

Subscriber access provided by CMU Libraries - http://library.cmich.edu

Note

Development of an intein-inspired amide cleavage chemical device

Chiaki Komiya, Keisuke Aihara, Ko Morishita, Hao Ding, Tsubasa Inokuma, Akira Shigenaga, and Akira Otaka J. Org. Chem., Just Accepted Manuscript • DOI: 10.1021/acs.joc.5b02399 • Publication Date (Web): 08 Dec 2015 Downloaded from http://pubs.acs.org on December 9, 2015

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

Development of an intein-inspired amide cleavage chemical device

Chiaki Komiya‡, Keisuke Aihara‡, Ko Morishita, Hao Ding, Tsubasa Inokuma, Akira Shigenaga, and Akira Otaka*

‡These authors contributed equally.

Institute of Biomedical Sciences and Graduate School of Pharmaceutical Sciences, Tokushima

University, Tokushima 770-8505, Japan

*E-mail: aotaka@tokushima-u.ac.jp

Abstract

A photo-responsive amide cleavage device was developed based on the asparagine imidation-mediated cleavage of peptide bonds during intein-mediated protein splicing. The chemical environment of the protein splicing process was mimicked by the incorporation of geminal dimethyl groups and a secondary amine unit in asparagine scaffold. Furthermore, the resulting photo-responsive device could induce the photo-triggered cleavage of an amide bond by the protection of the secondary amine unit with an *o*-nitrobenzyloxycarbonyl group.

Intein proteins, which are found in a wide range of unicellular organisms, mediate the self-splicing of intein-containing proteins to produce intein-removed splicing proteins through sequential N–S(or O), S(or O)–S(or O) and S(or O)–N-acyl transfers. The third S(or O)–N-acyl transfer step in this process starts from the imide cyclization of an asparagine (Asn) residue at the intein C-terminus, which is followed by the transfer of an O(or S)–peptidyl unit to the liberated amino group. The progress of this sequence of reactions depends on several requirements, including (i) enhancement of the nucleophilicity of the amide side chain of the Asn residue; (ii) activation of the scission peptide bond; and (iii) appropriate arrangement of the functional groups involved in the reactions. An analysis of the structural basis for this reaction indicated that the appropriate arrangement of several functional units, including a water molecule, assist in the cleavage of the amide via an acid-base-catalyzed mechanism (Figure 1).

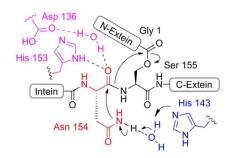


Figure 1. Mechanism of acid-base-catalyzed amide cleavage.

Methodologies for photo-induced amide bond cleavage⁵ and conformational change⁶ have provided powerful tools for the spatiotemporal control of the functions of peptide/proteins. We previously developed a stimulus-responsive processing residue (Spr)⁷ based on a trimethyl-lock system.^{8,9} This Spr system has shown utility in the field of chemical biology and has potential for real-life application.^{7a,c,e} In conjunction with our studies on Spr, we also explored the development of an alternative new scaffold. In this context, the result of a mechanistic study⁴ of the third step of the reaction mentioned above

inspired us to design a new amide bond cleavage device with a modified Asn structure. In this way, it was envisioned that the modifications shown in Figure 2 would provide the structural features necessary to affect the cleavage of an amide bond. The incorporation of a pendant secondary amine would provide an intramolecular base, ¹⁰ which could enhance the nucleophilicity of the amide nitrogen. Furthermore, the incorporation of geminal dimethyl groups would lead to a Thorpe-Ingold effect, ^{11–13} which would fix the conformation of the intein system and assist in the formation of the succinimide ring. Lastly, the masking of the basic character of the secondary amine with a photo-sensitive *N*-protecting group, ¹⁴ such as *o*-nitrobenzyloxycarbonyl (*o*NBnoc), could provide a simple platform for the development of stimulus-responsive amide bond cleavage device.

Figure 2. Design of an intein-mediated UV-responsive amide cleavage device.

Our work toward preparation of a pendant secondary amine capable of responding to UV irradiation started from N-ethylethylenediamine (1) (Scheme 1). The reaction of 1 with tert-butyloxycarbonyl anhydride (Boc₂O) in THF allowed for the selective protection of the primary amino group. The subsequent reaction of the secondary amine group with p-nitroformate 2^{15} and triethylamine (Et₃N) in THF afforded the requisite compound 3 in quantitative yield (over two steps). The trifluoroacetic acid (TFA)-mediated removal of the Boc protecting group from 3 gave the pendant amine unit 4a. The

synthesis of the Boc-protected pendant unit **4b** proceeded via the trifluoroacetylation of the primary amino group of **1**, followed by the introduction of a Boc group and the subsequent hydrolysis of the trifluoroacetyl protecting group.

Scheme 1. Synthesis of the pendant secondary amine 4a and 4b

Reagents and conditions: (i) Boc₂O, THF; (ii) **2**, Et₃N, THF, quant. (two steps); (iii) TFA, CH₂Cl₂; (iv) ethyltrifluoroacetate, CH₂Cl₂; (v) Boc₂O, CH₂Cl₂; (vi) K₂CO₃, MeOH, H₂O

Scheme 2. (a) Synthesis of the Intein-inspired amide cleavage device **10a** and **10b** and (b) the preparation of a model peptide.

Reagents and conditions: (i) TFA, TES, CH₂Cl₂; (ii) AllocCl, NaHCO₃, THF, H₂O; (iii) LiOH, THF, H₂O; (iv) Ac₂O, THF; (v) allyl alcohol, 60% (five steps); (vi) **4a** or **4b**, PyBrop, DIEA, CH₂Cl₂; (vii) Pd(PPh₃)₄, *N*-methylaniline, THF then FmocOSu, DIPEA

PhFl-diMe-Asp(OMe)-OMe 5^{16} was synthesized over three steps from L-Aspartic acid (6) following Goodman's procedure (Scheme 2). The deprotection of the PhFl group in 5 with a mixture of TFA and triethyl silane (TES) in CH₂Cl₂, followed by the protection of the resulting amine with allylchloroformate (Alloc-Cl) gave Alloc-diMe-Asp(OMe)-OMe 7. The subsequent hydrolysis of the two methyl esters of 7 with LiOH in a mixture of THF and H₂O gave the corresponding carboxylic acid, which was reacted with Ac₂O in THF at reflux temperature, followed by an alcoholysis reaction with allyl alcohol to give the α -allylester Alloc-diMe-Asp(OH)-OAllyl 8 in 60% isolated yield (over five steps). The reaction of the UV-responsive amine 4a with the sterically-crowded β -carboxylic acid of 8

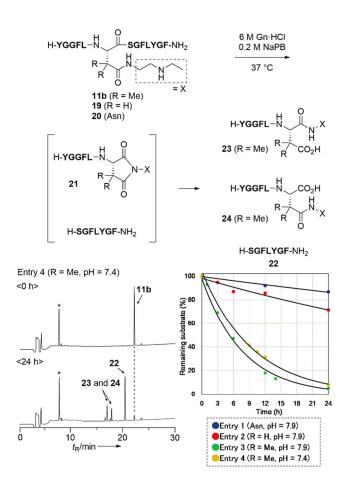
was accomplished using bromotripyrrolidinophosphonium hexafluorophosphate (PyBrop) and diisopropylethyl amine (DIPEA) in CH₂Cl₂ to yield the fully protected Asn derivative Alloc-diMe-Asn(Et-*N-o*NBnoc)-OAllyl **9a** in 75% isolated yield. The conversion of **9a** to the corresponding 9-fluorenylmethyloxycarbonyl (Fmoc)-protected derivative for Fmoc solid-phase peptide synthesis (SPPS) was achieved by the deprotection of the allyl and allyloxycarbonyl (Alloc) groups by the treatment of **9a** with Pd(PPh)₄ and *N*-methylaniline, followed by the Fmoc protection of the resulting amine to give Fmoc-diMe-Asn(Et-*N*-oNBnoc)-OH **10a** in 92% isolated yield. The Boc-protected material Fmoc-diMe-Asn(Et-*N*-Boc)-OH **10b** was also prepared in a similar manner in 70% isolated yield from **9b**.

With the requisite Asn derivatives in hand, we proceeded to synthesize two model peptides (H-YGGFL-X-SGFLYGF-NH₂ 11a and 11b: X = Asn derivatives) to examine the self-processing properties of the peptides. The Fmoc protected amino acids were condensed on NovaSyn[®] TGR resin using diisopropylcarbodiimide (DIPCDI) and 1-hydroxybenztriazole (HOBt) in dimethylformamide (DMF) except for 10a and 10b. The condensation of compound 10a was achieved using 1-[bis-(dimethylamino)methylene]1H-1,2,3-triazolo[4,5-β]pyridine-3-oxide hexafluorophosphate (HATU) and DIEA in *N*-methylpyrrolidone (NMP). The completed peptide resins were subsequently exposed to a mixture of TFA-ethanedithiol (EDT)-*m*-cresol-thioanisole-H₂O at room temperature for 2 h to give a mixture of two peptides with mass values identical to that of the desired material (Figure 3).

Figure 3. Possible mechanism for the generation of the byproduct 18.

