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Herein, we presented two novel turn-on colorimetric and fluorescent probes based on a F− triggered Si\\O bond
cleavage reaction, which displayed several desired properties for the quantitative detection for F−, such as high
specificity, rapid response time (within 3min) and naked-eye visualization. The fluorescence intensity at 574 nm
(absorbance at 544 nm) of the solution was found to increase linearly with the concentration of F− (0.00–30.0
μM) with the detection limit was estimated to be 0.47 μM/0.48 μM. Based on these excellent optical properties,
the probes were employed to monitor F− in real water samples and tea samples with satisfactory. Furthermore,
it was successfully applied for fluorescent imaging of F− in living nudemice, suggesting that it could be used as a
powerful tool to predict and explore the biological functions of F− in physiological and pathological processes.

© 2019 Elsevier B.V. All rights reserved.
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1. Introduction

As the smallest anion distributed in nature, inorganic fluoride ion
(F−) which mainly derived from foodstuffs and groundwater exerts a
great influence on humanhealth particularly in preventing dental caries
[1–3]. Nevertheless, excessive ingestion of fluoride ion may result in
fluorosis, urolithiasis, skeletal disease and even lead to cancers [4–6].
For these reasons, the controlled consumption of fluoride in the
human body is a serious concern throughout the world [7,8]. Therefore,
it is verymeaningful to develop a convenient and efficient technique for
the detection and quantification of fluoride ions in real samples and
complicated biological systems.

Compared with the traditional sophisticated analytical techniques
(ion chromatography, reversed-phase high-performance liquid chro-
matography, 19F NMR, fluoride ion selective electrode), molecular
probe-based fluorometric and colorimetric methodology [9–17] has
been employed as a powerful technology to track cations, anions and bi-
ological molecules in vitro and in vivo for its high specificity, high sensi-
tivity, real-time imaging and noninvasive monitoring capability
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work.
[18–26]. Accordingly, numerous turn-on fluorescent molecular probes
for monitoring F− containing common fluorophores including rhoda-
mine, coumarin, tetrahydroxanthenone, calix[4]crown and
naphthalimide have been rapidly constructed in recent years [27–37].
Moreover, reports on rhodol-based (a special combination structure of
rhodamine and fluorescein) fluorescent probes for the detecting of F−

are scarce. Rhodol dyes are excellent candidates for fluorescent probes
which have the advantages, such as excellent optical features, high ex-
tinction coefficients, high photo-stability, long wavelength absorption
and emission [38–41]. Therefore, the suitable design of a novel rhodol-
based fluorescent probe that could selectively responds to F− in real
samples and in vivo is still a challenge for the analytical chemists.

Herein, we constructed an unprecedented example (Scheme 1) of a
highly sensitive, F−-selective colorimetric and fluorometric rhodol-
based probe which consisted seminaphthorhodafluor dye (chromo-
phore) and tert-butyl dimethyl chlorosilane/tert-butyl diphenyl
chlorosilane (recognition site of F−). Furthermore, probe 1 exhibits
ideal fluorometric and colorimetric properties and exhibited desirable
selectivity to F− in real samples and in vivo.

2. Experimental

2.1. Materials and methods

All chemicals were purchased from commercial suppliers and used
without further purification. UV–Vis absorption and fluorescence
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Scheme 1. Synthesis route of probe 1.
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spectra were performed on Shimadzu UV-1700 spectrophotometer and
Hitachi F-4500 fluorescence spectrophotometer (excitation and emis-
sion slits set at 5.0 nm), respectively. High-resolution mass spectra
(HR-MS) were measured by a Brukermicro TOF-QII ESI-Q-TOF LC/MS/
MS Spectrometer. 1H NMR spectra were recorded on a Varian INOVA-
400 MHz spectrometer using tetramethylsilane as internal standard. In
vivo fluorescence imaging analysis was carried out in an IVIS Kinetic im-
aging system.

2.2. General procedure

The stock solution of probe 1 (1mM)was prepared inDMSO. The so-
lutions of biologically relevant analytes stock solutions (1 mM) were
prepared in deionized water. For all measurements, the absorbance
was recorded at 544 nm and the fluorescence intensity was recorded
at 574 nm (λex = 500 nm).

2.3. Synthesis of probes 1a and 1b

Seminaphthorhodafluor dye (compound2)was synthesized accord-
ing to the reported procedures [40].

