

Subscriber access provided by - Access paid by the | UCSF Library

Chiral Bronsted Acid-Catalyzed Stereoselective Mannich-type Reaction of Azlactones with Aldimines

Eloah P Ávila, Rodrigo M. S. Justo, Vanessa P Gonçalves, Adriane A. Pereira, Renata Diniz, and Giovanni W Amarante

J. Org. Chem., Just Accepted Manuscript • DOI: 10.1021/jo5024975 • Publication Date (Web): 03 Dec 2014 Downloaded from http://pubs.acs.org on December 11, 2014

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

The Journal of Organic Chemistry is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Note

Chiral Brønsted Acid-Catalyzed Stereoselective Mannich-type Reaction of Azlactones with Aldimines[‡]

Eloah P. Ávila, Rodrigo M. S. Justo, Vanessa P. Gonçalves, Adriane A. Pereira,

Renata Diniz and Giovanni W. Amarante*

Chemistry Department, Federal University of Juiz de Fora, Cidade Universitária Martelos, Martelos, Juiz de Fora / MG / Brazil / CEP: 36036-900

corresponding author: giovanni.amarante@ufjf.edu.br

[‡]Dedicated to Professor Fernando Coelho in recognition of his outstanding contributions to Brazilian chemistry.

TOC graphic

Abstract

A highly diastereo- and enantioselective Mannich-type reaction of azlactones with aldimines catalyzed by a chiral phosphoric acid is described. Only 3 mol% of the catalyst was required to prepare the Mannich adducts in good yields with high stereochemical control (up to > 19:1 dr, > 99:1 er). Moreover, the final

product contains two consecutive stereogenic centers, one of which is quaternary.

Keywords: azlactones; aldimines; Mannich-type reaction; asymmetric organocatalysis; chiral phosphoric acid.

Chiral α , β -diaminoacid derivatives are very important building blocks in organic chemistry as they possess remarkable pharmacological properties. Viso and coworkers have showed the importance of these motifs in treatment of neurodegenerative diseases and various cancers. [1] A variety of methods for the synthesis chiral α , β -diaminoacid derivatives have been reported. [1] One attractive route utilizes azlactones; as these rings are essentially protected aminoacids that are readily unmasked under acidic conditions. Additionally, azlactones can be easily prepared on preparative scale following literature protocols and derivatized through [2] Mannich-type reaction [3] mediated by transition metals or organocatalysts [4], [5].

In particular, chiral gold(I) complexes have been used to catalyze the enantioselective Mannich reaction of azlactones. Reaction of aliphatic mesitylsulfonimines with azlactones in the presence of a spirocyclic bisphosphine gold(I) benzoate complex (xylyl-SDP(AuOBz)₂), provided the desired 1,2-*anti*-Mannich adducts in high yields and selectivities. [4] In contrast, organocatalytic approaches tolerate both aromatic and aliphatic imines for synthesis of chiral α , β -diaminoacid derivatives in high yields and selectivities. [5a], [5b]. Interestingly, the major product observed in these reactions were the 1.2-*syn* diastereomers.

The Journal of Organic Chemistry

 Since the pioneering work of Terada [6] and Akiyama [7] which demonstrated the potential of chiral phosphoric acids as organocatalysts, new applications exploiting the H-donor capacity of these catalysts have appeared in the literature. [8] In our research program [9], we envisioned that chiral phosphoric acids could be an alternative, metal-free catalyst for the reaction between azlactones and aldimines. Moreover, we envisioned that this approach may be complementary to existing organocatalytic methods and provide access to the 1,2-*anti*-diaminoacid derivatives from aromatic imines.

The azlactone and imine skeletons are both readily accessed following literature protocols. [4] To our delight, the reaction between azlactone **1a** and aldimine **2a** catalyzed by only 3 mol% of the comercial available (*S*)-3,3'-Bis(2,4,6-triisopropylphenyl)-1,1'-binaphthyl-2,2'-diyl hydrogenphosphate, (*S*)-TRIP [10], in toluene gave the desired Mannich adduct **3a** in good yield (70 %; isolated yield) and excellent enantio- and diastereoselectivity (Table 1, entry 3). However, increasing the size of the sulfonamide led to a decrease in yield. Only traces of product was detected when dichloromethane (Table 1, entry 2) was used as solvent. While performing the reaction in THF provided the desired product in moderate yield, the diastereoselectivity of the transformation was low. Significant background of reaction was observed when either acetone or chloroform was used. The catalyst loading could be drop to 2 mol% without any loss of stereoselectivity, albeit at a lower isolated yield (50 %). Having optimized reaction conditions, experiments to evaluate the substrate scope of this transformation were conducted (Table 2).