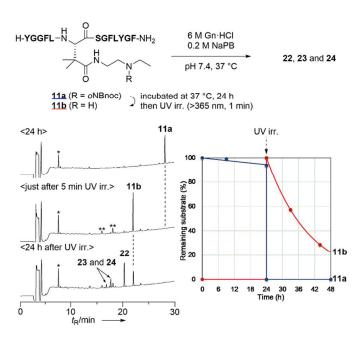
The origin of the two peptides was attributed to the formation of the succinimide species 12 during the activation of 10a, followed by the aminolysis of the succinimide ring by the amino group of the growing peptide chain. Given that one of the two possible electrophilic sites in the succinimide ring of 12 was sterically crowded by the neighboring geminal dimethyl groups, it was anticipated that the major product of this reaction would be desired α -peptide 11a. We envisaged that the benzyl protection of the amide nitrogen in 10a would prevent the formation of the succinimide ring. However, our attempts to synthesize the dimethoxybenzyl (DMB)-protected Asn derivative 13 resulted in failure (Scheme 3). Although the condensation of the *N*-dimethoxybenzyl diamine derivative 14a with a gave the desired amide a in a in a in a with a gave the desired amide a in a with a gave the failure of this reaction was attributed to the nucleophilic attack of the a-carboxylate on the substituted amide. To confirm the structure of peptide a as the iso-peptide form, the a-amide protected derivative a suitable for the straightforward preparation of a was prepared from the reaction of the a-allyl ester a with a (Scheme a).

Scheme 3. Synthetic approach to 13 and the synthesis of the isomeric peptide 18


Reagents and conditions: (i) 2,4-dimethoxybenzaldehyde, Na₂SO₄, MeOH; NaBH₄; (ii) MsCl, Et₃N, CH₂Cl₂ then **14a**, 50%; (iii) MsCl, Et₃N, THF then **14a**, 60%; (iv) Pd(PPh₃)₄, *N*-methylaniline, THF then FmocOSu, DIPEA, quant.

The resulting imidation-tolerant β -carboxylic derivative **16** was also incorporated into a peptide resin in a manner similar to that employed for **11a**. The subsequent deprotection of the resin afforded the β -peptide **18**. This result clearly indicated that the major and minor products of the succinimide ring-opening reaction described above were **11a** and **18**, respectively. This result is shown in the HPLC chart in Figure 3 for the α - and β -peptides, respectively. A peptide sample without a UV-responsive group was also synthesized using the Boc-protected secondary amine **10b** in a manner similar to that used for **11a**. This peptide behaved in the same way as the corresponding system containing **10a**, in that the deprotection of the protected resin afforded a mixture of α - and β -peptides.

Peptides 19 and 20 were also prepared to determine the effects of the geminal dimethyl groups and secondary amine on the outcome of the transformation.¹⁸ The Asn-protected derivative without geminal dimethyl groups was prepared by the coupling of the β -carboxylic acid of Fmoc-Asp(OH)-OAllyl¹⁹ with *N*-DMB-*N*'-Boc-*N*'-ethyl ethylenediamine 14b, followed by the removal of the allyl ester. The Fmoc-based incorporation of the resulting amino acid into the resin was followed by an acidic deprotection step to afford the desired peptide 19, where the Asn residue had been successfully modified with a pendant secondary amine without the need for the protection of the secondary amine. Notably, no significant side reactions, including the hydrolysis of the peptide bonds, were observed during the acidic deprotection and HPLC purification stages. The Asn-incorporated peptide 20 was also synthesized as a separate reference compound using standard Fmoc protocols.


We initially investigated the self-processing of these synthetic peptides, as shown in Figure 4. Peptide samples were dissolved in a buffered solution (6 M guanidine hydrochloride (Gn·HCl)-0.2 M

phosphate), where they were monitored for peptide bond cleavage by HPLC analysis. As expected, the presence of both the secondary amine as an intramolecular base and the geminal methyl groups as an inducer of cyclization greatly facilitated the cleavage of the peptide bond (Figure 4, Entries 1–3). When a mixture of the materials was held at pH 7.4 for 24 h at 37 °C, almost all of the samples went to completion to afford a mixture of split peptides consisting of N-half imide peptide 21, C-half peptide 22 and the succinimide ring-opened peptides 23 and 24. The results of these comparison experiments clearly show that modifications capable of mimicking the environments involved in the intein-induced cleavage of an amide bond were responsible for the envisioned artificial amide bond cleavage reaction (Figure 4, Entry 4).

Figure 4. Self-processing reactions of the model peptides. *Internal standard.

Encouraged by the potential utility of **10a** as a stimulus-responsive processing device, we next examined the photo-responsive cleavage of the peptide bond in the synthetic peptide **11a** (Figure 5). When the *o*NBnoc-protected peptide **11a** was incubated for 24 h at 37 °C in a mixture of 6 M Gn·HCl and 0.2 M phosphate at pH 7.4 without UV irradiation, the material remained almost completely intact. The irradiation of the reaction mixture with UV light led to the removal of the *o*NBnoc group from the secondary amine unit to produce peptide **11b**, which was split to the processing peptides with about 80% cleavage after 24 h. These results clearly indicated that **11a** could serve as a stimulus-responsive processing device and an alternative to the Spr system based on a trimethyl lock.

Figure 5. Photo-responsive peptide bond cleavage. *Internal standard. **Not peptidyl compounds, provably derived from deprotected *oNBnoc* group with UV irradiation.

In conclusion, we achieved the development of the new amide bond cleavage device modeled on the intein-mediated protein splicing. The design concept of the device is derived from the mimicking

chemical environments involved in the protein splicing. Although preparation of the device and its incorporation into peptides are laborious, an important issue in this work is that the incorporation of geminal dimethyl groups and a secondary amine unit in asparagine scaffold well imitate the splicing system. Furthermore, protection of the secondary amine with the photo-removal group allowed the device to cleave the amide bond in response to photo-irradiation.

Experimental Section

General Information

All reactions were carried out under an atmosphere of argon. All commercial reagents were used without further purification. For column chromatography, silica gel (spherical, natural, 63-210 μm) was used. The progress of reactions was monitored by thin layer chromatography using precoated silica gel glass plates (0.25 mm) with F254 indicator. Mass spectra (ESI-MS) were obtained using a ToF mass spectrometer. ¹H-NMR and ¹³C-NMR spectra were measured using a 300 or 400 MHz spectrometer at room temperature unless otherwise noted. Chemical shifts were calibrated to the solvent signal. Multiplicities are given as s (singlet), d (doublet), br d (broad doublet), t (triplet), br t (broad triplet), q (quartet), m (multiplet) or br m (broad multiplet). For HPLC separation, a Cosmosil 5C₁₈-AR-II analytical column (4.6 × 250 mm, flow rate 1.0 mL/min) or a Cosmosil 5C₁₈-AR-II semi-preparative column (10 × 250 mm, flow rate 3.0 mL/min) was employed and eluting products were detected by UV at 220 nm. A solvent system consisting of 0.1% TFA aqueous solution (v/v, solvent A) and 0.1% TFA in MeCN (v/v, solvent B) was used for HPLC elution. IR spectra and optical rotations were measured using a polarimeter (concentration in g/100 mL), respectively. Photolysis was performed with the filtered output (>365 nm) of a 3000 mW/cm² HG-Xe lamp.

Synthesis of asparagine derivatives

2-Nitrobenzyl {2-[(tert-butoxycarbonyl)amino]ethyl}ethyl carbamate 3. To a solution of N-ethylethylenediamine (1) (5.37 mL, 50.0 mmol) in THF (100 mL) was added a solution of Boc₂O (3.27 g, 15.0 mmol) in THF (30 mL) dropwise at 0 °C. The reaction mixture was stirred at room temperature for 5 h, and then concentrated in vacuo. The obtained residue was subsequently diluted with EtOAc and sat. NaHCO₃ aq. The obtained mixture was extracted three times with EtOAc. The combined organic layer was washed with brine, dried over Na₂SO₄, filtrated and concentrated in vacuo. The obtained crude carbamate (2.82 g, 15.0 mmol, quant., pale yellow powder) was used for a next step without further purification.

The obtained carbamate (2.82 g) in THF (30 mL) was treated with Et₃N (1.62 mL, 11.6 mmol) followed by 2-nitrobenzyl 4-nitrophenyl carbonate 2^{15} (3.69 g, 11.6 mmol). The reaction mixture was stirred at room temperature for 4 h, and then concentrated in vacuo and diluted with EtOAc and 5% KHSO₄ aq. The obtained mixture was extracted three times with EtOAc. The combined organic layer was washed with sat. NaHCO₃ aq. and brine, dried over Na₂SO₄, filtrated and concentrated in vacuo. The crude material was purified by column chromatography (n-hexane/EtOAc = 8/1 then 1/1) to afford oNBnoc-diamine 3 (4.26 g, 11.6 mmol, quant.) as yellow oil. IR (CHCl₃): v_{max}, cm⁻¹: 1364, 1477, 1529, 1701, 2875, 2977, 3358; 1 H-NMR (DMSO-d₆, 100 °C, 300 MHz) δ = 1.09 (3H, t, J = 7.0 Hz), 1.38 (9H, s), 3.11 (2H, dt, J = 6.6 and 6.6 Hz), 3.22–3.35 (4H, m), 5.39 (2H, s), 6.35–6.47 (1H, br m), 7.60 (1H, dd, J = 8.1 and 7.5 Hz), 7.67 (1H, d, J = 7.3 Hz), 7.76 (1H, dd, J = 7.3 and 7.5 Hz), 8.05 (1H, d, J = 8.1 Hz); 13 C-NMR (DMSO-d₆, 60 °C, 75 MHz) δ = 13.1, 28.0, 41.9, 62.7, 77.5, 124.3, 128.7, 128.8, 132.1, 133.6, 147.2, 154.5, 155.3; HRMS (ESI-TOF) m/z calcd for C₁₇H₂₅N₃NaO₆ ([M + Na]⁺): 390.1641, found: 390.1643.

