aqueous layer was extracted with 
EtOAc. The organic layer was washed with brine, and dried over MgSO4 
and filtered. The filtrate was concentrated in vacuo, and the resulting 
residue was purified by silica gel flash column chromatography (eluted 
with CHCl3/MeOH = 30:1) to afford the diols S6 as a colorless oil. (Data 
for S6 are shown in the Supporting Information.) 

To a solution of the diol S6 (1.00 equiv), triethylamine (1.50 equiv) and 
DMAP (0.100 equiv) in dry CH2Cl2 (15 mL/mmol) was added p-
toluenesulfonyl chloride (1.20 equiv) at 0 °C under argon. After being 
stirred at room temperature for 3 h, the reaction mixture was poured into 
saturated aqueous NH4Cl and the aqueous layer was extracted with 
CHCl3. The organic layer was washed with saturated aqueous NaHCO3 
and brine, and dried over MgSO4 and filtered. The filtrate was 
concentrated in vacuo, and the resulting residue was purified by silica gel 
flash column chromatography (eluted with CHCl3/MeOH = 50:1) to afford 
tosylate S7 as a colorless oil. (Data for S7 are shown in the Supporting 
Information.) 

To a solution of tosylate S7 (1.00 equiv) in i-PrOH (100 mL/mmol) and 
1,2-DCE (10 mL/mmol) was added K2CO3 (4.00 equiv) at 0 °C under 
argon. After being stirred at 60 °C for 7 h, the reaction mixture was 
poured into saturated aqueous NH4Cl and the aqueous layer was 
extracted with CHCl3. The organic layer was washed with saturated 
aqueous NaHCO3 and brine, dried over MgSO4 and filtered. The filtrate 
was concentrated in vacuo, and the resulting residue was purified by 
silica gel flash column chromatography (eluted with CHCl3/MeOH = 70:1) 
to afford destruxin E derivative 4j-k as a colorless oil. 

4j: Yield 87% (8.1 mg, 0.0133 mmol); 1H NMR (600 MHz, CDCl3) δ 8.19 
(1H, d, J = 8.2 Hz), 7.17 (1H, d, J = 9.0 Hz), 5.19 (1H, q, J = 6.8 Hz), 
4.92–4.96 (2H, m), 4.88 (1H, dd, J = 6.5, 9.0 Hz), 4.68 (1H, d, J = 7.5 Hz), 
4.02–4.07 (1H, m), 3.92 (1H, brt, J = 9.1 Hz), 3.46–3.51 (1H, m), 3.22 
(3H, s), 3.07 (1H, brt, J = 12.7 Hz), 2.93–2.96 (1H, m), 2.78 (1H, t, J = 

4.4 Hz), 2.72 (3H, s), 2.66 (1H, ddd, J = 2.1, 11.6, 18.5 Hz), 2.56 (1H, d, 
J = 4.1, 18.5 Hz), 2.46–2.51 (2H, m), 2.29–2.35 (1H, m), 1.90–2.10 (7H, 
m), 1.39–1.51 (2H, m), 1.27–1.36 (4H, m), 0.93 (3H, d, J = 6.5 Hz), 0.89 
(3H, d, J = 6.5 Hz), 0.84–0.86 (6H, m); 13C NMR (150 MHz, CDCl3) δ 
173.60, 173.58, 171.1, 170.9, 169.7, 169.1, 72.9, 60.8, 58.1, 55.5, 53.7, 
51.9, 46.7, 46.6, 37.5, 34.4, 33.2, 30.8, 29.0, 28.2, 28.1, 27.24, 27.22, 
24.4, 24.1, 20.0, 19.6, 15.3, 15.2, 11.4; IR (neat) 2965, 2935, 1732, 1668, 
1634, 1520, 1441, 1180, 752 cm−1; [α]25

D –193 (c 0.456, CHCl3); HRMS 
[ESI] calcd for C30H49N5O8Na [M+Na]+ 630.3473, found 630.3468. 

4k: Yield 90% (18.1 mg, 0.0298 mmol); 1H NMR (600 MHz, CDCl3) δ 
8.19 (1H, d, J = 8.2 Hz), 7.16 (1H, d, J = 9.0 Hz), 5.19 (1H, q, J = 6.8 Hz), 
4.96 (1H, d, J = 10.9 Hz), 4.93 (1H, dd, J = 4.1, 8.5 Hz), 4.87 (1H, dd, J = 
6.7, 9.0 Hz), 4.66 (1H, d, J = 7.5 Hz), 4.03–4.08 (1H, m), 3.91 (1H, brt, J 
= 9.1 Hz), 3.48–3.52 (1H, m), 3.22 (3H, s), 3.08 (1H, brt, J = 13.1 Hz), 
2.98–3.00 (1H, m), 2.79 (1H, dd, J = 4.1, 4.8 Hz), 2.72 (3H, s), 3.08 (1H, 
ddd, J = 1.9, 11.5, 18.0 Hz), 2.58 (1H, dd, J = 4.8, 18.0 Hz), 2.47–2.52 
(2H, m), 2.29–2.35 (1H, m), 1.87–2.07 (7H, m), 1.61–1.66 (1H, m), 1.39–
1.46 (1H, m), 1.27–1.36 (4H, m), 0.93 (3H, d, J = 6.5 Hz), 0.89 (3H, d, J 
= 6.8 Hz), 0.84–0.86 (6H, m); 13C NMR (150 MHz, CDCl3) δ 173.6, 171.0, 
170.9, 169.7, 168.9, 72.6, 60.8, 58.1, 55.5, 53.7, 51.2, 46.8, 46.6, 37.5, 
34.4, 33.2, 30.8, 28.9, 28.1, 27.3 27.2, 26.2, 24.4, 24.1, 20.0, 19.6, 15.4, 
15.2, 11.3; IR (neat) 2966, 1732, 1668, 1631, 1441, 1179, 752 cm−1; 
[α]26

D –193 (c 0.905, CHCl3); HRMS [ESI] calcd for C30H49N5O8Na 
[M+Na]+ 630.3473, found 630.3464. 
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Layout 2: 

FULL PAPER 

Synthesis and biological evaluation of destruxin E analogs possessing various 
functional groups in the α-hydroxycarboxylic acid moiety have been achieved. The 
(S)-epoxide moiety in the side chain of α-hydroxycarboxylic acid could be an 
essential factor for the induction of morphological changes in OCLs at a lower 
concentration. 
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