Table 1. Optimization of reaction conditions for the stereoselective Mannich-type reaction ^[a].

1	
2	
3	
4	
5	
6	
7	
8	
a	
1	^
1	4
1	1
1	2
1	3
1	4
1	5
1	6
1	7
1	פ
1	0
1	3
2	U
2	1
2	2
2	3
2	4
2	5
2	6
2	7
2	י ה
2	ð
2	9
3	0
3	1
3	2
3	3
3	4
۔ ۲	5
2	6
່ ວ	7
3	1
3	8
3	9
4	0
4	1
4	2
4	3
4	4
Δ	5
1	6
4	0
4	1
4	8
4	9
5	0
5	1
5	2
5	3
5	4
5	-T 5
о г	0 6
5	0
5	7
5	8
5	9
6	0

Pri + Pri						
entry	R	solvent	d.r. ^b	e.r. ^c	yield ^d	
<u> </u>			(anu/syn)			
1	mesyl	THF	1:1	99:1/99:1	40	
2	mesyl	CH_2CI_2	1:1	Nd ^e	traces	
3	mesyl	PhMe	> 19:1	> 99:1	70	
4	tosyl	PhMe	5:1	Nd ^e	20	
5	mesityl	PhMe	2:1	Nd ^e	15	
6 ^{<i>f</i>}	mesyl	PhMe	> 19:1	> 99:1	55	
7 ^g	mesyl	PhMe	-	-	-	

[a] Reactions were carried out using 0.2 mmol of **1**, 0.006 mmol of (*S*)-TRIP (3 mol%), and 0.21 mmol of **2** in PhMe (0.2 M in azlactone). [b] Determined by ¹H NMR analysis of the crude reaction mixture. [c] Determined by enantiodiscriminating HPLC. [d] Isolated yield. [e] Not determined. [f] Without molecular sieves. [g] No catalyst, 48 h.

Various aromatic imines, containing either electron-withdrawing or electron donating groups, could be used in the reaction. For example, a benzaldehyde derivative containing fluorine at *p*-position works quite well, providing the Mannich adduct **3g** in good yield with both diastereo- and enantioselectivity (> 19:1 dr and 98:2 er). Phenylalanine derivative azlactone could also be used under optimized reaction conditions, yielding product **3i** in >98% ee. The relative and absolute stereochemistry (1,2-*anti*) of the Mannich adduct **3b** was determined by X-ray crystallographic structure (Figure 1). The other products

were assigned on the analogy. To the best of our knowledge this work comprises the first highly enantio- and diastereoselective Mannich-type reaction between azlactone and aldimines catalyzed by a chiral phosphoric acid. A variety of aliphatic imines were evaluated; however, all led to complex product mixtures which could not be deciphered [12].

Table 2. Diastereo- and Enantioselective Mannich-type addition of azlactones to aldimines ^[a].

[a] Reactions were carried out using 0.2 mmol of **1**, 0.006 mmol of (*S*)-TRIP (3 mol%), and 0.21 mmol of **2** in PhMe (0.2 M in azlactone). [b] Determined by ¹H NMR analysis of the crude reaction mixture. [c] Determined by chiral HPLC. [d] (*R*)-TRIP used as catalyst. [e] Relative and absolute stereochemistry of **3b** was determined by X-ray crystallography and the other products were assigned in analogy. [f] Only the major diastereomer was isolated. [g] 5 mol% of catalyst.

Figure 1. X-ray crystallographic structure of **3b**.

Yamanaka and Akiyama have proposed that the Mannich-type reaction of a special hydroxyaldimine catalyzed by a chiral phosphoric acid proceeds through coordination of both oxygen atoms of the chiral phosphoric acid to the aldimine. [13] Terada and co-workers have showed a chiral phosphoric acid catalyzed enantioselective addition of azlactones to 3-vinylindoles; in this case, the chiral phosphoric acid activates both the enol intermediate of azlactone and the vinyl double bond system. [14] Thus, a plausible transition state for the reaction of imine and azlactone in the presence of TRIP is proposed. [15] We hypothesize that the phosphoric acid could stabilize the enol intermediate of azlactone and also activated the imine through protonation of the nitrogen lone pair, providing the Mannich adducts in high selectivities (Figure 2).

