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Enantioselective Addition of a 2-Alkoxycarbonyl-1,3-dithiane to
Imines Catalyzed by a Bis(guanidino)iminophosphorane
Organosuperbase
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Abstract: A chiral bis(guanidino)iminophosphorane catalyzes
enantioselective addition reactions of a 1,3-dithiane derivative
as a pronucleophile. The chiral uncharged organosuperbase
facilitates the addition of benzyloxycarbonyl-1,3-dithiane to
aromatic N-Boc-protected imines to provide optically active a-
amino-1,3-dithiane derivatives, which are valuable versatile
building blocks in organic synthesis.

In recent years, much attention has been paid to the
development of chiral uncharged strong organobase catalysts
and their application in a variety of enantioselective reac-
tions.[1] Many efficient catalysts, such as chiral guanidines and
P1 phosphazenes, have been developed to date, and they have
enabled many useful transformations that cannot be achieved
with conventional chiral tertiary amine catalysts, including
cinchona alkaloids.[2, 3] However, the application of these
catalysts is still limited to pronucleophiles bearing a rather
acidic proton, such as 1,3-dicarbonyl compounds and nitro-
alkanes, because of their inherent basicity. Thus, the develop-
ment of much stronger organobases, namely chiral organo-
superbases, is desirable to overcome these intrinsic limitations
and to pave the way to enantioselective transformations that
have never been achieved before. Recently, we have devel-
oped novel chiral bis(guanidino)iminophosphorane 1 as
a chiral uncharged organosuperbase catalyst that facilitates
the activation of less acidic pronucleophiles.[4] Its usability was
demonstrated in the enantioselective amination of 2-alkyl-
tetralone derivatives as less acidic pronucleophiles. To extend
the utility of the newly developed catalyst, particularly in
synthetically useful transformations, we focused our attention
on 2-alkoxycarbonyl-1,3-dithiane 2 as a less acidic pronucleo-
phile. The addition reaction of 1,3-dithianes is one of the most
important umpolung reactions in organic synthesis.[5,6] The
anion of 1,3-dithiane is regarded as an acyl anion equivalent,
and its reaction with various electrophiles, such as carbonyl

compounds, imines, and Michael acceptors, furnishes the
corresponding protected carbonyl compounds. In general,
a stoichiometric amount of a strong base, such as
n-butyllithium, is required for generating the dithiane anion
prior to the reaction with electrophiles. The direct addition
reaction using a catalytic amount of a Brønsted base is rather
limited because of the low acidity at the 2-position, even if it is
a to an electron-withdrawing group, such as an alkoxycar-
bonyl group.[7–9] In particular, enantioselective variants are
rare.[10] We envisioned that the enantioselective addition
reaction of 2-alkoxycarbonyl-1,3-dithianes 2 as less acidic
pronucleophiles with imines 3 by using our newly developed
catalyst 1 would afford optically active a-amino-1,3-dithiane
derivatives, which are known as valuable versatile building
blocks (Scheme 1). Currently, the synthesis of those com-
pounds relies on the asymmetric addition of 2-lithio-1,3-
dithianes to chiral N-sulfinyl- and N-phosphoryl imines where
a stoichiometric amount of a Brønsted base as well as a chiral
auxiliary are required.[11,12] We herein report the realization of
the catalytic enantioselective addition reaction of 1,3-dithiane
derivatives to aromatic imines by using a chiral bis(guanidi-
no)iminophosphorane organosuperbase catalyst.

We began our investigation by evaluating the reaction of
2-benzyloxycarbonyl-1,3-dithiane (2a) as a pronucleophile
with N-Boc imine 3a. The catalyst was generated in situ by
treating (M)-1·HX, which possesses helical chirality because
of the spirocyclic structure and the central chirality of the
(1S,2S)-1,2-diphenyl-1,2-ethanediamine unit, with NaN-
(SiMe3)2 prior to use. An initial attempt was made by reacting
11 mol% of (M)-1a·HBr with 10 mol % of NaN(SiMe3)2 in
toluene at ¢40 88C. As a result, the desired adduct 4a was
obtained in moderate yield, but with only 3 % ee (Table 1,
entry 1). Replacing the solvent with an ethereal solvent, such
as THF or diethyl ether, improved the chemical yield, but the
enantioselectivity was still low (entries 2 and 3). The solvent