1H NMR(Chloroform d, 400 MHz): δ (ppm) 1.16 (t, J = 7.0 Hz, 6H),
3.33 (q, J = 7.2 Hz, 4H), 5.32 (s, 1H), 6.44 (dd, J = 9.3, 2.5 Hz, 1H),
6.58 (d, J = 2.6 Hz, 1H), 6.72 (d, J = 8.8 Hz, 1H), 6.87 (d, J = 9.0 Hz,
1H), 6.95 (d, J = 2.4 Hz, 1H), 7.01 (d, J = 8.8 Hz, 1H), 7.09 (dd, J =
9.1, 2.4 Hz, 1H), 7.15 (m, 1H), 7.62 (tt, J = 7.3, 5.8 Hz, 2H), 8.15 (m,
1H), 8.25 (d, J = 9.0 Hz, 1H). MS (ESI) m/z = 438.1715 [M]+, calc. for
C28H24NO4

+ = 438.1700.
Fig. 1. Fluorescence responses (574 nm)/absorption responses (544 nm) of probe 1a (10.0 μ
interfering species (1000 μM). The pillars in the back row: probe 1a treated with the interferin
A solution of tert-butyl dimethyl chlorosilane/tert-butyl diphenyl
chlorosilane (11.0 mmol) and imidazole (1.50 g, 22.0 mmol) in anhy-
drous CH2Cl2 (10 mL) was added dropwise to a solution of compound
2 (4.38 g, 10.0 mmol) in CH2Cl2 (30 mL) at 0 °C for 30 min. The solution
waswarmed to room temperature and stirred for 3 h. Then the resultant
residue was washed with H2O (50 mL) and dried over anhydrous
Na2SO4. The residue was concentrated and purified by column chroma-
tography (CH3OH/CH2Cl2 = 1/250).

Probe1a: light pinkpowder, 3.12 g, yield: 56.52%. 1HNMR(DMSO d6,
400 MHz): δ (ppm) 0.31 (s, 6H), 1.04 (s, 9H), 1.17 (t, J = 7.0 Hz, 6H),
3.45(q, J = 6.8 Hz, 4H), 6.58 (m, 2H), 6.70 (d, J = 8.8 Hz, 1H), 6.78 (d,
J = 2.3 Hz, 1H), 7.33 (m, 2H), 7.38 (d, J = 2.4 Hz, 1H), 7.53 (d, J =
8.7 Hz, 1H), 7.81 (m, 2H), 8.08 (d, J = 7.5 Hz, 1H), 8.54 (d, J = 9.0 Hz,
1H). MS (ESI)m/z = 552.2547 [M], calc. for C34H38NO4 Si = 552.2565.

Probe 1b: light pink powder, 3.03 g, yield: 44.82%. 1H NMR
(Chloroform d, 400 MHz): δ (ppm) 1.24 (m, 6H), 1.27 (m, 9H), 3.75
(q, J = 7.0 Hz, 4H), 6.63 (d, J = 8.8 Hz, 3H), 7.05 (d, J = 2.4 Hz, 1H),
7.10 (d, J = 8.8 Hz, 1H), 7.15 (dd, J = 6.6, 1.8 Hz, 2H), 7.39 (td, J =
7.1, 6.6, 1.7 Hz, 5H), 7.44 (m, 2H), 7.55 (dd, J = 5.7, 3.3 Hz, 1H), 7.63
(m, 2H), 7.77 (dt, J = 8.0, 1.2 Hz, 4H), 8.05 (m, 1H), 8.39 (d, J =
9.1 Hz, 1H). MS (ESI) m/z = 676.2967 [M], calc. for C44H42NO4Si =
676.2878.

3. Results and discussion

3.1. Optical properties of probe 1a

With probe 1a and 1b in hands, F−-mediated fluorescence and ab-
sorption responses were initially investigated in DMSO-PBS (5/95, v/v,
M) to various interfering species. The pillars in the front row: probe 1a treated with the
g species (1000 μM) followed by F− (20.0 μM). (λex = 500 nm, silt = 5 nm/5 nm).



Table 1
Application of the probe 1a in determination of F− in tea samples.

Sample Filtrate I
(μmol/L)

F−

spiked
(μmol/L)

F− recovered
meana ± SDb

(μmol/L)

Recovery
(%)

Black Tea
(Puer Tea)

9.88 5.00 15.11 ± 0.32 101.5
10.00 20.03 ± 0.32 100.8
15.00 25.55 ± 0.26 99.3

Green Tea
(Jintan
Queshe)

4.12 5.00 9.01 ± 0.18 98.7
10.00 14.22 ± 0.29 100.7
15.00 19.35 ± 0.31 101.2

a Mean of three determination.
b SD: standard deviation.
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pH 7.4) solution. The results suggested that the R moiety (tert-butyl
dimethyl-, tert-butyl diphenyl-) had no significant impact on the spec-
tral properties. Hence, only probe 1a was discussed in this article and
the spectral properties of probe 1b was shown in the supporting
information.