2-Nitrobenzyl (2-aminoethyl)(ethyl)carbamate 4a. Carbamate 3 (2.00 g, 2.72 mmol) in CH₂Cl₂ (1.36 mL) was treated with trifluoroacetic acid (1.36 mL). The reaction mixture was stirred at room temperature for 45 min and concentrated in vacuo. After dilution of the resulting residue with EtOAc

and sat. NaHCO₃ aq, the solution was extracted three times with EtOAc. The combined organic layer was washed with brine, dried over Na₂SO₄, filtrated and concentrated in vacuo. Crude *o*NBoc amine **4a** (1.45 g) was obtained as yellow powder. The obtained crude **4a** was used for preparation of **9a** and **14a** without further purification.

tert-Butyl (2-aminoethyl)(ethyl)carbamate 4b. To a stirred mixture of N-ethylethylenediamine 1 (2.39 mL, 22.7 mmol) in CH₂Cl₂ (50 mL) was added ethyl trifluoroacetate (3.46 mL, 22.7 mmol) in CH₂Cl₂ (50 mL) dropwise over 40 min at 0 °C. The reaction mixture was stirred at room temperature for 1 h and then concentrated in vacuo. After dilution of the resulting residue with CH₂Cl₂ (100 mL), to the solution was added Boc₂O (4.95 g, 22.7 mmol) in CH₂Cl₂ (5.0 mL) at 0 °C. The reaction mixture was stirred at room temperature for 1.5 h and then diluted with EtOAc and sat. NaHCO₃ aq. The solution was extracted three times with EtOAc. The combined organic layer was washed with brine, dried over MgSO₄, filtrated and concentrated in vacuo. The obtained crude material in MeOH (90 mL) and H₂O (10 mL) was treated with K₂CO₃ (2.00 g). The reaction mixture was refluxed for 2 h and then concentrated in vacuo. The mixture was extracted three times with EtOAc. The combined organic layer was washed with H₂O and brine, dried over MgSO₄, filtrated and concentrated in vacuo. Crude Boc amine 4b (4.27 g) was obtained as pale yellow oil. The obtained crude 4b was used for preparation of 9b and 14b without further purification.

(S)-3-{[(Allyloxy)carbonyl]amino}-2,2-dimethylsuccinic acid 4-(allyl)ester **8** and (S)-4-(allyloxy)-2-{[(allyloxy)carbonyl]amino}-3,3-dimethyl-4-oxobutanoic acid **17** To a solution of PhFl-diMe-Asp(OMe)-OMe **5**¹⁶ (1.83 g, 4.05 mmol) in CH₂Cl₂ (10.2 mL) was added triethyl silane (1.43 mL, 14.2 mmol) followed by trifluoroacetic acid (10.2 mL) at 0 °C. The reaction mixture was stirred at room temperature for 1 h and concentrated in vacuo. The obtained mixture was diluted with 1 M HCl aq. The precipitate was filtrated and washed with MeOH. The filtrate was concentrated in vacuo and the resulting crude amine was used for a next step without further purification.

The crude amine in THF (12.5 mL) and H₂O (8.96 mL) was treated with NaHCO₃ (2.51 g, 29.9 mmol) followed by allylchloroformate (63.6 μL, 5.98 mmol) at 0 °C. The reaction mixture was stirred at room temperature for 9 h and diluted with H₂O and EtOAc. The mixture was extracted three times with EtOAc. The combined organic layer was washed with brine, dried over Na₂SO₄, filtrated and concentrated in vacuo. The obtained crude Alloc-diMe-Asp(OMe)-OMe 7 was used for next step without further purification.

The crude 7 in THF (10.9 mL) and H_2O (30 mL) was treated with 1 M LiOH aq. (17.4 mL, 17.4 mmol) at 0 °C. The reaction mixture was stirred at room temperature for 10 h and diluted with CH_2Cl_2 . The aqueous layer was washed three times with CH_2Cl_2 and then acidified (pH \approx 3) with 3 M HCl aq. To the aqueous layer was added EtOAc and NaCl. The mixture was extracted three times with EtOAc. The combined organic layer was washed with brine, dried over Na_2SO_4 , filtrated and concentrated in vacuo. Crude carboxylic acid (1.22 g) was obtained as colorless oil. 600 mg of it was used for next step without further purification.

The stirred mixture of obtained crude carboxylic acid (600 mg) in THF (2.43 mL) was treated with Ac₂O (616 µL, 6.56 mmol). The reaction mixture was refluxed for 18 h and then concentrated in vacuo. To the obtained crude anhydride was added allylalcohol (7.5 mL). The reaction mixture was stirred at room temperature for 23 h and concentrated in vacuo. The obtained crude material was purified by column chromatography (chloroform/MeOH = 400/1 then 50/1) to afford **8** (449 mg, 1.47 mmol, 61% over five steps from **5**) as colorless oil and **17** (131 mg, 0.459 mmol, 19% over five steps from **5**) as colorless oil. **8**: $[\alpha]^{28}_{D}$ -12.3 (*c* 1.56, CHCl₃); IR (CHCl₃): ν_{max} , cm⁻¹: 1330, 1519, 1713, 2886, 2942, 3084, 3349; ¹H-NMR (CDCl₃, 400 MHz) δ = 1.26 (3H, s), 1.37 (3H, s), 4.58–4.67 (5H, m), 5.21–5.27 (2H, m), 5.29–5.36 (2H, m), 5.66 (br d, J = 9.6 Hz), 5.85–5.98 (2H, m); ¹³C-NMR (CDCl₃, 75 MHz) δ = 22.2, 23.3, 45.7, 59.8, 66.0, 66.4, 118.2, 118.7, 131.9, 132.5, 156.5, 175.1, 175.3; HRMS (ESI-TOF) m/z calcd for C₁₃H₁₉N₁NaO₆ ([M + Na]⁺): 308.1110, found 308.1115. **17**: $[\alpha]^{28}_{D}$ -11.8 (*c* 2.40, CHCl₃),

IR (CHCl₃): v_{max} , cm⁻¹:932, 1251, 1525, 1724, 2886, 2944, 2984, 3088, 3350; ¹H-NMR (CDCl₃, 400 MHz) $\delta = 1.23$ (3H, s), 1.34 (3H, s), 4.57–4.67 (5H, m), 5.20–5.26 (2H, m), 5.28–5.36 (2H, m), 5.68 (1H, br d, J = 10.4), 5.81–5.98 (2H, m); ¹³C-NMR (CDCl₃, 75 MHz) $\delta = 22.1$, 23.3, 45.6, 59.9, 66.3, 66.4, 118.2, 119.3, 131.3, 132.6, 156.4, 170.2, 181.5; HRMS (ESI-TOF) m/z calcd for C₂₅H₁₉N₁NaO₆ ([M + Na]⁺): 308.1110, found: 308.1121.

Allyl

(S)-2-{[(allyloxy)carbonyl]amino}-4-{[2-ethyl(2-nitrobenzyloxycarbonyl)aminoethyl]amino}-3,3-dimeth yl-4-oxobutanoate 9a. To a solution of 8 (34.5 mg, 0.121 mmol) in CH₂Cl₂ (605 μL) were added crude 4a (93.8 mg), bromotri(pyrrolidino)phosphonium hexafluorophosphate (PyBrop) (152 mg, 0.454 mmol) and N,N-diisopropylethylamine (DIPEA) (77.2 μL, 0.454 mmol) at 0 °C. The reaction mixture was stirred at room temperature for 34 h and then diluted with EtOAc and 5% KHSO₄ aq. The solution was extracted three times with EtOAc. The combined organic layer was washed with sat. NaHCO₃ aq., dried over Na₂SO₄, filtrated and concentrated in vacuo. The obtained crude material was purified with column chromatography (n-hexane/EtOAc = 1/1 then 1/2) to afford amide 9a (48.0 mg, 90.4 µmol, 75%) as colorless oil. $[\alpha]_{D}^{28}$ -2.9 (c 1.25, CHCl₃); IR (CHCl₃): v_{max} , cm⁻¹: 1268, 1342, 1427, 1526, 1650, 1703, 2875, 2939, 2973, 3079, 3361; ¹H-NMR (DMSO-d₆, 70 °C, 300 MHz) δ = 1.08 (3H, t, J = 7.1 Hz), 1.13 (3H, s), 1.14 (3H, s), 3.19–3.35 (6H, m), 4.46–4.59 (5H, m), 5.13–5.24 (2H, m), 5.24–5.36 (2H, m), 5.4 (2H, s), 5.81-5.98 (2H, m), 7.16 (1H, br d, J = 2.9 Hz), 7.46-7.55 (1H, br m), 7.60 (1H, dd, J = 7.1, 8.0)Hz), 7.69 (1H, br d, J = 7.2 Hz), 7.78 (1H, dd, J = 7.1, 7.2 Hz), 8.07 (1H, d, J = 8.0 Hz); ¹³C-NMR (DMSO-d₆, 70 °C, 75 MHz) δ =13.0, 21.1, 22.6, 37.7, 41.8, 44.1, 45.3, 59.7, 62.7, 64.4, 64.5, 116.6, 117.4, 124.2, 128.7, 128.9, 131.9, 132.0, 133.1, 147.3, 154.5, 155.7, 169.7, 174.6; HRMS (ESI-TOF) m/z calcd for $C_{25}H_{34}N_4NaO_9([M + Na]^+)$: 557.2223, found: 557.2244.

