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Abstract 

A highly diastereo- and enantioselective Mannich-type reaction of azlactones 

with aldimines catalyzed by a chiral phosphoric acid is described. Only 3 mol% 

of the catalyst was required to prepare the Mannich adducts in good yields with 

high stereochemical control (up to > 19:1 dr, > 99:1 er). Moreover, the final 
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product contains two consecutive stereogenic centers, one of which is 

quaternary. 

Keywords: azlactones; aldimines; Mannich-type reaction; asymmetric 

organocatalysis; chiral phosphoric acid. 

Chiral α,β-diaminoacid derivatives are very important building blocks in organic 

chemistry as they possess remarkable pharmacological properties. Viso and co-

workers have showed the importance of these motifs in treatment of 

neurodegenerative diseases and various cancers. [1] A variety of methods for 

the synthesis chiral α,β-diaminoacid derivatives have been reported. [1] One 

attractive route utilizes azlactones; as these rings are essentially protected 

aminoacids that are readily unmasked under acidic conditions. Additionally, 

azlactones can be easily prepared on preparative scale following literature 

protocols and derivatized through [2] Mannich-type reaction [3] mediated by 

transition metals or organocatalysts [4], [5].       

In particular, chiral gold(I) complexes have been used to catalyze the 

enantioselective Mannich reaction of azlactones. Reaction of aliphatic 

mesitylsulfonimines with azlactones in the presence of a spirocyclic 

bisphosphine gold(I) benzoate complex (xylyl-SDP(AuOBz)2), provided the 

desired 1,2-anti-Mannich adducts in high yields and selectivities. [4] In contrast, 

organocatalytic approaches tolerate both aromatic and aliphatic imines for 

synthesis of chiral α,β-diaminoacid derivatives in high yields and selectivities. 

[5a], [5b].  Interestingly, the major product observed in these reactions were the 

1,2-syn diastereomers. 
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Since the pioneering work of Terada [6] and Akiyama [7] which demonstrated 

the potential of chiral phosphoric acids as organocatalysts, new applications 

exploiting the H-donor capacity of these catalysts have appeared in the 

literature. [8] In our research program [9], we envisioned that chiral phosphoric 

acids could be an alternative, metal-free catalyst for the reaction between 

azlactones and aldimines. Moreover, we envisioned that this approach may be 

complementary to existing organocatalytic methods and provide access to the 

1,2-anti-diaminoacid derivatives from aromatic imines.  

The azlactone and imine skeletons are both readily accessed following literature 

protocols. [4] To our delight, the reaction between azlactone 1a and aldimine 2a 

catalyzed by only 3 mol% of the comercial available (S)-3,3′-Bis(2,4,6-

triisopropylphenyl)-1,1′-binaphthyl-2,2′-diyl hydrogenphosphate, (S)-TRIP [10], 

in toluene gave the desired Mannich adduct 3a in good yield (70 %; isolated 

yield) and excellent enantio- and diastereoselectivity (Table 1, entry 3). 

However, increasing the size of the sulfonamide led to a decrease in yield.  

Only traces of product was detected when dichloromethane (Table 1, entry 2) 

was used as solvent. While performing the reaction in THF provided the desired 

product in moderate yield, the diastereoselectivity of the transformation was 

low. Significant background of reaction was observed when either acetone or 

chloroform was used. The catalyst loading could be drop to 2 mol% without any 

loss of stereoselectivity, albeit at a lower isolated yield (50 %). Having optimized 

reaction conditions, experiments to evaluate the substrate scope of this 

transformation were conducted (Table 2). 

Table 1. Optimization of reaction conditions for the stereoselective Mannich-type reaction [a]. 
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[a] Reactions were carried out using 0.2 mmol of 1, 0.006 mmol of (S)-TRIP (3 mol%), and 0.21 

mmol of 2 in PhMe (0.2 M in azlactone). [b] Determined by 1H NMR analysis of the crude 

reaction mixture. [c] Determined by enantiodiscriminating HPLC. [d] Isolated yield. [e] Not 

determined. [f] Without molecular sieves. [g] No catalyst, 48 h. 

Various aromatic imines, containing either electron-withdrawing or electron 

donating groups, could be used in the reaction. For example, a benzaldehyde 

derivative containing fluorine at p-position works quite well, providing the 

Mannich adduct 3g in good yield with both diastereo- and enantioselectivity (> 

19:1 dr and 98:2 er). Phenylalanine derivative azlactone could also be used 

under optimized reaction conditions, yielding product 3i in >98% ee.  The 

relative and absolute stereochemistry (1,2-anti) of the Mannich adduct 3b was 

determined by X-ray crystallographic structure (Figure 1). The other products 
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were assigned on the analogy. To the best of our knowledge this work 

comprises the first highly enantio- and diastereoselective Mannich-type reaction 

between azlactone and aldimines catalyzed by a chiral phosphoric acid. A 

variety of aliphatic imines were evaluated; however, all led to complex product 

mixtures which could not be deciphered [12]. 

