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A visible-light induced decarboxylative aza-Darzens reaction between N-aryl glycines and diazo compounds was developed, 
which affords various mono-substituted aziridines in good yields.  
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Aziridines are versatile and powerful intermediates in or-
ganic synthesis, acting as precursors of many complex 
molecules due to the strain incorporated in their skeletons 
[1–5]. They are also key structural motifs which are widely 
found in natural products and biologically important mole-
cules [6–9]. To date, a number of catalytic protocols have 
been developed for the synthesis of aziridines [10–16]. One 
of the oldest and most flexible methods is the Lewis or 
Bronsted acid-promoted aziridination of imines with diazo 
compounds [15,17–21]. These reactions proceed through 
the nucleophilic addition of diazo carbon to imines followed 
by 3-exo-tet cyclization of the amide anions, which are of-
ten described as “aza-Darzens reactions”.  

Our group [22] have recently reported a visible-light in-
duced oxidative coupling of tertiary amines and diazo 
compounds (Scheme 1). This process involves the nucleo-
philic addition of diazo compound to the in situ generated 
iminium ion [23–25], followed by the deprotonation of in-
termediate A to give -amino--diazo compound. As a con-

tinuation of this work, we envisioned that the visible-light 
photoredox-mediated decarboxylation of N-aryl glycine 
would afford an -amino alkyl radical [26,27], which could 
be further oxidized in the presence of oxygen to generate 
active imine [28]. The attack of imine by diazo compound 
would lead to intermediate B. In contrast to the intermediate 
A, intermediate B containing a negative amide anion might 
undergo a 3-exo-tet cyclization instead of the deprotonation, 
which ultimately forms aziridine as the product. In this 
study, we endeavored to develop a decarboxylative aza- 
Darzens reaction between N-aryl glycines and diazo com-
pounds for the synthesis of mono-substituted aziridines us-
ing visible-light photoredox catalysis [29–32]. 

Initially, when the mixture of N-phenyl glycine 1a, ethyl 
diazoacetate 2a and 1 mol% of Rose Bengal (RB) in MeCN 
was irradiated by a 5 W blue LED at room temperature for  
6 h, we obtained the desired N-phenyl aziridine 3a in 40% 
yield (Table 1, Entry 1). Several solvent such as 1,4-diox- 
ane, DCE, MeOH, EtOH, and CF3CH2OH, were screened 
for this transformation, and MeOH was found to be the best 
one (Table 1, Entries 2–6). Further optimizations indicated 
eosin Y, eosin B, Ru(bpy)3Cl2 were also effective photo- 
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Scheme 1  Visible-light induced oxidative cross coupling and decarboxylative aza-Darzen reaction between amines and diazo compounds. 

catalysts for the reaction, but they were not better than rose 
bengal (Table 1, Entries 7, 8 and 10). None of aziridine 3a 
was detected when methylene blue was employed (Table 1, 
Entry 9). Although the Lewis acid has been reported to 
promote the aza-Darzens reaction between imines and diazo 
compounds, the addition of 0.2 equiv. of Zn(OTf)2 has a 
negative effect on this photocatalytic reaction (Table 1, En-
try 11). When the reaction was carried out in the open air 
condition, only 16% yield of 3a was observed (Table 1,  

Table 1  Optimization of reaction conditions a) 

 

Entry Photocatalyst Solvent Yield (%) b) 

1 rose bengal MeCN 40 

2 rose bengal 1,4-dioxane 15 

3 rose bengal DCE <5 

4 rose bengal MeOH 79 

5 rose bengal EtOH 57 

6 rose bengal CF3CH2OH 33 

7 eosin Y MeOH 50 

8 eosin B MeOH 61 

9 methylene blue MeOH 0 

10 Ru(bpy)3Cl2 MeOH 53 

  11 c) rose bengal MeOH 35 

  12 d) rose bengal MeOH 16 

  13 e) rose bengal MeOH NT 

  14 f) none MeOH NT 

a) Reaction conditions: N-phenyl glycine 1a (0.26 mmol), ethyl diazo-
acetate 2a (0.2 mmol), photocatalyst (1 mol%), 5 W blue LED at r.t. under 
1 atm of oxygen for 6 h; b) yields were determined by 1H NMR spectros-
copy using mesitylene as internal standard; c) 0.2 equiv. of Zn(OTf)2 was 
added; d) in the open air; e) without light; f) in the absence of photocata-
lyst. 