(S)-2-{[(9H-Fluoren-9-yl)methoxycarbonyl]amino}-4-{[2-ethyl(2-nitrobenzyloxycarbonyl)amino}ethyl]amino}-3,3-dimethyl-4-oxobutanoic acid 10a. To a stirred mixture of 9a (20.2 mg, 37.4 μmol) in

THF were added Pd(PPh₃)₄ (6.49 mg, 5.61 µmol) and N-methylaniline (40.8 µL, 0.374 mmol). The reaction mixture was stirred at room temperature for 6 h. To the reaction mixture were added DIPEA (15.3 μL, 89.8 μmol) and FmocOSu (15.1 mg, 44.9 μmol) at 0 °C. The reaction mixture was stirred at room temperature for 10 h and diluted with EtOAc and 5% KHSO₄ ag. The solution was extracted three times with EtOAc. The combined organic layer was washed with brine, dried over Na₂SO₄, filtrated and concentrated in vacuo. The obtained crude material was purified with column chromatography (CHCl₃/MeOH = 150/1 then 30/1) to afford carboxylic acid 10a (21.7 mg, 34.3 μ mol, 92%) as pale yellow oil. $[\alpha]^{28}_{D}$ -1.1 (c 1.30, CHCl₃); IR (CHCl₃): v_{max} , cm⁻¹: 930, 1249, 1367, 1530, 1672, 1726, 2875, 2934, 2975, 3079, 3350; 1 H-NMR (CDCl₃ 50 °C, 300 MHz) $\delta = 1.03-1.20$ (6H, m), 1.25 (3H, s), 3.30 (2H, q, J = 7.1 Hz), 3.34 - 3.57 (4H, m), 4.18 (1H, t, J = 6.8 Hz), 4.37 (2H, d, J = 6.8 Hz), 4.42 - 4.58(1H, m), 5.47 (2H, s), 6.03–6.13 (1H, m), 6.79–6.94 (1H, m), 7.24–7.61 (9H, m), 7.71 (2H, d, J = 7.5)Hz), 7.98 (1H, d, J = 7.9 Hz); ¹³C-NMR (CDCl₃, 75 MHz) $\delta = 13.9$, 23.2, 23.6, 40.7, 43.0, 45.5, 45.9, 47.3, 60.0, 64.7, 67.5, 120.1, 125.2, 125.3, 127.2, 127.9, 128.9, 129.1, 129.3, 132.3, 133.8, 141.4, 143.8, 143.9, 147.9, 149.0, 156.9, 157.6, 172.3; HRMS (ESI-TOF) m/z calcd for $C_{33}H_{37}N_4O_9$ ([M + H]⁺): 633.2561, found: 633.2549.

(S)-2-{[(allyloxy)carbonyl]amino}-4-{[2-(tert-butoxy carbonyl)(ethyl)aminoethyl]amino}-3,3-dimethyl-4-oxobutanoate **9b**. Amide **9b** was prepared from carboxylic acid **8** (72.0 mg, 0.252 mmol) and crude **4b** (96 mg) in a manner similar to that described for preparation of **9a**. **9b** (109 mg, 0.239 mmol, 95%) was obtained as colorless oil. [α]²⁸_D -6.7 (c 2.18, CHCl₃); IR (CHCl₃): v_{max} , cm⁻¹: 1341, 1431, 1525, 1709, 2880, 2934, 2975, 3317; ¹H-NMR (CDCl₃, 400 MHz) δ = 1.10 (3H, t, J = 7.0 Hz), 1.25 (3H, s), 1.35 (3H, s), 1.46 (3H, s), 3.21 (2H, q, J = 7.0 Hz), 3.28–3.50 (4H, br m), 4.32 (2H, d, J = 9.2 Hz), 4.57 (2H, ddd, J = 1.6, 1.6, 5.6 Hz), 4.60 (2H, ddd, J = 1.6, 1.6, 5.6 Hz), 5.16–5.25 (2H, m), 5.26–5.35 (2H, m), 5.82–5.97 (2H, m), 6.38 (2H, br d, J = 9.2 Hz), 7.05–7.20 (1H, br m); ¹³C-NMR (CDCl₃, 75 MHz) δ =13.9, 23.5, 24.6, 28.6, 41.1, 43.0, 44.5, 45.5,

61.3, 65.9, 80.3, 117.6, 118.6, 131.8, 132.9, 156.5, 157.6, 170.6, 176.3; HRMS (ESI-TOF) m/z calcd for $C_{22}H_{37}N_3NaO_7([M+Na]^+)$: 478.2529, found: 478.2539.

(S)-2-{[(9H-Fluoren-9-yl)methoxycarbonyl]amino}-4-{[2-(tert-butoxycarbonyl)(ethyl)aminoethyl]} amino}-3,3-dimethyl-4-oxobutanoic acid 10b. Carboxylic acid 10b was prepared from amide 9b (88.8 mg, 0.195 mmol) in a manner similar to that described for 10a. 10b (72.2 mg, 0.136 mmol, 70%) was obtained as pale yellow oil. $[\alpha]^{28}_{D}$ -1.0 (c 2.16, CHCl₃); IR (CHCl₃): v_{max} , cm⁻¹: 1366, 1450, 1479, 1531, 1709, 2875, 2934, 2975, 3329; 1 H-NMR (CDCl₃, 400 MHz) δ = 1.11 (3H, t, J = 7.2 Hz), 1.24 (3H, s), 1.36 (3H, s), 1.46 (9H, s), 3.22 (2H, q, J = 7.2 Hz), 3.3–3.47 (4H, m), 4.22 (1H, t, J = 7.2 Hz), 4.30 (2H, d, J = 7.2 Hz), 4.56 (1H, br d, J = 8.0 Hz), 6.11–6.26 (1H, br m), 7.31 (2H, dd, J = 7.6, 7.6 Hz), 7.39 (2H, dd, J = 9.2, 7.6 Hz), 7.57–7.65 (2H, m), 7.75 (2H, d, J = 9.2 Hz), 7.77–7.85 (1H, br m); 13 C-NMR (CDCl₃, 75 MHz) δ =13.8, 23.4, 23.7, 28.5, 41.5, 43.2, 45.3, 45.5, 47.3, 60.1, 67.4, 80.8, 120.1, 125.3, 127.2, 127.8, 141.4, 143.8, 144.0, 156.8, 157.8, 172.1, 178.9; HRMS (ESI-TOF) m/z calcd for $C_{30}H_{39}N_3NaO_7([M+Na]^+)$: 576.2686, found: 576.2672.

2-Nitrobenzyl {2-[(2,4-dimethoxybenzyl)amino]ethyl}(ethyl)carbamate 14a. Crude amine 4a (1.24 g) in MeOH (8.9 mL) was treated with 2,4-dimethoxybenzaldehyde (1.23 g, 7.41 mmol), AcOH (278 μL, 4.86 mmol) and Na₂SO₄ (3.29 g, 46.3 mmol). The reaction mixture was stirred at room temperature for 2 h. To the reaction mixture was added NaBH₄ (700 mg, 18.5 mmol) at 0 °C. The reaction mixture was additionally stirred at room temperature for 1 h and then diluted with sat. NaHCO₃ aq. The mixture was extracted three times with EtOAc. The combined organic layer was washed with brine, dried over Na₂SO₄, filtrated and concentrated in vacuo. The obtained crude material was purified with column chromatography (*n*-hexane/EtOAc = 2/1 then EtOAc/MeOH 3/1) to afford DMB-*o*NBnoc amine 14a (1.84 g, 4.41 mmol, 95% over two steps) as light brown oil. IR (CHCl₃): ν_{max} , cm⁻¹: 1343, 1423, 1465, 1529, 1613, 1701, 2836, 2935, 3340; ¹H-NMR (DMSO-d₆, 80 °C, 300 MHz) δ =1.09 (3H, t, J = 7.0 Hz), 1.38 (9H, s), 3.11(2H, dt, J = 6.6, 6.6 Hz), 3.21-3.37 (4H, m), 5.39 (2H, s), 6.33-6.48 (1H, br m),

7.60 (1H, dd, J = 8.1, 7.6 Hz), 7.68 (1H, d, J = 7.3 Hz), 7.76 (1H, dd, J = 7.3, 7.5 Hz), 8.05 (1H, d, J = 8.1 Hz); ¹³C-NMR (DMSO-d₆, 60 °C, 75 MHz) $\delta = 13.1$, 28.0, 38.5, 41.9, 46.1, 62.7, 77.5, 124.3, 128.7, 128.8, 132.1, 133.6, 147.2, 154.5, 155.3; HRMS (ESI-TOF) m/z calcd for $C_{21}H_{28}N_3O_6$ ([M + Na]⁺): 418.1978, found: 418.1988.