Figure 2. Plausible activation mode for the stereoselective reaction between azlactones and aldimines catalyzed by a phosphoric acid.

To probe the reversibility of the reaction the enantioenriched Mannich addition product **3b** was resubjected to catalytic reaction condition in the presence of a racemic acid, (+/-)-CSA (camphorsulfonic acid), following the general procedure for Mannich reaction. After 24 h at room temperature, the product was reisolated in > 99% ee, suggesting that the σ C-C bond step formation is irreversible (eq 1).

The ring opening, followed by amide deprotection of the enantioenriched Mannich addition product **3b** under the presence of a mineral acid provided the amino acid **5** in two steps and with 75 % overall yield (Scheme 1).

Scheme 1. Preparation of amino acid 5.

Conclusion

In summary, a Brønsted acid catalyzed highly diastereo- and enatioselective Mannich-type addition of azlactones with aldimines is presented. Only 3 mol% of the commercial available phosphoric acid (TRIP) was used to provide protected 1,2-*anti* diamino acid derivatives in moderate to good yields and with near perfect control of both diastereo- and enantioselectivity (up to > 19:1 dr and > 99:1 er). Besides the new σ C-C bond formation, two stereogenic centers are created, one of them a quaternary.

Experimental Section

Representative experimental for the enantio- and diastereoselective Mannichtype addition of azlactones to aldimines: In a flammed screw cap vial and under nitrogen atmosphere and with molecular sieves (50 mg), 0.2 mmol of azlactone was added. After, toluene was canulated at the concentration of 0.2 mol.L⁻¹ in azlactone. To this solution, 0.006 mmol (3 mol%) of phosphoric acid was added followed by 0.21 mmol of imine. The reaction was kept at room temperature and under nitrogen atmosphere for 24 h. The reaction was then diluted in CH_2Cl_2 (10 mL) and washed with saturated solution of sodium bicarbonate (5 mL). The organic phase was dried over anidrous Na_2SO_4 and concentrated under reduced pression. An aliquot was taken to the NMR and the diastereoisomeric ratio was measured by ¹H NMR analysis. After, the crude reaction mixture was

The Journal of Organic Chemistry

purified through silica gel chromatography by using ethyl acetate: hexanes as solvents (up to 2:1 ethyl acetate/hexanes). The major diastereomers were submitted to chiral HPLC analysis and then fully characterized by the conventional elemental analysis.

Characterization data for the Mannich adducts 3a-j

(**3a**): Diastereoisomeric ratio (dr) from ¹H NMR analysis of crude reaction mixture (> 19:1) (*anti/syn*). The product was purified by column chromatography on silica gel (Hexanes/AcOEt 3:1 to 2:1) to afford product **3a** (50.1 mg, 70%); ¹H NMR (250 MHz, CDCl₃) δ : 7.86 (d, 2H, *J* = 7.1 Hz), 7.58-7.55 (m, 1H), 7.49-7.43 (m, 2H), 7.22-7.19 (m, 5H), 5.71 (d, 1H, *J* = 10 Hz), 4.87 (d, 1H, *J* = 10 Hz), 2.56 (s, 3H), 1.82 (s, 3H); ¹³C NMR (63 MHz) δ : 177.5, 161.5, 135.5, 133.1, 129.1, 128.8, 128.7, 128.0, 127.6, 125.1, 73.7, 61.9, 41.9, 22.1; HRMS: calcd for [C₁₈H₁₈N₂O₄S]+ ([M+H]+): *m/z* 359.1066, found 359.1079; HPLC Chiralpak IA column (Hex/iPrOH 95/05, 0.7 mL/min) tR 26.6 min (major), 28.7 min (minor): > 99:1 er. See reference 4.

(**3b**): Diastereoisomeric ratio (dr) from ¹H NMR analysis of crude reaction mixture (> 19:1) (*anti/syn*). The product was purified by column chromatography on silica gel (Hexanes/AcOEt 3:1 to 2:1) to afford product **3b** (51.6 mg, 72%); ¹H NMR (250 MHz, CDCl₃) and ¹³C NMR (63 MHz): identical **3a**; HPLC Chiralpak IA column (Hex/iPrOH 95/05, 0.7 mL/min) tR 26.8 min (minor), 29.3 min (major): > 99:1 er. See reference 4.