Table 2. Diastereo- and Enantioselective Mannich-type addition of azlactones to aldimines [a]. 

O
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[a] Reactions were carried out using 0.2 mmol of 1, 0.006 mmol of (S)-TRIP (3 mol%), and 0.21 

mmol of 2 in PhMe (0.2 M in azlactone). [b] Determined by 1H NMR analysis of the crude 

reaction mixture. [c] Determined by chiral HPLC. [d] (R)-TRIP used as catalyst. [e] Relative and 

absolute stereochemistry of 3b was determined by X-ray crystallography and the other products 

were assigned in analogy. [f] Only the major diastereomer was isolated. [g] 5 mol% of catalyst. 
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Figure 1. X-ray crystallographic structure of 3b. 

Yamanaka and Akiyama have proposed that the Mannich-type reaction of a 

special hydroxyaldimine catalyzed by a chiral phosphoric acid proceeds through 

coordination of both oxygen atoms of the chiral phosphoric acid to the aldimine. 

[13] Terada and co-workers have showed a chiral phosphoric acid catalyzed 

enantioselective addition of azlactones to 3-vinylindoles; in this case, the chiral 

phosphoric acid activates both the enol intermediate of azlactone and the vinyl 

double bond system. [14] Thus, a plausible transition state for the reaction of 

imine and azlactone in the presence of TRIP is proposed. [15] We hypothesize 

that the phosphoric acid could stabilize the enol intermediate of azlactone and 

also activated the imine through protonation of the nitrogen lone pair, providing 

the Mannich adducts in high selectivities (Figure 2).      
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Figure 2. Plausible activation mode for the stereoselective reaction between azlactones and 

aldimines catalyzed by a phosphoric acid. 

 

To probe the reversibility of the reaction the enantioenriched Mannich addition 

product 3b was resubjected to catalytic reaction condition in the presence of a 

racemic acid, (+/-)-CSA (camphorsulfonic acid), following the general procedure 

for Mannich reaction. After 24 h at room temperature, the product was re-

isolated in > 99% ee, suggesting that the σ C-C bond step formation is 

irreversible (eq 1). 
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N
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Ph
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3b
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(1)

  

The ring opening, followed by amide deprotection of the enantioenriched 

Mannich addition product 3b under the presence of a mineral acid provided the 

amino acid 5 in two steps and with 75 % overall yield (Scheme 1).  
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Scheme 1. Preparation of amino acid 5.   

Conclusion 

In summary, a Brønsted acid catalyzed highly diastereo- and enatioselective 

Mannich-type addition of azlactones with aldimines is presented. Only 3 mol% 

of the commercial available phosphoric acid (TRIP) was used to provide 

protected 1,2-anti diamino acid derivatives in moderate to good yields and with 

near perfect control of both diastereo- and enantioselectivity (up to > 19:1 dr 

and > 99:1 er). Besides the new σ C-C bond formation, two stereogenic centers 

are created, one of them a quaternary. 

Experimental Section 

Representative experimental for the enantio- and diastereoselective Mannich-

type addition of azlactones to aldimines: In a flammed screw cap vial and under 

nitrogen atmosphere and with molecular sieves (50 mg), 0.2 mmol of azlactone 

was added. After, toluene was canulated at the concentration of 0.2 mol.L-1 in 

azlactone. To this solution, 0.006 mmol (3 mol%) of phosphoric acid was added 

followed by 0.21 mmol of imine. The reaction was kept at room temperature and 

under nitrogen atmosphere for 24 h. The reaction was then diluted in CH2Cl2 

(10 mL) and washed with saturated solution of sodium bicarbonate (5 mL). The 

organic phase was dried over anidrous Na2SO4 and concentrated under 

reduced pression. An aliquot was taken to the NMR and the diastereoisomeric 

ratio was measured by 1H NMR analysis. After, the crude reaction mixture was 
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purified through silica gel chromatography by using ethyl acetate: hexanes as 

solvents (up to 2:1 ethyl acetate/hexanes). The major diastereomers were 

submitted to chiral HPLC analysis and then fully characterized by the 

conventional elemental analysis. 