tert-Butyl {2-[(2,4-dimethoxybenzyl)amino]ethyl}(ethyl)carbamate 14b. DMB-Boc amine 14b was prepared from amine crude 4b (500 mg) and 2,4-dimethoxybenzaldehyde (221 mg, 1.33 mmol) in a manner similar to that described for 14a. 14b (396 mg, 1.17 mmol, 88%) was obtained as yellow oil. IR (CHCl₃): v_{max} , cm⁻¹: 1156, 1366, 1463, 1507, 1613, 1690, 2837, 2933, 2973, 3342; ¹H-NMR (DMSO-d₆, 60 °C, 300 MHz) δ = 1.02 (3H, t, J = 7.0 Hz), 1.38 (9H, s), 2.69 (2H, t, J = 6.8 Hz), 3.17 (2H, q, J = 7.0 Hz), 3.25 (2H, t, J = 6.8 Hz), 3.70 (2H, s), 3.76 (3H, s), 3.78 (3H, s), 6.59 (1H, br s), 6.48 (1H, dd, J = 8.3, 2.2 Hz), 6.55 (1H, d, J = 2.2 Hz), 7.18 (1H, d, J = 8.3 Hz); ¹³C-NMR (CDCl₃, 75 MHz) δ = 13.6, 28.5, 42.5, 46.6, 47.3, 48.7, 55.4, 55.5, 70.6, 77.2, 79.4, 98.6, 103.8, 120.2, 130.6, 158.7, 160.3; HRMS (ESI-TOF) m/z calcd for C₁₈H₃₁N₂O₄ ([M + H]⁺): 339.2284, found: 339.2281.

Allyl (S)-2-[(allyloxycarbonyl)amino]-4-[(2,4-dimethoxybenzyl)(2-ethyl-2-nitrobenzyloxycarbonyl aminoethyl)amino]-3,3-dimethyl-4-oxobutanoate 15. To a solution of Carboxylic acid 8 (118 mg, 0.413 mmol) in CH₂Cl₂ (1.5 mL) was added Et₃N (173 μL, 1.24 mmol) followed by the addition of MsCl (38.4 μL, 0.496 mmol) in CH₂Cl₂ (100 μL) at 0 °C. The reaction mixture was stirred at same temperature for 2 h. After addition of 14a (199 mg, 0.476 mmol) in CH₂Cl₂ (1.5 mL) to the reaction mixture at 0 °C, The resulting mixture was stirred at room temperature for additional 17 h and then diluted with EtOAc and 5% KHSO₄ aq. The solution was extracted three times with EtOAc. The combined organic layer was washed with sat. NaHCO₃ aq. and brine, dried over Na₂SO₄, filtrated and concentrated in vacuo. The obtained crude material was purified with column chromatography (*n*-hexane/EtOAc = 13/7 then 3/2) to afford amide 15 (140 mg, 0.204 mmol, 50%) as colorless oil. [α]²⁹_D -0.4 (*c* 0.80, CHCl₃); IR (CHCl₃): ν_{max} , cm⁻¹:1208, 1423, 1477, 1528, 1614, 1707, 2838, 2939,

2972, 3084, 3314, 3443; ¹H-NMR (DMSO-d₆, 100 °C, 300 MHz) δ = 1.04 (3H, t, J = 7.0 Hz), 1.27 (3H, s), 1.33 (3H, s), 3.21(3H, q, J = 7.0 Hz), 3.26–3.44 (4H, m), 3.76 (3H, s), 3.78 (3H, s), 4.50–4.64 (7H, m), 5.12–5.24 (2H, m), 5.26–5.38 (4H, m), 5.77–6.11 (2H, m), 6.49 (1H, dd, J = 8.4, 2.0 Hz), 6.56 (1H, d, J = 2.0 Hz), 6.85 (1H, br d, J = 9.3 Hz), 6.99 (1H, d, J = 8.4 Hz), 7.54–7.63 (2H, m), 7.71 (1H, t, J = 7.5 Hz), 8.03 (1H, d, J = 8.1 Hz); ¹³C-NMR (CDCl₃, 75 MHz, rotamer)²⁰ δ = 13.2, 13.9, 24.2, 25.3, 25.5, 29.6, 42.4, 43.1, 43.6, 43.7, 44.1, 44.3, 45.5, 46.4, 47.6, 55.1, 55.3, 63.2, 63.5, 63.7, 65.7, 98.4, 104.0, 116.6, 117.0, 117.4, 117.5, 117.9, 118.1, 124.8, 128.2, 128.3, 128.4, 128.5, 128.7, 131.8, 131.9, 132.7, 133.1, 133.2, 133.5, 133.6, 155.0, 155.4, 156.8, 157.9, 160.2, 160.3, 170.7, 176.2, 176.3, 176.4; HRMS (ESI-TOF) m/z calcd for C₃₄H₄₄N₄NaO₁₁ ([M + Na]⁺): 707.2904, found: 707.2924.

Synthesis of α -amide protected derivatives 16 and 27

Alloc
$$\stackrel{H}{\sim}$$
 CO_2H $\stackrel{MsCI, Et_3N}{THF, 0 °C}$ $\stackrel{DMB}{\sim}$ CO_2Allyl $\stackrel{MsCI, Et_3N}{THF, 0 °C}$ $\stackrel{N}{\sim}$ $\stackrel{N}{\sim}$

Allyl (S)-3-(allyloxycarbonyl)amino-4-{[2,4-dimethoxybenzyl][2-(ethyl-2-nitrobenzyloxycarbonyl amino)ethyl]amino}-2,2-dimethyl-4-oxobutanoate 25. Carboxylic acid 17 (90.6 mg, 0.318 mmol) in THF (3.1 mL) was treated with Et₃N (133 μL, 0.953 mmol). Following to addition of MsCl (29.5 μL, 0.381 mmol) at 0 °C, the reaction mixture was stirredat same temperature for 30 min. After addition of 14a (199 mg, 0.476 mmol) to the reaction mixture at 0 °C. The resulting solution was stirred at room temperature for additional 20 h and then diluted with EtOAc and 5% KHSO₄ aq. The solution was extracted three times with EtOAc. The combined organic layer was washed with sat. NaHCO₃ aq. and brine, dried over Na₂SO₄, filtrated and concentrated in vacuo. The obtained crude material was purified

with column chromatography (n-hexane/EtOAc = 2/1 then 1/1) to afford amide **25** (130 mg, 0.190 mmol, 60%) as colorless oil. [α]²⁸_D -16.8 (c 1.03, CHCl₃); IR (CHCl₃): v_{max} , cm⁻¹: 1209, 1343, 1426, 1509, 1529, 1645, 1709, 2939, 2976, 3196; ¹H-NMR (DMSO-d₆, 100 °C, 300 MHz) δ = 1.04 (3H, br t, J = 6.1 Hz), 1.15 (3H, s), 1.24 (3H, s), 3.13–3.62 (6H, br m), 3.76 (6H, s), 4.33–4.64 (6H, m), 4.74–4.97 (1H, br m), 5.08–5.23 (2H, m), 5.23–5.34 (2H, m), 5.37 (2H, s), 5.78–6.02 (2H, m), 6.45 (1H, d, J = 8.2 Hz), 6.55 (1H, s), 6.85 (1H, br d, J = 9.0 Hz), 7.03 (1H, d, J = 8.2 Hz), 7.52–7.67 (2H, m), 7.73 (1H, dd, J = 7.4, 7.4 Hz), 8.04 (1H, dd, J = 8.1 Hz); ¹³C-NMR (DMSO-d₆, 100 °C, 75 MHz) δ = 12.7, 21.0, 22.5, 41.6, 43.3, 43.4, 44.9, 45.5, 54.8, 55.1, 55.8, 62.4, 64.1, 64.4, 98.4, 104.7, 116.5, 116.8, 123.9, 128.4, 128.7, 131.6, 132.2, 132.8, 133.1, 147.3, 154.2, 155.1, 157.9, 159.8, 169.3, 174.6; HRMS (ESI-TOF) m/z calcd for C₃₄H₄₄N₄NaO₁₁ ([M + Na]⁺): 707.2904 found: 707.2933.

(S)-3-{[(9H-Fluoren-9-yl)methoxycarbonyl] amino}-4-{[2,4-dimethoxybenzyl][2-ethyl(2-nitrobenzyl oxycarbonyl)aminoethyl]amino}-2,2-dimethyl-4-oxobutanoic acid 16. Carboxylic acid 16 was prepared from amide 25 (55.5 mg, 81.1 μmol) in a manner similar to that described for 10a. 16 (63.0 mg, 80.5 μmol, quant.) was obtained as pale yellow amorphous. [α]²⁸_D -8.2 (c 1.49, CHCl₃); IR (CHCl₃): v_{max} , cm⁻¹:1342, 1452, 1508, 1526, 1613, 1645, 1708, 2853, 2931, 2961, 3068, 3421; ¹H-NMR (DMSO-d₆, 100 °C, 300 MHz) δ = 0.97 (3H, t, J = 7.0 Hz), 1.04 (3H, s), 1.14 (3H, s), 3.12–3.43 (6H, br m), 3.66 (3H, s), 3.68 (3H, s), 4.01–4.57 (5H, br m), 4.75 (1H, br d, J = 1.8 Hz), 5.31 (2H, s), 6.34 (1H, dd, J = 8.3, 2.0 Hz), 6.47 (1H, d, J = 2.0 Hz), 6.84–7.07 (2H, m), 7.16–7.29 (2H, m), 7.34 (2H, dd, J = 7.5, 7.1 Hz), 7.46–7.72 (5H, m), 7.79 (2H, d, J = 7.5 Hz), 7.97 (1H, 7.9 Hz); ¹³C-NMR (DMSO-d₆, 75 MHz, rotamer)²⁰ δ = 13.1, 13.7, 20.8, 21.0, 24.3, 42.2, 42.3, 43.1, 44.9, 45.8, 45.9, 46.7, 55.0, 55.4, 55.6, 55.9, 63.2, 65.9, 98.1, 98.3, 104.3, 104.5, 116.4, 117.0, 120.2, 124.7, 125.4, 127.0, 127.7, 128.7, 129.0, 132.3, 132.6, 134.1, 134.2, 140.7, 143.5, 143.7, 143.8, 154.3, 154.7, 156.0, 156.3, 158.0, 158.2, 159.7, 160.2, 169.9, 177.5, 177.7; HRMS (ESI-TOF) m/z calcd for C₄₂H₄₆N₄NaO₁₁ ([M + Na]⁺): 805.3061, found: 805.3063.