(**3c**): Diastereoisomeric ratio (dr) from ¹H NMR analysis of crude reaction mixture (> 19:1) (*anti/syn*). The product was purified by column chromatography on silica gel (Hexanes/AcOEt 3:1 to 2:1) to afford product **3c** (57.2 mg, 73%); ¹H NMR (250 MHz, CDCl₃) δ : 7.88-7.85 (m, 2H), 7.60-7.45 (m, 3H), 7.26-7.14 (m, 4H), 5.75 (d, 1H *J* = 9.8 Hz), 4.86 (d, 1H, *J* = 9.8 Hz), 2.61 (s, 3H), 1.63 (s, 3H). ¹³C NMR (75 MHz) δ : 177.5, 162.0, 135.4, 134.6, 133.6, 129.4, 129.3, 128.3, 125.1, 78.8, 61.5, 42.4, 22.4.; HRMS: calcd for [C₁₈H₁₇N₂O₄SCl]+ ([M+H]+): *m/z* 393.0676, found 393.0707; HPLC Chiralpak IA column (Hex/iPrOH 90/10, 0.5 mL/min) tR 26.0 min (major), 30.4 min (minor): 99:1 er.

(**3d**): Diastereoisomeric ratio (dr) from ¹H NMR analysis of crude reaction mixture (10:1) (*anti/syn*). The product was purified by column chromatography on silica gel (Hexanes/AcOEt 3:1 to 2:1) to afford product **3d** (56.5 mg, 72%); ¹H NMR (250 MHz, CDCl₃) δ : 7.85-7.57 (m, 2H), 7.56-7.26 (m, 3H), 7.22-7.12 (m, 5H), 5.70 (d, 1H, *J* = 9.8 Hz), 4,85 (d, 1H, *J* = 9.9 Hz), 2.64 (s, 3H), 1.81 (s, 3H); ¹³C NMR (75 MHz) δ : 177.4, 162.0, 138.0, 135.0, 133.6, 130.3, 129.6, 129.2, 128.2, 128.1, 126.0, 125.1, 73.7, 61.6, 42.4, 22.3; HRMS: calcd for [C₁₈H₁₇N₂O₄SCI]+ ([M+H]+): *m/z* 393.0676, found 393.0677; HPLC Chiralpak IA column (Hex/iPrOH 90/10, 0.5 mL/min) tR 19.6 min (major), 22.4 min (minor): 96:4 er.

(**3e**): Diastereoisomeric ratio (dr) from ¹H NMR analysis of crude reaction mixture (> 19:1) (*anti/syn*). The product was purified by column chromatography on silica gel (Hexanes/AcOEt 3:1 to 2:1) to afford product **3e** (39.9 mg, 51%); ¹H NMR (300 MHz, CDCl₃) δ : 8.05 (d, 1H, *J* = 7.8 Hz), 7.67-7.62 (m, 2H), 7.56-7.32 (m, 5H), 5.60 (d, 1H, *J* = 11.1 Hz), 5.27 (d, 1H, *J* = 11.1 Hz), 2.66 (s, 3H), 1.40 (s, 3H); ¹³C NMR (75 MHz) δ : 179.4, 162.4, 135.1, 134.5, 133.7, 130.3, 130.1, 129.2, 129.0, 128.5, 128.0, 125.5, 73.7, 57.3, 41.5, 21.0; HRMS: calcd for [C₁₈H₁₇N₂O₄SCI]+ ([M+H]+): *m/z* 393.0676, found 393.0681; HPLC Chiralpak IA column (Hex/iPrOH 96/04, 0.45 mL/min) tR 59.4 min (major), 67.9 min (minor): 91:9 er.

(**3f**): Diastereoisomeric ratio (dr) from ¹H NMR analysis of crude reaction mixture (> 19:1) (*anti/syn*). The product was purified by column chromatography on silica gel (Hexanes/AcOEt 3:1 to 2:1) to afford product **3f** (64.5 mg, 74%); ¹H NMR (300 MHz, CDCl₃) δ : 7.90-7.87 (m, 2H), 7.66-7.60 (m, 1H), 7.53-7.48 (m, 2H), 7.41-7.37 (m, 2H), 7.12-7.10 (m, 2H), 5.67 (d, 1H, *J* = 9.9 Hz), 4.86 (d, 1H, *J* = 9.9 Hz), 2.63 (s, 3H), 1.82 (s, 3H); ¹³C NMR (75 MHz) δ : 177.5, 162.0, 135.1, 133.6, 132.2, 129.5, 129.2, 128.3, 125.1, 123.7, 73.7, 61.5, 42.5, 22.5; HRMS: calcd for [C₁₈H₁₇N₂O₄SBr]+ ([M+H]+): *m/z* 437.0171, found 437.0181; HPLC Chiralpak IB column (Hex/iPrOH 97/03, 0.8 mL/min) tR 44.9 min (major), 54.3 min (minor): 98:2 er.

