Preliminary communication

UNUSUAL STERIC EFFECT OF AN ALKENYL OR ARYL GROUP ON THE DISSOCIATIVE REDUCTIVE ELIMINATION FROM cis-ALKENYL(OR -ARYL)DIMETHYL(TRIPHENYLPHOSPHINE)GOLD(III)

SANSHIRO KOMIYA*, AKIRA SHIBUE and SATOSHI OZAKI

Department of Applied Chemistry for Resources, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei, Tokyo 184 (Japan)

(Received August 23rd, 1986)

Summary

A sterically bulky aryl or alkenyl group directly bonded to gold suppresses the rate of dissociation of the triphenylphosphine ligand from *cis*-alkenyl(or -aryl)dimethyl(triphenylphosphine)gold(III) leading to selective reductive elimination.

The coordination of suitable tertiary phoshine ligands in organotransition metal complexes plays an important role in stabilizing the metal-carbon bond, since the dissociation of the stabilizing ligands frequency leads to scission of the bond giving rise to a reductive elimination or β -elimination [1]. We previously reported the steric and electronic effects of the stabilizing ligand on the dissociative reductive elimination in triorganogold(III) complexes [2]. Here we report the preparation and the unexpected steric effect of alkenyl and aryl groups on the dissociative process.

A series of cis-alkenyl(or -aryl)dimethyl(triphenylphosphine)gold(III) complexes, $AuRMe_2(PPh_3)$ (R = cis-CH=CHMe (1a), trans-CH=CHMe (1b), E-CMe=CHMe (1c), Ph, (2a), o-tolyl; (2b), 2,6-dimethylphenyl, (2c)) has been prepared by the reaction of $AuMe_2I(PPh_3)$ with corresponding Grignard reagents [2] *. The rates of dissociation (k_1) of the triphenylphosphine ligand from the complexes 1 and 2 were

^{*} The compounds used were characterized by ¹H and ¹³C NMR as well as by elemental analyses [2]. Selected NMR data for **1a** and **1b** in CDCl₃ (chemical shifts are referred to internal standard TMS in ppm and coupling constants are in Hz). ¹H NMR: **1a**, H_α: 6.34 (1H, ddq, J(H-H) 10.4, J(H-P) 2.9, J(H-H) 1.0); H_β: 6.56 (1H, ddq, J(H-H) 10.4, J(H-P) 3.5, J(H-H) 6.2); Me: 1.41 (3H, ddd, J(H-H) 1.0, 6.2, 1.0); Au-Me: 0.04 (3H, d, J(H-P) 7.3), 1.11 (3H, d, J(H-P) 9.0). **1b**, H_α: 6.20 (1H, ddq, J(H-H) 16.8, J(H-P) 8.3, J(H-H) 1.5); H_β: 5.41 (1H, ddq, J(H-H) 16.8, J(H-P) 1.2, J(H-H) 6.0); Me: 1.50 (3H, ddd, J(H-H) 1.5, 6.0, 1.0); Au-Me: 0.04 (3H, d, J(H-P) 7.3), 1.18 (3H, d, J(H-P) 9.0). ¹³C NMR: **1a**, Au-Me: cis to P, 9.5 (d, 6.1), trans to P, 11.62 (d, 1184); Me: 20.87 (s); C_α, 153.93 (d, 9.8). **1b**, Au-Me: cis to P, 7.5 (d, 6.1), trans to P, 15.22 (d, 118.4); Me, 24.08 (s); C_α, 156.30 (d, 11.0).