Allyl

(S)-3-[(allyloxycarbonyl)amino]-4-{[2-ethyl(tert-butoxycarbonyl)aminoethyl][2,4-dimethoxybenzyl]ami no}-2,2-dimethyl-4-oxobutanoate **26**. Amide **26** was prepared from **17** (63.5 mg, 0.223 mmol) and **14b** (113 mg) in a manner similar to **25**. **26** (74.6 mg, 0.122 mmol, 55%) was obtained as colorless oil. [α]²⁸_D -1.8 (c 1.07, CHCl₃); IR (CHCl₃): v_{max} , cm⁻¹: 1366, 1507, 1646, 1693, 1723, 2832, 2875, 2934, 2975; ¹H-NMR (DMSO-d₆, 100 °C, 300 MHz) δ = 0.88–1.11 (3H, m,), 1.16 (3H, s), 1.13 (3H, s), 1.38 (9H), 3.03–3.60 (6H, br m), 3.77(3H, s), 3.79 (3H, s), 4.38–4.65 (6H, m), 4.84 (1H, br d, J = 9.0 Hz), 5.11–5.24 (2H, m), 5.24–5.41 (2H, m), 5.75–6.06 (2H, m), 6.48 (1H, br d, J = 7.7 Hz), 6.57 (1H, s), 6.83 (1H, br d, J = 9.0 Hz), 7.03 (1H, br d, J = 7.7 Hz); ¹³C-NMR (DMSO-d₆, 100 °C, 75 MHz) δ = 12.8, 21.1, 22.6, 27.6, 41.3, 43.5, 44.8, 45.5, 54.8, 55.0, 55.8, 64.1, 64.4, 78.1, 98.3, 104.7, 116.4, 116.7, 128.7, 132.2, 132.8, 153.9, 155.0, 157.8, 159.8, 169.2, 174.6; HRMS (ESI-TOF) m/z calcd for C₃₁H₄₇N₃NaO₉ ([M + Na]⁺): 628.3210, found: 628.3234.

(S)-3-{[(9H-Fluoren-9-yl)methoxycarbonyl]amino}-4-{[2-ethyl(tert-butoxycarbonyl)aminoethyl]} [2,4-dimethoxybenzyl]amino}-2,2-dimethyl-4-oxobutanoic acid 27. Carboxylic acid 27 was prepared from amide 26 (55.9 mg, 92.3 μmol) in a manner similar to that described for 10a. 27 (64.7 mg, 92.0 μmol, quant.) was obtained as pale yellow amorphous. [α]²⁵_D -1.5 (c 0.80, CHCl₃); IR (CHCl₃): v_{max} , cm⁻¹: 1160, 1210, 1455, 1508, 1616, 1643, 1692, 1718, 2928, 2973, 3277; ¹H-NMR (DMSO-d₆, 100 °C, 300 MHz) δ = 0.10 (3H, t, J = 7.1 Hz), 1.12 (3H, s), 1.22 (1H, s), 1.38 (9H, s), 3.10–3.44 (6H, br m), 3.72 (3H, s), 3.77 (3H, s), 4.07–4.25 (1H, br m), 4.25–4.41 (2H, br m), 4.41–4.61 (2H, br m) 4.81 (1H, br d, J = 6.2 Hz), 6.42 (1H, dd, J = 8.3, 2.0 Hz), 6.55 (1H, d, J = 2.0 Hz), 7.25–7.36 (2H, m), 7.40 (2H, dd, J = 7.3, 7.5 Hz), 7.67 (2H, d, J = 7.0 Hz), 7.84 (2H, d, J = 7.3 Hz); ¹³C-NMR (DMSO-d₆, 75 MHz, rotamer)²³ δ =13.5, 20.8, 20.9, 24.1, 24.3, 28.0, 42.8, 43.6, 44.8, 45.8, 46.6, 46.7, 55.0, 55.2, 55.3, 55.7, 65.9, 66.0, 78.5, 78.7, 98.2, 98.3, 104.3, 104.4, 116.4, 116.9, 120.1, 125.3, 125.4, 127.0, 127.3, 127.7,

Page 22 of 30

128.9, 140.7, 143.5, 143.6, 143.8, 156.0, 156.3, 157.8, 158.0, 159.6, 159.9, 169.9, 177.6, 177.7; HRMS (ESI-TOF) m/z calcd for C₃₉H₄₉N₃NaO₉ ([M + Na]⁺): 726.3367, found: 726.3365.

Synthesis of 29 for preparation of peptide 19

Allyl N^2 -{[(9H-Fluoren-9-vl)methoxy] carbonyl}- N^4 -{2-[(tert-butoxycarbonyl)(ethyl)amino]ethyl}- N^4 -(2,4-dimethoxybenzyl)-L-asparaginate 28. To a stirred mixture of Fmoc-L-Asp(OH)-OAllyl¹⁹ (350 mg, 0.886 mmol) and **14b** (250 mg, 0.739 mmol) in CH₂Cl₂ (10 mL) was added EDC·HCl (170 mg, 0.886 mmol) at 0 °C. The reaction mixture was stirred at room temperature for 1 h and diluted with EtOAc and 5% KHSO₄ aq. The solution was extracted three times with EtOAc. The combined organic layer was washed with brine, sat. NaHCO₃ aq. and brine, dried over MgSO₄, filtrated and concentrated in vacuo. The obtained crude material was purified with column chromatography (n-hexane/EtOAc = 1/1) to afford amide **28** (500 mg, 0.698 mmol, 95%) as pale yellow oil. $[\alpha]^{28}$ _D 22.8 (c 2.13, CHCl₃); IR (CHCl₃): v_{max} , cm⁻¹: 1289, 1454, 1506, 1642, 1690, 1725, 2838, 2934, 2972, 3438; ¹H-NMR (DMSO-d₆, 100 °C, rotamer, 300 MHz) $\delta = 1.01$ (3H, t, J = 7.0 Hz), 1.39 (9H, s), 2.89–2.95 (2H, m), 3.09-3.23 (4H, m), 3.33 (2H, br t, J = 6.3 Hz), 3.75 (3H, s), 3.79 (3H, s), 4.20-4.28 (1H, m), 4.30-4.36(2H, m), 4.38-4.51 (2H, m), 4.56-4.63 (3H, m), 5.18 (1H, dd, J = 10.4, 1.5 Hz), 5.31 (1H, dd, J = 17.2, 10.4, 1.5 Hz)1.5 Hz), 5.89 (1H, ddt, J = 17.2, 10.4, 5.3 Hz), 6.47 (1H, br d, J = 8.2 Hz), 6.58 (1H, s), 7.02 (1H, d, J = 8.2 Hz) 8.2 Hz), 7.05-7.21 (1H, m), 7.31 (2H, dd, J = 7.5, 7.1 Hz), 7.41 (2H, dd, J = 7.5, 7.1 Hz), 7.67 (2H, d, J = 7.5), 7.1 Hz = 7.3 Hz), 7.85 (2H, d, J = 7.5 Hz); ¹³C-NMR (DMSO-d₆, 75 MHz, rotamer)²⁰ $\delta = 13.3$, 13.8, 28.0, 34.0, 34.7, 41.5, 42.1, 42.7, 43.6, 44.7, 44.9, 46.3, 46.6, 50.5, 50.9, 55.1, 55.2, 55.3, 55.4, 64.9, 65.0, 65.8, 78.4, 78.9, 98.2, 98.5, 104.3, 104.5, 116.3, 117.4, 117.6, 120.1, 125.2, 127.1, 127.6, 128.2, 128.4, 128.9, 132.3, 132.4, 140.7, 143.7, 155.7, 155.8, 157.9, 159.7, 160.2, 169.1, 169.6, 171.1, 171.3; HRMS (ESI-TOF) m/z calcd for $C_{40}H_{49}N_3NaO_9$ ([M + Na]⁺):738.3367, found: 738.3389.