(**3g**): Diastereoisomeric ratio (dr) from ¹H NMR analysis of crude reaction mixture (> 19:1) (*anti/syn*). The product was purified by column chromatography on silica gel (Hexanes/AcOEt 3:1 to 2:1) to afford product **3g** (55.6 mg, 74%); ¹H NMR (300 MHz, CDCl₃) δ : 7.90-7.88 (m, 2H), 7.65-7.60 (m, 1H), 7.52-7.47 (m, 2H), 7.28-7.22 (m, 2H), 6.98-6.92 (m, 2H), 5.93 (d, 1H, *J* = 9.9 Hz), 4.90 (d, 1H, *J* = 9.9 Hz), 2.63 (s, 3H), 1.83 (s, 3H); ¹³C NMR (75 MHz) δ : 177.6, 163.4

The Journal of Organic Chemistry

(d, J = 207 Hz), 162.0, 161.5, 133.6, 131.9, 131.8, 129.8, 129.7, 129.2, 128.3, 125.1, 116.1 (d, J = 22 Hz), 74.0, 61.5, 42.3, 22.3; HRMS: calcd for $[C_{18}H_{17}N_2O_4SF]$ + ([M+H]+): m/z 377.0971, found 377.0991; HPLC Chiralpak IB column (Hex/iPrOH 97/03, 0.8 mL/min) tR 38.4 min (major), 47.4 min (minor): 98:2 er.

(**3h**): Diastereoisomeric ratio (dr) from ¹H NMR analysis of crude reaction mixture (> 19:1) (*anti/syn*). The product was purified by column chromatography on silica gel (Hexanes/AcOEt 3:1 to 2:1) to afford product **3h** (55.4 mg, 65%): ¹H NMR (500 MHz, CDCl₃): δ 7.89-7.87 (m, 2H), 7.64-7.61 (m, 1H), 7.54-7.49 (m, 4H), 7.39-7.37 (m, 2H), 5.86 (d, 1H, *J* = 9.8 Hz), 4.98 (d, 1H, *J* = 9.8 Hz), 2.67 (s, 3H), 1.85 (s, 3H). ¹³C NMR (125 MHz): 177.2, 161.8, 133.5, 131.3 (q, *J* = 32.7 Hz), 129.0, 128.1, 128.0 125.7 (q, *J* = 3.8 Hz), 123.6 (q, *J* = 270.6 Hz), 73.5, 61.4, 42.3, 22.3. HRMS: calcd for [C₁₉H₁₇N₂O₄SF₃]+ ([M+H]+): *m/z* 427.0939, found 427.0951; HPLC Chiralpak IB column (Hex/iPrOH 97/03, 0.8 mL/min) tR 41.8 min (major), 52.2 min (minor): 88:12 er.

(**3i**): Diastereoisomeric ratio (dr) from ¹H NMR analysis of crude reaction mixture (11:1) (*anti/syn*). The product was purified by column chromatography on silica gel (Hexanes/AcOEt 3:1) to afford product **3i** (57.3 mg, 66 %); ¹H NMR (500 MHz, CDCl₃): δ 7.70-7.68 (m, 2H), 7.56-7.53 (m, 1H), 7.44-7.40 (m, 2H), 7.29-7.26 (m, 5H), 7.17-7.12 (m, 5H), 5.82 (d, 1H, *J* = 10.0 Hz), 5.06 (d, 1H, *J* = 10.0 Hz), 3.85 (d, 1H, *J* = 13.2 Hz), 3.43 (d, 1H, *J* = 13.2 Hz), 2.58 (s, 3H). ¹³C NMR (125 MHz) δ : 176.1, 161.7, 133.5, 133.0, 130.3, 129.2, 128.9, 128.7, 128.2, 127.80, 127.75, 127.3, 124.9, 78.8, 61.7, 42.0, 41.7.; HRMS: calcd for [C₂₄H₂₂N₂O₄S]+ ([M+H]+): *m/z* 435.1379, found 435.1385; HPLC Chiralpak IA column (Hex/iPrOH 95/05, 0.5 mL/min) tR 38.8 min (major), 45.8 min (minor): > 99:1 er.