Scheme 1. Enantioselective addition of 2-alkoxycarbonyl-1,3-dithianes
to imines catalyzed by (M)-1. PG= protecting group.
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effect became evident when ethyl acetate was employed
(entry 4). The reaction reached completion within one hour,
and the product was obtained in high yield with excellent
enantioselectivity. Further improvement of both chemical
yield and the ee value was achieved by using (M)-1b·HCl as
the precatalyst (entry 5). The choice of the inorganic base for
the generation of the catalyst from precatalyst 1·HX was
found to be critical (entries 5–8). The use of LiN(SiMe3)2,
KN(SiMe3)2, and tBuONa resulted in lower yields with lower
enantioselectivity. This is presumably due to the detrimental
effects of LiCl, KCl, and tBuOH, which are generated during
the catalyst activation in situ. Whereas in our previous report,
the use of excess inorganic base relative to precatalyst 1·HX
was essential to achieve high yields,[4] the use of a slight excess
of 1·HX relative to NaN(SiMe3)2 was optimal in the present
reaction (entries 5, 9, and 10). The absolute configuration of
product 4a was unambiguously determined to be S by single-
crystal X-ray diffraction analysis.[13]

With the optimized conditions in hand, the scope of
imines was investigated (Table 2). At first, ortho-, meta-, and
para-tolyl imines were tested, and the corresponding products
4b–4d were obtained in high yields with high enantioselec-
tivities. Imines with an electron-donating group, such as
a methoxy group, or an electron-withdrawing group, such as
a chloro or a bromo group, at the para position of the benzene
ring underwent the reaction smoothly to provide products
4e–4g in high yields with high enantioselectivities. The
reaction of 2-naphthyl imine proceeded without any prob-
lems, whereas the reaction of 1-naphthyl imine resulted in
moderate enantioselectivity. Heteroaromatic imines were
also applicable to this reaction. 2-Furyl and 2-thienyl imines
were compatible with the reaction conditions and afforded
the corresponding products 4j and 4 k, respectively, in high
yields and with high enantioselectivity.[14, 15]

Finally, the derivatization of the product, including the
conversion of the 1,3-dithiane moiety into a ketone group,
was attempted (Scheme 2). The reduction of the benzyl ester
moiety of (S)-4a into a hydroxy group with NaBH4 as the
reducing agent yielded (S)-5. After protecting the primary
hydroxy group with a TBS group, removal of the 1,3-dithiane
moiety was investigated. However, all attempts failed because
of the incompatibility of the N-Boc-protected amino moiety
with the conditions. Therefore, we decided to convert the
protecting group on the nitrogen atom into a tosyl group prior
to the 1,3-dithiane deprotection. Cleavage of the Boc group
under acidic conditions followed by chemoselective protec-
tion of the primary hydroxy group with TBSCl provided
primary amine (S)-6 in high yield. Tosylation of the amino
group proceeded smoothly to afford (S)-7. The conversion of
the 1,3-dithiane moiety of (S)-7 was achieved by treatment

Table 1: Initial screening.[a]

Entry 1·HX Inorganic
base[b]

Solvent Time
[h]

Yield[b]

[%]
ee[c]

[%]

1 1a·HBr NaN(SiMe3)2 toluene 24 41 3
2 1a·HBr NaN(SiMe3)2 THF 2 92 18
3 1a·HBr NaN(SiMe3)2 Et2O 24 93 13
4 1a·HBr NaN(SiMe3)2 EtOAc 1 94 97
5 1b·HCl NaN(SiMe3)2 EtOAc 1 98 99
6 1b·HCl LiN(SiMe3)2 EtOAc 24 40 24
7 1b·HCl KN(SiMe3)2 EtOAc 24 42 25
8 1b·HCl tBuONa EtOAc 24 56 56
9[d] 1b·HCl NaN(SiMe3)2 EtOAc 2 96 98