Characterization data for the Mannich adducts 3a-j 

(3a): Diastereoisomeric ratio (dr) from 1H NMR analysis of crude reaction mixture (> 19:1) 

(anti/syn). The product was purified by column chromatography on silica gel (Hexanes/AcOEt 

3:1 to 2:1) to afford product 3a (50.1 mg, 70%); 1H NMR (250 MHz, CDCl3) δ: 7.86 (d, 2H, J = 

7.1 Hz), 7.58-7.55 (m, 1H), 7.49-7.43 (m, 2H), 7.22-7.19 (m, 5H), 5.71 (d, 1H, J = 10 Hz), 4.87 

(d, 1H, J = 10 Hz), 2.56 (s, 3H), 1.82 (s, 3H); 13C NMR (63 MHz) δ: 177.5, 161.5, 135.5, 133.1, 

129.1, 128.8, 128.7, 128.0, 127.6, 125.1, 73.7, 61.9, 41.9, 22.1; HRMS: calcd for 

[C18H18N2O4S]+ ([M+H]+): m/z 359.1066, found 359.1079; HPLC Chiralpak IA column 

(Hex/iPrOH 95/05, 0.7 mL/min) tR 26.6 min (major), 28.7 min (minor): > 99:1 er. See reference 

4. 

(3b): Diastereoisomeric ratio (dr) from 1H NMR analysis of crude reaction mixture (> 19:1) 

(anti/syn). The product was purified by column chromatography on silica gel (Hexanes/AcOEt 

3:1 to 2:1) to afford product 3b (51.6 mg, 72%); 1H NMR (250 MHz, CDCl3) and 13C NMR (63 

MHz): identical 3a; HPLC Chiralpak IA column (Hex/iPrOH 95/05, 0.7 mL/min) tR 26.8 min 

(minor), 29.3 min (major): > 99:1 er. See reference 4.  

(3c): Diastereoisomeric ratio (dr) from 1H NMR analysis of crude reaction mixture (> 19:1) 

(anti/syn). The product was purified by column chromatography on silica gel (Hexanes/AcOEt 

3:1 to 2:1) to afford product 3c (57.2 mg, 73%); 1H NMR (250 MHz, CDCl3) δ: 7.88-7.85 (m, 2H), 

7.60-7.45 (m, 3H), 7.26-7.14 (m, 4H),  5.75 (d, 1H J = 9.8 Hz),  4.86 (d, 1H, J = 9.8 Hz), 2.61 (s, 

3H), 1.63 (s, 3H). 13C NMR (75 MHz) δ: 177.5, 162.0, 135.4,  134.6, 133.6, 129.4, 129.3, 128.3, 

125.1, 78.8, 61.5, 42.4, 22.4.; HRMS: calcd for [C18H17N2O4SCl]+ ([M+H]+): m/z 393.0676, 

found 393.0707; HPLC Chiralpak IA column (Hex/iPrOH 90/10, 0.5 mL/min) tR 26.0 min (major), 

30.4 min (minor): 99:1 er. 

Page 9 of 15

ACS Paragon Plus Environment

The Journal of Organic Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



(3d): Diastereoisomeric ratio (dr) from 1H NMR analysis of crude reaction mixture (10:1) 

(anti/syn). The product was purified by column chromatography on silica gel (Hexanes/AcOEt 

3:1 to 2:1) to afford product 3d (56.5 mg, 72%); 1H NMR (250 MHz, CDCl3) δ: 7.85-7.57 (m, 2H), 

7.56-7.26 (m, 3H), 7.22-7.12 (m, 5H), 5.70 (d, 1H, J = 9.8 Hz), 4,85 (d, 1H, J = 9.9 Hz), 2.64 (s, 

3H), 1.81 (s, 3H); 13C NMR (75 MHz) δ: 177.4, 162.0, 138.0, 135.0, 133.6, 130.3, 129.6, 129.2, 

128.2, 128.1, 126.0, 125.1, 73.7, 61.6, 42.4, 22.3; HRMS: calcd for [C18H17N2O4SCl]+ ([M+H]+): 

m/z 393.0676, found 393.0677; HPLC Chiralpak IA column (Hex/iPrOH 90/10, 0.5 mL/min) tR 

19.6 min (major), 22.4 min (minor): 96:4 er. 