(**3j**): Diastereoisomeric ratio (dr) from ¹H NMR analysis of crude reaction mixture (> 19:1) (*anti/syn*). The product was purified by column chromatography on silica gel (Hexanes/AcOEt 3:1) to afford product **3i** (47.5 mg, 54 %); ¹H NMR (300 MHz, CDCl₃): δ 7.91-7.87 (m, 2H), 7.64-7.58 (m, 1H), 7.51-7.46 (m, 2H), 7.11-7.02 (m, 4H), 5.74 (d, 1H, *J* = 10.0 Hz), 4.84 (d, 1H, *J* = 10.0 Hz), 2.56 (s, 3H), 2.25 (s, 3H), 1.83 (s, 3H). ¹³C NMR (75 MHz) δ : 177.8, 161.7, 139.2, 133.3, 132.8, 129.7, 129.1, 128.2, 127.7, 125.4, 74.0, 61.9, 42.2, 22.4, 21.3; HRMS: calcd for [C₁₉H₂₀N₂O₄S]+ ([M+H]+): *m/z* 373.1222, found 373.1240; HPLC Chiralpak IA column (Hex/iPrOH 95/05, 0.5 mL/min) tR 41.1 min (minor), 53.4 min (major): > 99:1 er.

Procedure for azlactone opening/amide deprotection of Mannich adduct 3b

To a solution of **3b** (35.0 mg, 0.098 mmol) in 2 mL of CH_3CN was added HCI (12 mol L⁻¹, 0.04 mL, 0.56 mmol). The mixture was stirred for 1h at rt, then the volatile materials were removed under reduced pressure to give the intermediate **4**. To the crude, 2 mL of *conc*. HCI was added and the reaction was stirred at 100 °C for 10 h. The resulting mixture was concentrated under reduced pressure, diluted with water (5 mL) and washed three times with ethyl acetate (3 mL each one). The amino acid **5** (22.5 mg, 0.072 mmol) was obtained by purification through Amberlite IR 120 resin (HCI) in 75 % yield.

(4): ¹H NMR (500 MHz, CD₃OD): δ 8.06 (d, 1H, *J* = 10.0 Hz), 7.94 (br, 1H), 7.68-7.66 (m, 2H), 7.56-7.53 (m, 1H), 7.49-7.45 (m, 4H), 7.35-7.32 (m, 2H), 7.30-7.27 (m, 1H), 5.06 (d, 1H, *J* = 9.5 Hz), 2.60 (s, 3H), 1.53 (s, 3H). ¹³C NMR (125 MHz, CD₃OD): 172.8, 166.6, 138.0, 134.1, 131.6, 128.4, 128.2, 128.0, 127.8, 127.1, 62.5, 61.2, 41.3, 19.5. HRMS: calcd for [C₁₈H₂₀N₂O₅S]+ ([M+Na]+): *m/z* 399.0991, found 399.0982.

(5): ¹H NMR (500 MHz, D_2O): δ 7.50-7.46 (m, 5H), 2.68 (s, 3H), 1.53 (s, 3H). ¹³C NMR (125 MHz, D_2O + Dioxane): 173.4, 135.7, 131.8, 131.3, 130.4, 74.2, 64.1, 42.6, 20.8. HRMS: calcd for [$C_{11}H_{17}CIN_2O_4S$]+ ([M-CI]+): *m/z* 273.0909, found 273.0897.

Acknowledgments

We are grateful to FAPEMIG, CAPES, CNPq (305489/2012-7), UFJF and Rede Mineira de Química for the financial support and LabCri (Departamento de Física – Universidade Federal de Minas Gerais) for use of their X-ray facilities. We thank Prof. F. Dean Toste (UC-Berkeley-USA), Prof. Fernando Coelho (IQ-UNICAMP), Prof. Luiz C. Dias (IQ-UNICAMP), Prof. Ronaldo A. Pilli (IQ-UNICAMP), Prof. Adão A. Sabino (DQ-UFMG) and Prof. Mauro V. de Almeida (DQ-UFJF) for all their helps with chemicals and elemental analysis. Prof.

The Journal of Organic Chemistry

Marco Antônio Barbosa Ferreira (DQ-UFSCar) is also acknowledge for the discussion around the manuscript. G.W.A. thanks Dr. Z. Jane Wang for the comments and English grammar revision.

Supporting Information Copies of NMR spectra, HPLCs as well as X-ray crystallographic details (CCDC 1005467 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.) This material is available free of charge via the Internet at http://pubs.acs.org.