10[e] 1b·HCl NaN(SiMe3)2 EtOAc 1 93 97

[a] Reaction conditions: 2a (0.10 mmol), 3a (0.12 mmol), (M)-1·HX
(0.011 mmol), inorganic base (0.010 mmol), solvent (0.50 mL), ¢40 88C.
[b] Yields of isolated products. [c] The ee values were determined by
HPLC analysis on a chiral stationary phase. [d] 0.015 mmol of 1b·HCl
(15 mol%) and 0.010 mmol of NaN(SiMe3)2 (10 mol%). [e] 0.010 mmol
of 1b·HCl (10 mol%) and 0.020 mmol of NaN(SiMe3)2 (20 mol%).
Boc = tert-butoxycarbonyl.

Table 2: Imine scope.[a]

[a] Reaction conditions: 2a (0.10 mmol), 3 (0.12 mmol), (M)-1b·HCl
(0.011 mmol), NaN(SiMe3)2 (0.010 mmol), EtOAc (0.50 mL), ¢40 88C.
[b] Conducted at ¢60 88C. [c] 1.0 mL of EtOAc.

Scheme 2. Derivatization of (S)-4a. Reagents and conditions:
a) NaBH4 (10.0 equiv), THF/MeOH, 0 88C to RT, 14 h, 92%, 94% ee ;
b) 47 % HBr (aq.), MeOH, 40 88C, 2 h; c) TBSCl (1.5 equiv), imidazole
(5.0 equiv), CH2Cl2, RT, 6 h, 91% (over 2 steps), 95% ee ; d) TsCl
(1.5 equiv), Et3N (5.0 equiv), DMAP (50 mol%), CH2Cl2, RT, 6 h, 92%,
95% ee ; e) NIS (8.0 equiv), acetone/H2O, 0 88C, 10 min; f) NaBH4

(6.0 equiv), THF, ¢78 88C, 1 h, 89 % (over 2 steps), 91:9 d.r., 94/95%
ee. DMAP=dimethylaminopyridine, NIS= N-iodosuccinimide,
TBS = tert-butyldimethylsilyl, Ts =para-toluenesulfonyl.
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with an excess amount of NIS in acetone/H2O. Finally, the
reduction of the resulting keto moiety with NaBH4 proceeded
in a diastereoselective manner to afford 3-amino-1,2-diol 9 in
high yield.[16] In the course of the derivatization, the optical
purity was not reduced.

In conclusion, we have developed a catalytic enantiose-
lective addition reaction of a 1,3-dithiane derivative as a less
acidic pronucleophile by using a chiral bis(guanidino)imino-
phosphorane organosuperbase catalyst. The addition of
benzyloxycarbonyl-1,3-dithiane to N-Boc-protected aromatic
imines proceeded in a highly enantioselective manner to
provide optically active a-amino-1,3-dithiane derivatives,
which are valuable versatile building blocks in organic
synthesis. Ongoing studies are focused on the development
of novel enantioselective transformations using chiral bis-
(guanidino)iminophosphorane catalysts as well as on the
elucidation of the origin of the stereoselectivity.

Experimental Section
The reaction of 2a with 3a as a representative example: (M)-1b·HCl
(8.1 mg, 0.011 mmol) was placed in a dried test tube and suspended in
EtOAc (1.0 mL), and the solvent was evaporated once. EtOAc
(0.50 mL) was added again, and the resulting suspension was
degassed under reduced pressure. A solution of NaN(SiMe3)2 in
THF (1.9m, 5.3 mL, 0.010 mmol) was added to the suspension at room
temperature. After stirring for ca. 1 min, 1,3-dithiane 2a (25 mg,
0.10 mmol) was added, and the mixture was stirred for ca. 1 min. The
solution was then cooled to ¢40 88C, and N-Boc imine 3a (25 mg,
0.12 mmol) was added. The resulting mixture was stirred at that
temperature for 1 h. The reaction was quenched with saturated
aqueous NH4Cl solution (ca. 0.50 mL). The aqueous phase was
extracted with EtOAc. The combined organic phase was dried over
Na2SO4 and evaporated. The residue was purified by column
chromatography on silica gel (hexane/EtOAc = 6:1) to afford 4a
(46 mg, 0.098 mmol, 98%) as a white solid.
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