(3e): Diastereoisomeric ratio (dr) from 1H NMR analysis of crude reaction mixture (> 19:1) 

(anti/syn). The product was purified by column chromatography on silica gel (Hexanes/AcOEt 

3:1 to 2:1) to afford product 3e (39.9 mg, 51%); 1H NMR (300 MHz, CDCl3) δ: 8.05 (d, 1H, J = 

7.8 Hz), 7.67-7.62 (m, 2H), 7.56-7.32 (m, 5H),  5.60 (d, 1H, J = 11.1 Hz),  5.27 (d, 1H, J = 11.1 

Hz), 2.66 (s, 3H), 1.40 (s, 3H); 13C NMR (75 MHz) δ: 179.4, 162.4, 135.1, 134.5, 133.7, 130.3, 

130.1, 129.2, 129.0,  128.5, 128.0, 125.5, 73.7, 57.3, 41.5, 21.0; HRMS: calcd for 

[C18H17N2O4SCl]+ ([M+H]+): m/z 393.0676, found 393.0681; HPLC Chiralpak IA column 

(Hex/iPrOH 96/04, 0.45 mL/min) tR 59.4 min (major), 67.9 min (minor): 91:9 er. 

(3f): Diastereoisomeric ratio (dr) from 1H NMR analysis of crude reaction mixture (> 19:1) 

(anti/syn). The product was purified by column chromatography on silica gel (Hexanes/AcOEt 

3:1 to 2:1) to afford product 3f (64.5 mg, 74%); 1H NMR (300 MHz, CDCl3) δ: 7.90-7.87 (m, 2H) , 

7.66-7.60 (m, 1H), 7.53-7.48 (m, 2H),  7.41-7.37 (m, 2H),  7.12-7.10 (m, 2H), 5.67 (d, 1H, J = 

9.9 Hz), 4.86 (d, 1H, J = 9.9 Hz), 2.63 (s, 3H), 1.82 (s, 3H); 13C NMR (75 MHz) δ: 177.5, 162.0, 

135.1, 133.6,  132.2, 129.5,  129.2, 128.3, 125.1, 123.7, 73.7, 61.5,  42.5,  22.5; HRMS: calcd 

for [C18H17N2O4SBr]+ ([M+H]+): m/z 437.0171, found 437.0181; HPLC Chiralpak IB column 

(Hex/iPrOH 97/03, 0.8 mL/min) tR 44.9 min (major), 54.3 min (minor): 98:2 er. 

(3g): Diastereoisomeric ratio (dr) from 1H NMR analysis of crude reaction mixture (> 19:1) 

(anti/syn). The product was purified by column chromatography on silica gel (Hexanes/AcOEt 

3:1 to 2:1) to afford product 3g (55.6 mg, 74%); 1H NMR (300 MHz, CDCl3) δ: 7.90-7.88 (m, 2H), 

7.65-7.60 (m, 1H),  7.52-7.47 (m, 2H),  7.28-7.22 (m, 2H), 6.98-6.92 (m, 2H),  5.93 (d, 1H, J = 

9.9 Hz),  4.90 (d, 1H, J = 9.9 Hz), 2.63 (s, 3H),  1.83 (s, 3H); 13C NMR (75 MHz) δ: 177.6, 163.4 
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(d,  J = 207 Hz), 162.0, 161.5, 133.6, 131.9, 131.8, 129.8, 129.7, 129.2,  128.3, 125.1, 116.1 (d, 

J = 22 Hz), 74.0, 61.5, 42.3, 22.3; HRMS: calcd for [C18H17N2O4SF]+ ([M+H]+): m/z 377.0971, 

found 377.0991; HPLC Chiralpak IB column (Hex/iPrOH 97/03, 0.8 mL/min) tR 38.4 min (major), 

47.4 min (minor): 98:2 er. 

(3h): Diastereoisomeric ratio (dr) from 1H NMR analysis of crude reaction mixture (> 19:1) 

(anti/syn). The product was purified by column chromatography on silica gel (Hexanes/AcOEt 

3:1 to 2:1) to afford product 3h (55.4 mg, 65%): 1H NMR (500 MHz, CDCl3): δ 7.89-7.87 (m, 

2H), 7.64-7.61 (m, 1H), 7.54-7.49 (m, 4H), 7.39-7.37 (m, 2H), 5.86 (d, 1H, J = 9.8 Hz), 4.98 (d, 

1H, J = 9.8 Hz), 2.67 (s, 3H), 1.85 (s, 3H). 13C NMR (125 MHz): 177.2, 161.8, 133.5, 131.3 (q, J 

= 32.7 Hz), 129.0, 128.1, 128.0 125.7 (q, J = 3.8 Hz), 123.6 (q, J =  270.6 Hz), 73.5, 61.4, 42.3, 

22.3. HRMS: calcd for [C19H17N2O4SF3]+ ([M+H]+): m/z 427.0939, found 427.0951; HPLC 

Chiralpak IB column (Hex/iPrOH 97/03, 0.8 mL/min) tR 41.8 min (major), 52.2 min (minor): 

88:12 er.   