References and Notes

[1] Viso, A.; De la Pradilla, R. F.; García, A.; Flores, A. Chem. Rev. 2005, 105, 3167.

[2] For a recent use of azlactones as substrates in asymmetric catalysis, see: (a) Esteban, F.; Alfaro, R.; Yuste, F.; Parra, A.; Ruano, J. L. G.; Alemán, J. Eur. J. Org. Chem. 2014, 1395. (b) Qiao, B.; Liu, X.; Duan, S.; Yan, L.; Jiang, Z. Org. Lett. 2014, 16, 672. (c) Trost, B. M.; Czabaniuk, L. C. Chem. Eur. J. 2013, 19, 15210. (d) Sun, W.; Zhu, G.; Wu, C.; Li, G.; Hong, L.; Wang, R. Angew. Chem., Int. Ed. 2013, 52, 8633. (e) Uraguchi, D.; Ueki, Y.; Sugiyama, A.; Ooi, T. Chem. Sci. 2013, 4, 1308. (f) Oh, J.-S.; Lee, J.-W.; Ryu, T. H.; Lee, J. H.; Song, C. E. Org. Biomol. Chem. 2012, 10, 1052. (g) Lu, G.; Birman, V. B. Org. Lett. 2011, 13, 356. (h) Han, Z.-Y.; Guo, R.; Wang, P.-S.; Chen, D.-F.; Xiao, H.; Gong, L.-Z. Tetrahedron Lett. 2011, 52, 5963. (i) De, C. K.; Mittal, N.; Seidel, D. J. Am. Chem. Soc. 2011, 133, 16802. (j) Dong, S.; Liu, X.; Chen, X.; Mei, F.; Zhang, Y.; Gao, B.; Lin, L.; Feng, X. J. Am. Chem. Soc. 2010, 132, 10650. (k) Jiang, H.; Paixão, M. W.; Monge, D.; Jørgensen, K. A. J. Am. Chem. Soc. 2010, 132, 2775. (I) Alba, A.-N. R.; Companyó, X.; Valero, G.; Moyano, A.; Rios, R. Chem. Eur. J. 2010, 16, 5354. (m) Alba, A.-N. R.; Valero, G.; Calbet, T.; Font-Bardía, M.; Moyano, A.; Rios, R. Chem. Eur. J. 2010, 16, 9884. (n) Terada, M.; Tanaka, H.; Sorimachi, K. J. Am. Chem. Soc. 2009, 131, 3430. (o) Uraguchi, D.; Ueki, Y.; Ooi, T. Science 2009, 326, 120. (p) Uraguchi, D.; Asai, Y.; Ooi, T. Angew. Chem., Int. Ed. 2009, 48, 733. (q) Jiang, J.; Qing, J.; Gong, L.-Z. Chem. Eur. J. 2009,

15, 7031. (r) Cabrera, S.; Reyes, E.; Alemán, J.; Milelli, A.; Kobbelgaard, S.; Jørgensen, K. A. J.
Am. Chem. Soc. 2008, 130, 12031. (s) Alemán, J.; Milelli, A.; Cabrera, S.; Reyes, E.;
Jørgensen, K. A. Chem. Eur. J. 2008, 14, 10958.

[3] For recent literature on chiral Brønsted acid catalyzed Mannich-type reaction, see: (a) Bhadury, P. S.; Sun, Z. *Curr. Org. Chem.* 2014, *18*, 127. (b) Jing, C. C.; Xing, D.; Qian, Y., Hu, W. H. *Synthesis*, 2014, *46*, 1348. (c) Parmar, D.; Sugiono, E.; Raja, S.; Rueping, M. *Chem. Rev.* 2014, *114*, 9047. (d) Saito, K.; Horiguchi, K.; Shibata, Y.; Yamanaka, M., Akiyama, T. *Chem. Eur. J.* 2014, *20*, 7616. (e) Lv, F. P.; Liu, S. Y.; Hu, W. H. *Asian J. Org. Chem.* 2013, *2*, 824. (f) Saito, K.; Shibata, Y.; Yamanaka, M.; Akiyama, T. *J. Am. Chem. Soc.* 2013, *135*, 11740. (g) Wang, Q. G.; Leutzsch, M.; van Gemmeren, M.; List, B. *J. Am. Chem. Soc.* 2013, *135*, 15334. (h) Zhang, H.; Wen, X. J.; Gan, L. H.; Peng, Y. G. *Org. Lett.* 2012, *14*, 2126. (i) Peng, F.-Z.; Shao, Z.-H.; *Curr. Org. Chem.* 2011, *15*, 4144. (j) Terada, M. *Curr. Org. Chem.* 2011, *15*, 2227. (k) Li, G.; Kaplan, M. J.; Wojtas, L.; Antilla, J. C. *Org. Lett.* 2010, *12*, 1960. (l) Terada, M. *Synthesis* 2010, *12*, 1929. (m) Sickert, M.; Abels, F.; Lang, M.; Sieler, J.; Birkemeyer, C.; Schneider, C. *Chem. Eur. J.* 2010, *16*, 2806.