As shown in Fig. 1, the optical responses of probe 1a towards a vari-
ety of biologically relevant species were examined. Upon the addition of
various analytes (HCO3

−, Cl−, Br−, I−, CN−, NO3
−, PO4

3−, CO3
2−, HPO4

2−,
SCN−, N3

−, SO3
2−, HSO3

−, S2O3
2−, SO4

2−, NO2
−, ClO4

−, OAc−, S2−, GSH, Cys,
Lys, 1.00 mM), only F− induced a noticeable change in the fluorescence
and absorption signals, no other interfering species had this effect.
Moreover, the spectral response of probe 1a towards F− was not af-
fected in the presence of other interfering relevant analytes (Table 1).

In the subsequent titration experiment (Fig. S1), the solution exhib-
ited a prominent red fluorescence (Φ = 0.15) and the fluorescence in-
tensity at 574 nm (absorbance at 544 nm) of the solution was found
to increase linearly with the concentration of F− (0.00–30.0 μM, Fig. 2)
with the detection limit was estimated to be 0.50 μM. The regression
equation was y = 22.995x + 201.26 (R2 = 0.9865) / y = 0.0133x +
0.036 (R2 = 0.9981). These results showed that probe 1a could be
used to measure F− quantitatively and qualitatively. Time-based fluo-
rescence of probe 1awith F− reached its plateau within 3 min, indicat-
ing a rapid response of probe 1a towards F− (Figs. S3–4). Taking all
these results together, probe 1a displayed a great potential tool for the
detection of F− by the colorimetric and fluorometric dual mode.

3.2. Sensing mechanism studies

Taking consideration from previous literature [42,43], the proposed
reaction mechanism was inferred as Scheme 2. Once attacked by F−,
probe 1a underwent the deprotection mechanism by the cleavage of
the Si\\Obond (tert-butyl dimethyl- group). In order to further demon-
strate the reaction mechanism, our probe was treated with 20 equiv. of
Fig. 2. The linear plots of fluorescence responses (574 nm)/absorption responses (544 nm)
F−, the reaction mixture was purified and the corresponding product
was characterized by HRMS and 1H NMR. A new peak was observed at
m/z 438.1614 (Fig. S23), which was assigned to compound 1a + F−

[M]+ (m/z, calcd: 438.1700). Meanwhile, the 1H NMR spectral
(Figs. S8, S20) strongly support the supposition that the F−-triggered
cleavage reaction causes the release of seminaphthorhodafluor dye.

3.3. Fluorescence detection of F- in real sample

The adequate intake for F− from all sources was determined to be
0.05 mg/day/kg body weight and the concentration of in tea infusions
of different type of teas were 0.29–6.01 mg/L [3]. To further study the
practicality of the present probe, it was applied to detect F− in potable
water sample (Xi'an Technological University) and different type of
tea samples (Black Tea and Red Tea) qualitatively and quantitatively.
All of the sampleswere analyzed by probe 1awith orwithout additional
F− at concentration levels of 5.0 μM, 10.0 μM and 15.0 μM based the re-
gression equation (y = 22.995x + 201.26 (R2 = 0.9865), Fig. 2). The
analysis results were represented in Table S1 and 1. The results indi-
cated that probe 1a effectively measured and recovered the concentra-
tions of spiked F−. Therefore, the experimental results suggested that
our probe could suitably and quantitatively detected F− in real samples
without interference from other environmentally relevant analytes.

3.4. Visualization of F− in vivo

Inspired by these desiredfluorescenceproperties, the applicability of
the probe for visualizing F− in vivo was subsequently explored. The
Athymic nude mice which were selected as our model was given skin-
pop injections of probe 1a (20.0 μM) and finally by the injection of F−

(50.0 μM) at the same region after 30 min. In virtue of the small animal
imaging system with a 540 nm excitation laser and a 570 nm emission
filter, we gained the real-time recording of fluorescence signal that gen-
erated from the Athymic nude mice (Fig. 3). The mouse injected with
probe 1a and F− displayed a strong fluorescence with time indicating
that probe 1a could respond to F−. The results further demonstrated
that our probe could be capable of specifically imaging exogenous F−

in vivo.

4. Conclusions

In conclusion, we had designed and synthesized two novel probes
for the detection of F− based on a F− triggered Si\\O bond cleavage re-
action. The probes exhibited high sensitivity, high selectivity, rapid re-
sponse for F−, and could be successfully applied for F− detection in
potable water and tea samples. Moreover, the probes had been further
of probe 1a (10.0 μM) upon addition of varied concentration of F− (0.00–4.00 equvi.).



Scheme 2. Proposed mechanism for the detection of F−.

Fig. 3. Fluorescence images of exogenous NaF in Athymic nude mice.
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utilized for fluorescence imaging of fluoride in vivo under physiological
conditions.
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