(3i): Diastereoisomeric ratio (dr) from 1H NMR analysis of crude reaction mixture (11:1) 

(anti/syn). The product was purified by column chromatography on silica gel (Hexanes/AcOEt 

3:1) to afford product 3i (57.3  mg, 66 %); 1H NMR (500 MHz, CDCl3): δ 7.70-7.68 (m, 2H), 

7.56-7.53 (m, 1H),  7.44-7.40 (m, 2H), 7.29-7.26 (m, 5H), 7.17-7.12 (m, 5H), 5.82 (d, 1H, J = 

10.0 Hz),  5.06 (d, 1H, J = 10.0 Hz), 3.85 (d, 1H, J = 13.2 Hz), 3.43 (d, 1H, J = 13.2 Hz), 2.58 (s, 

3H). 13C NMR (125 MHz) δ: 176.1, 161.7, 133.5, 133.0, 130.3, 129.2, 128.9, 128.7, 128.2, 

127.80, 127.75,  127.3, 124.9,  78.8, 61.7, 42.0, 41.7.; HRMS: calcd for [C24H22N2O4S]+ 

([M+H]+): m/z 435.1379, found 435.1385; HPLC Chiralpak IA column (Hex/iPrOH 95/05, 0.5 

mL/min) tR 38.8 min (major), 45.8 min (minor): > 99:1 er. 

(3j): Diastereoisomeric ratio (dr) from 1H NMR analysis of crude reaction mixture (> 19:1) 

(anti/syn). The product was purified by column chromatography on silica gel (Hexanes/AcOEt 

3:1) to afford product 3i (47.5  mg, 54 %); 1H NMR (300 MHz, CDCl3): δ 7.91-7.87 (m, 2H), 

7.64-7.58 (m, 1H),  7.51-7.46 (m, 2H), 7.11-7.02 (m, 4H), 5.74 (d, 1H, J = 10.0 Hz),  4.84 (d, 1H, 

J = 10.0 Hz), 2.56 (s, 3H), 2,25 (s, 3H), 1.83 (s, 3H). 13C NMR (75 MHz) δ: 177.8, 161.7, 139.2, 

133.3, 132.8, 129.7, 129.1, 128.2, 127.7, 125.4,  74.0, 61.9, 42.2, 22.4, 21.3.; HRMS: calcd for 
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[C19H20N2O4S]+ ([M+H]+): m/z 373.1222, found 373.1240; HPLC Chiralpak IA column 

(Hex/iPrOH 95/05, 0.5 mL/min) tR 41.1 min (minor), 53.4 min (major): > 99:1 er. 

Procedure for azlactone opening/amide deprotection of Mannich adduct 3b 

To a solution of 3b (35.0 mg, 0.098 mmol) in 2 mL of CH3CN was added HCl (12 mol L-1, 0.04 

mL, 0.56 mmol). The mixture was stirred for 1h at rt, then the volatile materials were removed 

under reduced pressure to give the intermediate 4. To the crude, 2 mL of conc. HCl was added 

and the reaction was stirred at 100 oC for 10 h. The resulting mixture was concentrated under 

reduced pressure, diluted with water (5 mL) and washed three times with ethyl acetate (3 mL 

each one). The amino acid 5 (22.5 mg, 0.072 mmol) was obtained by purification through 

Amberlite IR 120 resin (HCl) in 75 % yield. 

(4): 1H NMR (500 MHz, CD3OD): δ 8.06 (d, 1H, J = 10.0 Hz), 7.94 (br, 1H), 7.68-7.66 (m, 2H), 

7.56-7.53 (m, 1H), 7.49-7.45 (m, 4H), 7.35-7.32 (m, 2H), 7.30-7.27 (m, 1H), 5.06 (d, 1H, J = 9.5 

Hz), 2.60 (s, 3H), 1.53 (s, 3H). 13C NMR (125 MHz, CD3OD): 172.8, 166.6, 138.0, 134.1, 131.6, 

128.4, 128.2, 128.0, 127.8, 127.1, 62.5, 61.2, 41.3, 19.5. HRMS: calcd for [C18H20N2O5S]+ 

([M+Na]+): m/z 399.0991, found 399.0982. 

(5): 1H NMR (500 MHz, D2O): δ 7.50-7.46 (m, 5H), 2.68 (s, 3H), 1.53 (s, 3H). 13C NMR (125 

MHz, D2O + Dioxane): 173.4, 135.7, 131.8, 131.3, 130.4, 74.2, 64.1, 42.6, 20.8. HRMS: calcd 

for [C11H17ClN2O4S]+ ([M-Cl]+): m/z 273.0909, found 273.0897. 
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