[4] Melhado, A. D.; Amarante, G. W.; Wang, Z. J.; Luparia, M.; Toste, F. D. J. Am. Chem. Soc. 2011, 133, 3517.

[5] (a) Liu, X.; Deng, L.; Jiang, X.; Yan, W.; Liu, C.; Wang, R. Org. Lett. 2010, 12, 876. (b)
Uraguchi, D.; Ueki, Y.; Ooi, T. J. Am. Chem. Soc. 2008, 130, 14088. For a similar example, see:
(c) Uraguchi, D.; Koshimoto, K.; Ooi, T. Chem. Commun. 2010, 46, 300. (d) Zhang, W.-Q.;
Cheng, L.-F.; Yu, J.; Gong, L.-Z. Angew. Chem., Int. Ed. 2012, 51, 4085.

[6] Uraguchi, D.; Terada, M. J. Am. Chem. Soc. 2004, 126, 5356.

[7] Akiyama, T.; Itoh, J.; Yokota, K.; Fuchibe, K. Angew. Chem. Int. Ed. 2004, 43, 1566.

[8] (a) Rueping, M.; Kuenkel, A.; Atodiresei, I. *Chem. Soc. Rev.* 2011, 40, 4539. (b)
Fleischmann, M.; Drettwan, D.; Sugiono, E.; Rueping, M.; Gschwind, R. M. *Angew. Chem. Int. Ed.* 2011, 50, 6364. (c) Rueping, M.; Nachtsheim, B. J.; Ieawsuwan, W.; Atodiresei, I. *Angew. Chem. Int. Ed.* 2011, 50, 6706. (d) Giacalone, F.; Gruttadauria, M.; Agrigento, P.; Noto, R. *Chem. Soc. Rev.* 2012, 41, 2406. (e) Phipps, R. J.; Hamilton, G. L.; Toste, F. D. *Nat. Chem.*

The Journal of Organic Chemistry

, *4*, 603. (f) Wang, Q.; Leutzsch, M.; Gemmeren, M. V.; List, B. *J. Am. Chem. Soc.* **2013**, *135*, 15334. (g) Mahlau, M.; List, B. *Angew. Chem. Int. Ed.* **2013**, *52*, 518.

[9] (a) Amarante, G. W.; Coelho, F. *Quím. Nova* 2009, 32, 469. (b) Ávila, E. P.; Amarante, G. W. *ChemCatChem* 2012, *4*, 1713. (c) Ávila, E. P.; de Mello, A. C.; Diniz, R.; Amarante, G. W. *Eur. J. Org. Chem.* 2013, 1881. (d) Pereira, A. A.; de Castro, P. P.; de Mello, A. C.; Ferreira, B. R. V.; Eberlin, M. N.; Amarante, G. W. *Tetrahedron*, 2014, *70*, 3271.

[10] Klussmann, M.; Ratjen, L.; Hoffmann, S.; Wakchaure, V.; Goddard, R.; List, B. Synlett, 2010, 2189.

[11] Protic solvents could not be adopted, such as methanol or ethanol, because it was observed azlactone ring opening as a by product, see reference 9d.

[12] Different aliphatic tosyl aldimines were synthesized and the desired product was not observed under our optimized reaction condition. Several reaction conditions were tested in order to prepare mesyl aliphatic aldimines, however, all failed.

[13] Yamanaka, M.; Itoh, J.; Fuchibe, K.; Akiyama, T. J. Am. Chem. Soc. 2007, 129, 6756.

[14] Terada, M.; Moriya, K.; Kanomata, K.; Sorimachi, K. Angew. Chem. Int. Ed. 2011, 50, 12586.

[15] (a) Simón, L.; Goodman, J. M. J. Org. Chem. 2011, 76, 1775. (b) Terada, M.; Komuro, T.;
 Toda, Y.; Korenaga, T. J. Am. Chem. Soc. 2014, 136, 7044.