 N^2 -{[(9H-Fluoren-9-yl)methoxy]carbonyl}- N^4 -{2-[(tert-butoxycarbonyl)(ethyl)amino]ethyl}- N^4 -(2,4-d imethoxybenzyl)-L-asparagine 29. To a solution of amide 28 (450 mg, 0.629 mmol) in THF (6.0 mL) was added Pd(PPh₃)₄ (72.7 mg, 62.9 μmol) and N-methylaniline (685 μL, 6.29 mmol). The reaction mixture was stirred at room temperature for 1 h and concentrated in vacuo. The obtained crude material was purified with column chromatography (n-hexane/EtOAc = 1/1 then EtOAc/MeOH = 10/1) to afford carboxylic acid 29 (394 mg, 0.583 mmol, 93%) as pale yellow amorphousness. $\left[\alpha\right]^{28}$ D 39.5 (c 1.26, CHCl₃); IR (CHCl₃): v_{max} , cm⁻¹: 1289, 1506, 1610, 1643, 1690, 1718, 2843, 2972, 3314, 3427; ¹H-NMR (DMSO-d₆, 120 °C, rotamer, 300 MHz) $\delta = 1.02$ (3H, t, J = 7.0 Hz), 1.40 (9H, s), 2.86–2.96 (2H, m), 3.15 (2H, q, J = 7.0 Hz), 3.19–3.27 (2H, br m), 3.30–3.42 (2H, br m), 3.75 (3H, s), 3.80 (3H, s)s), 4.20-4.29 (1H, m), 4.29-4.35 (2H, m), 4.42-4.58 (3H, m), 6.47 (1H, dd, J = 8.4, 2.2 Hz), 6.58 (1H, d, J = 2.2 Hz), 6.86 (1H, br d, J = 7.5 Hz), 7.04 (1H, d, J = 8.4 Hz), 7.31 (2H, dd, J = 7.5, 7.0 Hz), 7.41 (2H, dd, J = 7.5, 7.0 Hz), 7.68 (2H, d, J = 7.5 Hz), 7.84 (2H, d, J = 7.5 Hz); ¹³C-NMR (DMSO-d₆, 75) MHz, rotamer)²⁰ δ =13.2, 13.8, 28.0, 33.9, 34.6, 41.5, 42.2, 42.8, 43.6, 44.0, 44.4, 44.9, 45.3, 46.4, 46.6, 50.5, 50.8, 55.1, 55.2, 55.3, 65.8, 66.3, 78.4, 78.7, 78.9, 98.1, 98.5, 104.3, 104.5, 116.4, 117.1, 120.1, 125.2, 127.1, 127.6, 128.2, 128.4, 128.7, 140.7, 143.8, 154.1, 154.6, 155.7, 155.8, 157.9, 159.7, 160.1, 169.4, 169.8, 172.9, 173.2; HRMS (ESI-TOF) m/z calcd for $C_{37}H_{45}N_3NaO_9$ ([M + Na]⁺): 698.3054, found: 698.3051.

General procedures for peptide synthesis

Fmoc-based solid-phase peptide synthesis (Fmoc SPPS). On NovaSyn[®] TGR resin (0.22 mmol amine/g) were coupled Fmoc protected naturally occurring amino acid derivatives (5.0 eq., a protective group of a side chain: t-Bu for serine and tyrosine) in the presence of N,N'-diisopropylcarbodiimide

(DIC, 5.0 eq.) and 1-hydroxybenzotriazole hydrate (HOBt·H₂O, 5.5 eq.) in DMF for 2 h. Coupling of derivatives 10a. . 10b asparagine or (2 eq.) was performed using O-(7-azabenzotriazol-1-yl)-N,N,N',N'-tetramethyluronium hexafluorophosphate (1.95)and N,N-diisopropylethyamine (4.0 eq.) for 2 h. For Fmoc removal of the peptide resin, 20% (v/v) piperidine in DMF (10 min) was employed.

TFA cleavage. The resulting completed resin was treated with TFA/m-cresol/1,2-ethanedithiol/thioanisole/H₂O (80/5/5/5/5 (v/v)) for 2 h at room temperature otherwise noted. After filtration of the resin, cooled Et₂O was added to the filtrate, and the resulting precipitate was collected by centrifugation. The obtained precipitate was washed with Et₂O and was purified by semi-preparative HPLC to give peptides.

Preparation of model peptides 11a, 18, 11b, 19 and 20

Peptides were synthesized according to the section "Fmoc-based solid-phase peptide synthesis"

Fmoc SPPS using 10a. Peptide 11a (major peak): a white lyophilized powder (2.08 mg, 1.19 μmol, 6.2%); retention time = 16.2 min (Analytical HPLC conditions: linear gradient of solvent B in solvent A, 38 to 50% over 30 min); retention time = 24.2 (Semi-preparative HPLC conditions: linear gradient of solvent B in solvent A, 38 to 50% over 30 min); LRMS (ESI-TOF) m/z calcd for $C_{86}H_{113}N_{17}O_{21}$ ([M + 2H]²⁺): 859.9, found: 859.7. Peptide 18 (minor peak): a white lyophilized powder (1.30 mg, 0.699 μmol, 3.9%); retention time = 17.6 min (Analytical HPLC conditions: linear gradient of solvent B in solvent A, 38 to 50% over 30 min); retention time = 22.9 (Semi-preparative HPLC conditions: linear gradient of solvent B in solvent A, 38 to 50% over 30 min); LRMS (ESI-TOF) m/z calcd for $C_{86}H_{113}N_{17}O_{21}$ ([M + 2H]²⁺): 859.9, found: 859.8.

Fmoc SPPS using 16 isomer. Peptide 18: retention time = 16.3 min (Analytical HPLC conditions: linear gradient of solvent B in solvent A, 38 to 50% over 30 min); LRMS (ESI-TOF) m/z calcd for $C_{86}H_{113}N_{17}O_{21}$ ([M + 2H]²⁺): 859.9, found: 859.8.

Fmoc SPPS using 10b. Peptide 11b (major peak): a white lyophilized powder (0.75 mg, 0.411 μmol, 8.2%); retention time = 18.9 min (Analytical HPLC conditions: linear gradient of solvent B in A, 25 to 40% over 30 min); retention time = 21.4 (Semi-preparative HPLC conditions: linear gradient of solvent B in solvent A, 27 to 42% over 30 min); LRMS (ESI-TOF) m/z calcd for C₇₈H₁₀₈N₁₆O₁₇ ([M + 2H]²⁺): 770.4, found: 770.2.

Peptide **30** (minor peak): retention time = a white lyophilized powder (0.39 mg, 0.214 μ mol, 4.3%); 20.3 min (Analytical HPLC conditions: linear gradient of solvent B in solvent A, 25 to 40% over 30 min); retention time = 23.0 (Semi-preparative HPLC conditions: linear gradient of solvent B in solvent A, 27 to 42% over 30 min); LRMS (ESI-TOF) m/z calcd for $C_{78}H_{108}N_{16}O_{17}$ ([M + 2H]²⁺): 770.4, found: 770.3.

Fmoc SPPS using 27. Peptide 30: retention time = 20.3 min (Analytical HPLC conditions: linear gradient of solvent B in solvent A, 25 to 40% over 30 min); LRMS (ESI-TOF) m/z calcd for $C_{78}H_{108}N_{16}O_{17}([M+2H]^{2+})$: 770.4, found: 770.2.

Fmoc SPPS using 29. Peptide 19: a white lyophilized powder (12.0 mg, 6.70 μ mol, 50%); retention time = 20.4 min (Analytical HPLC conditions: linear gradient of solvent B in solvent A, 30 to 40% over 30 min); retention time = 24.3 (Semi-preparative HPLC conditions: linear gradient of solvent B in solvent A, 27 to 41% over 30 min); LRMS (ESI-TOF) m/z calcd for $C_{76}H_{104}N_{16}O_{17}$ ([M + 2H]²⁺): 756.4, found: 756.3.

Fmoc SPPS using Fmoc-Asn(OtBu)-OH Peptide **20**: a white lyophilized powder (8.32 mg, 5.26 μmol, 53%); retention time = 23.5 min (Analytical HPLC conditions: linear gradient of solvent B in solvent A, 5 to 60% over 30 min); retention time = 28.0 (Semi-preparative HPLC conditions: linear gradient of solvent B in solvent A, 28 to 42% over 30 min); LRMS (ESI-TOF) m/z calcd for C₇₂H₉₅N₁₅O₁₇ ([M + H]⁺): 1440.7, found: 1441.0.

Self-processing of peptide 11b, 19 and 20

Self-processing of peptide 11b. A solution of model peptide 11b (45.0 μg, 25.9 nmol) and benzene sulfonic acid sodium salt (internal standard, 20.7 ng, 0.115 nmol) in phosphate buffer (0.2 M, pH 7.4 and 7.9, 550 μL) containing 6 M guanidine hydrochloride was incubated at 37 °C and the reaction was monitored by analytical HPLC. Analytical HPLC conditions: a linear gradient of solvent B in solvent A, 1 to 60% over 30 min.

The remaining substrate was calculated based on peak areas (= A) of HPLC as follow. $A^{t=0}$ indicates peak areas at beginning of the reaction (t=0).

Remaining substrate (%) =
$$\frac{A_{\text{substrate}} / A_{\text{internal standard}}}{A_{\text{substrate}}^{t=0} / A_{\text{internal standard}}^{t=0}} \times 100$$

11b: retention time = 21.9 min.

23 or **24**: retention time = 16.4 min; LRMS (ESI-TOF) m/z calcd for $C_{38}H_{57}N_8O_9$ ([M + H]⁺): 769.4, found: 769.3.

23 or **24**: retention time = 17.4 min; LRMS (ESI-TOF) m/z calcd for $C_{38}H_{57}N_8O_9$ ([M + H]⁺): 769.4, found: 769.3.

