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Annulation reaction of a-formylcaprylate (5) with 2,5-dihydro-3-phen-

ylthio-4-vinylfuran-2-one (2), followed by dehydration, oxidation, 

and rearrangement, provided an epimeric mixture of 2,4,5,6-tetrahydro-

6-hexyl-4-hydroxy-6-methoxycarbonylbenzofuran-2-ones (8a and 8b). 

From both the products, 2,3,3aR,4,6,6aQ-hexahydro-4Q-octylfuro[2,3-c]-

furan-2,6-dione (4b), the known synthetic precursor of (±)-avenaciolide 

(1) was obtained.

 Many synthetic effortsl)have concentrated on avenaciolide (1),2)an antifungal 

mold metabolite produced by Aspergillus avenaceus, because of its characteristic, 

fused dilactone structure as well as the eminent biological activity.

Recently, the novel annulation reaction using a-phenylthio-S-vinylbutenolide (2) 

has been developed in this laboratory for the synthesis of 4-oxygenated perhydro-

benzofuran-2-ones. 3) The synthesis consists of the following steps; annulation product 

(B), obtained by the reaction of a carbonyl compound (A) (X= acyl, cyano, or alkoxy-

carbonyl) and 2, is dehydrated to give a,R,y,S-unsaturated lactone (C). The lactone 

(C) is then oxidized to afford sulfoxide, which on treatment with pyridine-water (or 

pyridine-acetic anhydride), provides hydroxy (or acetoxy) lactone (D)(R3= H or Ac). 

 Our synthetic approach to 1 described herein can be outlined as follows; hydroxy-

lactone 3, accessible from a-formylcaprylate, via the above annulation reaction and 

the subsequent transformation, was oxidatively cleaved at the cyclohexene double bond, 

followed by lactone ring formation, to give keto dilactone 4a. Upon reduction of 

the ketone carbonyl, 4a provided dilactone 4b well-established as the synthetic pre-

cursor of 1. 
N
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 Methyl a-formylcaprylate (5), obtained from methyl caprylate (LDA, HCO2Et; 74%),

reacted with 2 (KF, DMSO-DME, room temperature; 62% yield) to give a diastereomeric 

mixture of annulation products, 6a, mp 108-109.5CC, and 6b in a ratio of 72:28.4,5) 
The major product 6a gave 7 by dehydration (SOC1

2, pyridine, 0CC; 90% yield). 6) Oxi-d
ation of 7 with mCPBA (1 mol equiv., CH 

2 C1 2, 0CC) and the subsequent rearrangement 
of the resulting crude sulfoxide in pyridine-water (8:2) at 35-37CC provided a 1:1 

mixture of hydroxy lactones 88a and,b,7)mp 91-93CC (95% combined yield) . The 
relative stereochemistry of the ester vs. hydroxyl group in these products was assign-

ed by the fact that the latter lactone 8b formed dilactone 9 on acid treatment (TsOH, 

PhH, reflux; 42% yield). . 

 After protection of the hydroxyl group in 8b as t-butyldimethylsilyl ether (t-

BuMe2SiC1, imidazole, DMF, 87% yield), hydrogenation (5% Pd-SrCO3, EtOH) of the product 

proceeded with high stereoselectivity yielding y-lactone 10a8) (91% yield), whose ester 

group was then selectively hydrolyzed (n-PrSLi, HMPA; 85% yield). Carboxylic acid 10b 
thus obtained was oxidatively decarboxylated (Pb(OAc)4, Cu(OAc)2.H2O, pyridine, PhH9)) 

giving an inseparable mixture of olefins, lla and llb (57% combined yield), along with 
acetate 12 (33% yield). The olefin mixture was separable, after desilylation (n-Bu4NF, 

THF), by chromatography to afford the desired olefinic alcohol 310) (72% yield) and its 

regioisomer llc (23% yield). 

 On the other hand, the isomeric lactone 8a afforded butenolide 13by reduction 
 M.

under alkaline conditions (NaBH4, K2CO3, MeOH; 48% yield). After the hydroxyl group 

had been protected as t-butyldimethylsilyl ether, the olefinic double bond of the buten-

olide ring in 13 was reduced (NaBH
4, NiC126H2O, McOH12)) to give saturated lactone 14 

in quantitative yield from 13. By applying the same sequence of reactions as described
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for 10a (i, PrSLi, HMPA; ii, Pb(OAc)4, Cu(OAc)2•H2O, pyridine, PhH; iii, Bu 4NF, THF), 

the key intermediate 3 was also obtained from 14 (24% yield). 

 The olefinic lactone 3 thus secured was ozonized and the product was oxidized 

(PCC14)) to give 4a (73% yield). Reduction of the ketone carbonyl was performed by 

the modified Clemmensen reduction (Zn, ether saturated with dry HC1 gas15)), yielding 

the known precursor 4b of (±)-avenaciolide (1),la,lb,ld,le,lf)which was identified in 

comparison with an authentic sample (IR and 1H NMR). 
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