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Abstract A one-pot procedure for the aminoxylation of thioalkynes for
the direct formation of -functionalized thioesters under mild reaction
conditions is reported. A ketenethionium ion is the key intermediate,
which is generated in situ by Brønsted acid mediated protonation and
undergoes a radical-polar crossover.
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Alkynes are privileged, versatile functional groups in or-
ganic synthesis.1,2 Juxtaposing an alkyne and a sulfur atom
leads to thioalkynes or alkynylsulfides, an interesting class
of electron-rich acetylenes.3 Thioalkynes serve as interest-
ing precursors to thioesters,4–6 offering an alternative to the
classical synthetic approach of combining a thiol and an
acyl chloride. Indeed, the direct acidic hydrolysis of alkynyl-
sulfides delivers thioesters in a mild manner (Scheme 1, a).

Scheme 1  Generic pathways for conversion of (a) thioalkynes to thio-
esters, (b) aminoxylation of ynamides, and (c) aminoxylation of thioesters

Reactivity pathways that allow the direct formation of
-functionalized thioesters from thioalkynes are of even
greater interest. In this context, our group and others have
engaged thioalkynes in acid-catalyzed arylative rearrange-
ments employing arylsulfoxides,7,8 while Zhao and Sun
have exploited scandium catalysis to access substituted ,-
unsaturated thioesters.9 Following our recent report on the
acid-promoted reaction of TEMPO with activated ynamides
(Scheme 1, b),10 we were eager to extend those investiga-
tions to thioalkynes. Herein, we report the development of
an aminoxylation of thioalkynes as well as several intrigu-
ing mechanistic features of the process.

We started our investigations using nonyne-derived
alkynylsulfide 1a and employing conditions akin to those
previously employed for ynamides. In the event (Table 1),
dichloromethane proved to be the best solvent. Thus, pre-
activation of the thioalkyne using TfOH for 15 minutes at
0 °C followed by addition of 3 equivalents of TEMPO, warm-
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Table 1  Optimization of the Reaction Conditions

Solvent 
[M]

Temp 
(°C)

TEMPO 
(equiv)

Time 
(h)

Isolated yield 
(%)

CH2Cl2[0.1]   0 to 25 2.2 12 39

CH2Cl2[0.1]   0 to 25 3  4 58

CH2Cl2[0.1]   0 to 25 3 16 70

CH2Cl2[0.1] –78 to 25 3 16 36

C2H4Cl2[0.1]   0 to 25 3 16 48

CH3CN [0.1]   0 to 25 3 16  0
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TfOH (1.1 equiv), T (°C), 15 min
then TEMPO (equiv), T (°C), time (h)

1a 2a
© 2019. Thieme. All rights reserved. — Synlett 2019, 30, A–C
Georg Thieme Verlag KG, Rüdigerstraße 14, 70469 Stuttgart, Germany

http://orcid.org/0000-0003-3643-0718


B

G. Di Mauro et al. LetterSyn  lett

D
ow

nl
oa

de
d 

by
: B

os
to

n 
U

ni
ve

rs
ity

. C
op

yr
ig

ht
ed

 m
at

er
ia

l.
ing up to room temperature, afforded the product 2a in re-
producible 70% yields. Lower temperatures during the acti-
vation event proved not to be beneficial.

Having identified suitable conditions for the transfor-
mation, the scope of the reaction was investigated (Scheme
2). Alkyl substitution on the thioalkyne partner was tolerat-
ed (2a–c),11,12 affording the aminoxylation products in
moderate yields due to the formation of relatively complex
mixtures of unidentifiable byproducts, from which chro-
matographic isolation of the desired adducts was trouble-
some. Cyclopropyl substitution was also accommodated
without any ring-opening products being detected (2d).
Protected nitrogen moieties (cf. phthalimide 2e) did not in-
terfere with the transformation. An ester (cf. 2f) and a pri-
mary halide (cf. 2g) could also be tolerated.

Scheme 2  Substrate scope for the aminoxylation of thioalkynes

Aromatic residues either attached to the thioalkyne
(2h) or directly bound to sulfur (–SPh, cf. 2i) led to signifi-
cantly lower yields. Mechanistically and in analogy to our
prior work,10 we surmise that after protonation of the thio-
alkyne a radical-mediated C–O bond formation takes place.
This leads to a sulfur-centered radical cation A for which
two mesomeric forms can be depicted (Scheme 3). The re-
quirement for an excess of TEMPO is, as before, most likely

connected to a mechanistic scenario whereby 2 equivalents
of the persistent aminoxyl radical are incorporated in the
final product.

Scheme 3  Proposed mechanism

The presence of an aryl moiety directly attached to the
thioalkyne (R1 = Ar), such as in 2h, is likely to stabilize inter-
mediate A. A similar stabilizing effect can be anticipated for
S-aryl thioalkynes (R2 = Ar), such as in 2i. The reason for the
experimentally observed lower yields and more complex
mixtures in the case of those substrates can thus be as-
cribed to either a higher barrier to radical recombination or
a propensity of the more stabilized A to undergo deleteri-
ous side reactions (see Supporting Information for unsuc-
cessful attempts on related substrates). Product 2b was
amenable to reductive N–O cleavage affording product 3a in
81% yield (Scheme 4).

Scheme 4  Reductive N–O bond cleavage

In summary, we have developed an aminoxylation of
thioalkynes that proceeds by a radical-polar crossover
mechanism. The process involves addition of a radical spe-
cies to a ketenethionium intermediate that ultimately
evolves to an -aminoxylated thioester.
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