22: retention time = 20.1 min; LRMS (ESI-TOF) m/z calcd for $C_{40}H_{53}N_8O_9$ ([M + H]⁺): 789.4, found: 789.2.

Benzene sulfonic acid sodium salt (internal standard): retention time = 7.5 min.

Self-processing of peptide 19

Procedure of self-processing of 19 was conducted as similar to that described for 11b (pH = 7.9).

19: retention time = 21.9 min.

31 or **32**: retention time = 15.6 min; LRMS (ESI-TOF) m/z calcd for $C_{36}H_{53}N_8O_9$ ([M + H]⁺): 741.4, found: 741.3.

31 or **32**: retention time = 16.3 min; LRMS (ESI-TOF) m/z calcd for $C_{36}H_{53}N_8O_9$ ([M + H]⁺): 741.4, found: 741.3.

Self-processing of peptide 20. Procedure of self-processing of 20 was conducted as similar to that described for 11b (pH = 7.9). Almost no splitted peptide was observed within 24 h.

20: retention time = 23.5 min.

Photo-responsible amide bond cleavage of peptide 11a

Photo-responsible peptide **11a** (45.0 μg, 24.2 nmol) and benzene sulfonic acid sodium salt (internal standard, 3.00 ng, 16.7 pmol) in phosphate buffer (0.2 M, pH 7.4, 515 μL) containing 6 M guanidine hydrochloride was incubated at 37 °C for 24 h, and the reaction mixture was then irradiated by UV (>365 nm) for 1 min. The resulting solution was incubated at 37 °C. The reaction was monitored by analytical HPLC. Analytical HPLC conditions: a linear gradient of solvent B in solvent A, 1 to 60% over 30 min.

11a: retention time = 28.2 min.

Supporting Information Available:

This material is available free of charge via the Internet at http://pubs.acs.org. ¹H and ¹³C NMR spectra for new compounds.

Acknowledgements

This research was supported in part by a Grant-in-Aid for Scientific Research (KAKENHI).

Reference

- (1) (a) Kane, P. M.; Yamashiro, C. T.; Wolczyk, D. F.; Neff, N.; Goebl, M.; Stevens, T. H. *Science* **1990**, *250*, 651-657. (b) Hirata, R.; Ohsumi, Y.; Nakano, A.; Kawasaki, H.; Suzuki, K.; Anraku, Y. *J. Biol. Chem.* **1990**, *265*, 6726–6733.
- (2) Perler, F. B. Nucleic Acids Res. 2002, 30, 383–384.
- (3) (a) Noren, C.; Wang, J.; Perler, F. *Angew. Chem., Int. Ed.* **2000**, *39*, 450–466. (b) Paulus, H. *Annu. Rev. Biochem.* **2000**, *69*, 447–496. (c) Cheriyan, M.; Perler, F. B. Adv. *Drug Deliv. Rev.* **2009**, *61*, 899–907.
- (4) (a) Ding, Y.; Xu, M.; Ghosh, I.; Chen, X.; Ferrandon, S.; Lesage, G.; Rao, Z. J. Biol. Chem. 2003, 278, 39133–39142.
 (b) Sun, P.; Ye, S.; Ferrandon, S.; Evans, T. C.; Xu, M. Q.; Rao, Z. J. Mol. Biol. 2005, 353, 1093–1105.
 (c) Liu, Z.; Frutos, S.; Bick, M. J.; Vila-Perelló, M.; Debelouchina, G. T.; Darst, S. a; Muir, T. W. Proc. Natl. Acad. Sci. U. S. A. 2014, 111, 8422–8427.

- (5) For recent study of UV-induced bond cleavage of peptide/protein backbone, see: (a) Bosques, C. J.; Imperiali, B. J. Am. Chem. Soc. 2003, 125, 7530–7531. (b) Endo, M.; Nakayama, K.; Kaida, Y.; Majima, T. Angew. Chem. Int. Ed. 2004, 43, 5643–5645. (c) Pollois, J.-P.; Muir, T. W. Angew. Chem. Int. Ed. 2005, 44, 5713–5717. (d) Toebes, M.; Coccoris, M.; Bins, A.; Rodenko, B.; Gomez, R.; Nieuwkoop, N. J.; Kasteele, W. v. d.; Rimmelzwaan, G. F.; Haanen, J. B. A. G.; Ovaa, H.; Schumacher, T. N. M. Nat. Med. 2006, 12, 246–251. (e) Parker, L. L.; Kurutz, J. W.; Kent, S. B. H.; Kron, S. J. Angew. Chem. Int. Ed. 2006, 45, 6322–6325. (f) Li, H.; Hah, J.-M.; Lawrence, D. S. J. Am. Chem. Soc. 2008, 130, 10474–10475. (g) Celie, P. H. N.; Toebes, M.; Rodenko, B.; Ovaa, H.; Perrakis, A.; Schumacher, T. N. M. J. Am. Chem. Soc. 2009, 131, 12298–12304.
- (6) For recent study of UV-induced conformational change of peptide/protein backbone, see: (a) Santos, S. D.; Chandravarkar, A.; Mandal, B.; Mimna, R.; Murat, K.; Saucède, L.; Tella, P.; Tuchscherer, G.; Mutter, M. *J. Am. Chem. Soc.* **2005**, *127*, 11888–11889. (b) Taniguchi, A.; Skwarczynski, M.; Sohma, Y.; Okada, T.; Ikeda, K.; Prekash, H.; Mukai, H.; Hayashi, Y.; Kimura, T.; Hirota, S.; Matsuzaki, K.; Kiso, Y. *ChemBioChem* **2008**, *9*, 3055–3065. (c) Vila-Perelló, M.; Hori, Y.; Ribó, M.; Muir, T. W. *Angew. Chem. Int. Ed.* **2008**, *47*, 7764–7767. (d) Binschik, J.; Zettler, J.; Mootz, H. D. *Angew. Chem. Int. Ed.* **2011**, *50*, 3249–3252.
- (7) (a) Shigenaga, A.; Tsuji, D.; Nishioka, N.; Tsuda, S.; Itoh, K.; Otaka, A. ChemBioChem 2007, 8, 1929–1931. (b) Shigenaga, A.; Yamamoto, J.; Nishioka, N.; Otaka, A. Tetrahedron 2010, 66, 7367–7372. (c) Shigenaga, A.; Ogura, K.; Hirakawa, H.; Yamamoto, J.; Ebisuno, K.; Miyamoto, L.; Ishizawa, K.; Tsuchiya, K.; Otaka, A. Chembiochem 2012, 13, 968–971. (d) Yamamoto, J.; Denda, M.; Maeda, N.; Kita, M.; Komiya, C.; Tanaka, T.; Nomura, W.; Tamamura, H.; Sato, Y.; Yamauchi, A.; Shigenaga, A.; Otaka, A. Org. Biomol. Chem. 2014,

- 12, 3821–3826. (e) Jung, D.; Sato, K.; Min, K.; Shigenaga, A.; Jung, J.; Otaka, A.; Kwon, Y. Chem. Commun. 2015, 51, 9670–9673.
- (8) Milstien, S.; Cohen, L. A. Proc. Natl. Acad. Sci. 1970, 67, 1143–1147.
- (9) Levine, M. N.; Raines, R. T. Chem. Sci. 2012, 3, 2412–2420.
- (10) Matsumoto, H.; Sohma, Y.; Kimura, T.; Hayashi, Y.; Kiso, Y. *Bioorg. Med. Chem. Lett.* **2001**, *11*, 605–609.
- (11) Beesley, R. M.; Ingold, C. K.; Thorpe, J. F. J. Chem. Soc. Trans. 1915, 107, 1080–1106.
- (12) Jung, M. E.; Piizzi, G. Chem. Rev. 2005, 105, 1735–1766.
- (13) Bachrach, S. M. J. Org. Chem. 2008, 73, 2466–2468.
- (14) (a) Bochet, C. G. J. Chem. Soc. Perkin Trans. 1 2001, 2, 125–142. (b) Brieke, C.; Rohrbach, F.; Gottschalk, A.; Mayer, G.; Heckel, A. Angew. Chem. Int. Ed. 2012, 51, 8446–8476.
- (15) Warnecke, A.; Kratz, F. J. Org. Chem. 2008, 73, 1546–1552.
- (16) Kawahata, N.; Weisberg, M.; Goodman, M. J. Org. Chem. 1999, 64, 4362–4369.
- (17) (a) Packman, L. C. Tetrahedron Lett. 1995, 36, 7523–7526. (b) Nicolás, E.; Pujades, M.; Bacardit,
- J.; Giralt, E.; Albericio, F. Tetrahedron Lett. 1997, 38, 2317–2320. (c) Zahariev, S.; Guarnaccia, C.;
- Pongor, C. I.; Quaroni, L.; Čemažar, M.; Pongor, S. *Tetrahedron Lett.* **2006**, *47*, 4121–4124. (d) Subirós-Funosas, R.; El-Faham, A.; Albericio, F. *Tetrahedron* **2011**, *67*, 8595–8606.
- (18) For detail, see Experimental section.
- (19) Demmer, O.; Dijkgraaf, I.; Schumacher, U.; Marinelli, L.; Cosconati, S.; Gourni, E.; Wester, H. J.; Kessler, H. J. Med. Chem. 2011, 54, 7648–7662.
- (20) We failed to collect the NMR chart of those compounds at higher temperature due to thermal decomposition.