TABLE 1 SELECTED $^1{\rm H}$ NMR AND ANALYTICAL DATA FOR $\it cis$ -ALKENYL(OR -ARYL)DIMETHYL-(TRIPHENYLPHOSPHINE)GOLD(III) a

R	Analyses (Found (calc) (%))		¹ H NMR δ(Au-Me) (in ppm from ext. TMS in CDCl ₃)	
	C	H	cis to PPh ₃	trans to PPh ₃
Me	52.5	5.2	0.04	1.11
/	(52.1)	(4.9)		
(1a) ,				
ме	52.1	4.8	0.04	1.18
	(52.1)	(4.9)		
(1b)				
Me	52.6	4.9	-0.01	1.02
\triangleright	(53.0)	(5.2)		
(1c)				
Ph	54.3	4.6	0.18	1.18
(2a)	(55.1)	(4.6)		
o-tolyl	55.3	4.6	0.18	1.11
(2b)	(55.9)	(4.9)		
Me	56.0	5.0	0.20	1.07
	(56.6)	(5.1)	0.20	2.07
~	(00.0)	(5.2)		
Me				
(2c)				

[&]quot;A part of the data was taken from Ref. 2.

estimated by examining the dependence of the pseudo first order rate constant, $k_{\rm obs}$ in the thermolysis of these organogold(III) complexes in benzene at 70°C, on the concentration of triphenylphosphine ligand as reported previously [2].

Figure 1 demonstrates the relationship between the first order dissociation rate constant, k_1 , and the effective ligand angle θ *, which can be estimated by means of a space-filling model as in Fig. 2 and can be taken as an index of their two dimensional steric bulkiness. The dissociation rate constant, k_1 , decreases with an increase in the effective ligand angle in spite of the increase of steric repulsion between the triphenylphosphine ligand and the aryl or alkenyl group. The results are

^{*} Normal bond lengths and angles were used for calculation: cis-CH=CHMe 148, trans-CH=CHMe 116, E-CMe=CHMe 168, Ph 134, o-tolyl 165, 2,6-dimethylphenyl 196°.

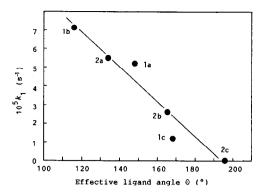


Fig. 1. Relationship between k_1 and effective ligand angle θ of the alkenyl and aryl groups.

also in sharp contrast to the fact that the electron donation from the aryl group enhances the ligand dissociation from aryldimethylgold(III) complexes [2].

On the other hand, a sterically bulky alkenyl or aryl group is considered to remain perpendicular to the coordination plane. In the ¹H NMR of complexes 1a and 1b, the coupling constant between H_{α} and P nuclei in 1a (J 2.9 Hz) is found to be considerably smaller than that in 1b (J 8.3 Hz). Since the dihedral angle in $H_{\alpha}-C_{\alpha}-Au-P$ can reflect the coupling constant between H and P according to the well-known Karplus equation, 1a is considered to keep an alkenyl group more perpendicular to the coordination plane than 1b, in reducing their steric hindrance. In fact a large upfield shift due to the steric influence in the ¹³C NMR spectrum is observed between the methyl carbon trans to the P nucleus and the methyl carbon of cis-propenyl group. A similar upfield shift of the signal of Me-Au trans to P is also observed in ortho-substituted arylgold(III) complexes 2b and 2c. (¹³C NMR and Me-Au trans to P (ppm in CDCl₃): 1a, 11.62; 1b, 15.22; 1c, 11.16; 2a, 15.08; 2b, 12.37; 2c, 10.36) Such a perpendicular geometry possibly compels the effective interaction of the occupied d-orbital with the $p\pi^*$ orbital of alkenyl or aryl group,

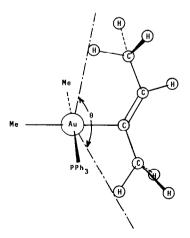


Fig. 2. Effective ligand angle θ .

thus increasing π back-donation. However, at present, further structural and theoretical investigations are required to complete the study.

Acknowledgement. The authors thank for the support of the work by a Grant-in-Aid for Scientific Research from the Japanese Ministry of Education (No. 61225004).

References

- 1 J.K. Kochi, Organometallic Mechanisms and Catalysis, Academic Press, New York, London, 1978; A. Yamamoto, Organotransition Metal Chemistry. Fundamental Concepts and Application, Wiley Interscience, New York, (1986) and references cited therein.
- 2 S. Komiya and A. Shibue, Organometallics, 4 (1985) 684; S. Komiya, T.A. Albright, R. Hoffmann, and J.K. Kochi, J. Am. Chem. Soc., 98 (1986) 7255.