Entry 12). The diminished yield might be attributed to the 
low concentration of oxygen and the moisture in the air, 
which accelerate the decomposition of the active intermedi-
ate. The control experiments indicated the reaction could 
not proceed in the absence of either light or the photocata-
lyst (Table 1, Entries 13 and 14). A kinetic study demon-
strated that the best reaction time is 6 h. The side products 
might be generated from the further oxidation of aziridine 
3a through iminium ions as reactive intermediates (for the 
details see the Supporting Information online) [33]. 

Having established the optimized reaction conditions, an 
investigation into the versatility and functional group toler-
ance of this reaction process was performed. First, the pho-
tocatalytic decarboxylative cyclization of various N-aryl 
glycines with ethyl diazoacetate was examined. As shown 
in Table 2, para-, meta-, and ortho-substituted N-phenyl 
glycines all worked well in the present system to afford the 
corresponding aziridines 3b–3d in good to excellent yields 
(Table 2, Entries 2–4). Both electron-donating groups such 
as methoxy, and electron-withdrawing groups such as fluo-
ro, chloro, and bromo could be well-tolerated (Table 2, En-
tries 5–8). Unfortunately, none of the desired product was 
detected when a strong electron-withdrawing NO2 group 
was introduced to the para-position of N-aryl gylcine (Table 
2, Entry 9). The reaction was found to be significantly af-
fected by the N-protection groups, glycines protected by 
electron-withdrawing groups, such as Boc, Ts, and Ac, were 
not compatible for this transformation. Switching the ethyl 
group in diazoacetate to isopropyl, n-butyl or tert-butyl 
group led to desired aziridines 3j–3l in slightly diminished 
yields (Table 2, Entries 10–12). We were pleased to find 
that diazoacetates with functional groups such as chloro-
ethyl (3m), allyl (3n), cinnamyl (3o), and propargyl (3p) 
were also suitable substrates for the reaction (Table 2, En-
tries 13–16). Finally, diazo ketone was tested, and its cy-
clization with N-phenyl glycine gave the aziridine 3p in the 
yield of 34% (Table 2, Entry 15). The low yield might be 
attributed to the weaker nucleophilicity of diazoketone.  
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Table 2  Visible-light induced decarboxylative cyclization of N-aryl 
glycines 1 and diazo compounds 2 a) 

 
Entry R1 R2 　Product Yield (%) b)

1 H OEt 3a 75 

2 p-Me OEt 3b 70 

3 m-Me OEt 3c 62 

4 o-Me OEt 3d 92 

5 p-OMe OEt 3e 60 

6 p-F OEt 3f 52 

7 p-Cl OEt 3g 71 

8 p-Br OEt 3h 70 

9 p-NO2 OEt 3i 0 

10 H OiPr 3j 49 

11 H OnBu 3k 67 

12 H OtBu 3l 51 

13 H OCH2CH2Cl 3m 52 

14 H OCH2CH=CH2 3n 48 

15 H OCH2CH=CHPh 3o 54 

16 H OCH2C≡CH 3p 55 

17 H p-ClC6H4 3q 34 

a) Reaction conditions: N-aryl glycine 1 (0.26 mmol), diazo compound 
2 (0.2 mmol), rose bengal (RB, 1 mol%), MeOH (0.8 mL), O2 balloon, 5 W 
blue LED at room temperature for 6 h; b) isolated yields. 

 
The nucleophilicity of ethyl diazoacetate is 4.91, while the 
N parameter of diazoketone is around 3.96 [34]. 

A plausible mechanism for the present visible-light in-
duced decarboxylative cyclization of N-aryl glycines and 
diazo compounds was proposed in Scheme 2. Initially, 
photoexcitation of RB by visible light generates excited 
RB*, which is readily quenched by N-aryl glycine to give  

 
Scheme 2  Plausible mechanism.  

the cation radical A. Decarboxylation of A leads to -amino 
alkyl radical B. Further oxidation of B by superoxide radical 
gives iminium ion C, which then deprotonates to generate 
active imine D. Finally, aziridines 3 were formed by the 
nucleophilic addition of diazo compounds on the C=N 
bond, followed by an intramolecular nucleophilic attack of 
the nitrogen atom on another carbon atom with N2 as the 
leaving group.  

In conclusion, we have developed a metal-free, visible- 
light induced decarboxylative cyclization of N-aryl glycines 
and diazo compounds. The reaction provides a useful alter-
native route to mono-substituted aziridines by using easily 
available amino acid derivatives as the starting materials. 
Further investigation on the scope as well as the synthetic 
applications is ongoing in our group. 
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