<

Subscriber access provided by BUFFALO STATE

Synthetic and Mechanistic Studies of a Versatile
Heteroaryl Thioether Directing Group for Pd(Il) Catalysis
Andrew M Romine, Kin S. Yang, Malkanthi K. Karunananda, Jason S Chen, and Keary M. Engle

ACS Catal., Just Accepted Manuscript « DOI: 10.1021/acscatal.9b01471 « Publication Date (Web): 02 Jul 2019
Downloaded from http://pubs.acs.org on July 3, 2019

Just Accepted

“Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted
online prior to technical editing, formatting for publication and author proofing. The American Chemical
Society provides “Just Accepted” as a service to the research community to expedite the dissemination
of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in
full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully
peer reviewed, but should not be considered the official version of record. They are citable by the
Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore,
the “Just Accepted” Web site may not include all articles that will be published in the journal. After
a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web
site and published as an ASAP article. Note that technical editing may introduce minor changes
to the manuscript text and/or graphics which could affect content, and all legal disclaimers and
ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or
consequences arising from the use of information contained in these “Just Accepted” manuscripts.

is published by the American Chemical Society. 1155 Sixteenth Street N.W.,
Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society.
However, no copyright claim is made to original U.S. Government works, or works
produced by employees of any Commonwealth realm Crown government in the course

of their duties.




Page 1 of 15

oNOYTULT D WN =

ACS Catalysis

Synthetic and Mechanistic Studies of a Versatile Heteroaryl Thioether
Directing Group for Pd(ll) Catalysis

Andrew M. Romine’, Kin S. Yang', Malkanthi K. Karunananda', Jason S. Chen', and Keary M. Engle**

*Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
¥ Automated Synthesis Facility, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States

ABSTRACT: A weakly coordinating monodentate heteroaryl thioether directing group has been developed for use in Pd(II) catalysis to or-
chestrate key elementary steps in the catalytic cycle that require conformational flexibility in a manner that is difficult to accomplish with tradi-
tional strongly coordinating directing groups. This benzothiazole thioether, (BT)S, directing group can be used to promote oxidative Heck
reactivity of internal alkenes providing a wide range of products in moderate to high yields. To demonstrate the broad applicability of this
directing group, an arene C—H olefination method was also successfully developed. Reaction progress kinetic analysis provides insights into the
role of the directing group in each reaction, which is supplemented with computational data for the oxidative Heck reaction. Furthermore, this
(BT)S directing group can be transformed into a number of synthetically useful functional groups, including a sulfone for Julia olefination,
allowing it to serve as a “masked olefin” directing group in synthetic planning. In order to demonstrate this synthetic utility, natural products

(+)-salvianolic acid A and salvianolic acid F are formally synthesized using the (BT)S directed C-H olefination as the key step.

INTRODUCTION

Substrate directivity is a powerful approach for enhancing reactivity
and controlling selectivity across numerous types of metal-catalyzed re-
actions.! In substrate-directed reactions, pre-association of the catalyst
to one or more Lewis basic sites on the substrate promotes a desired re-
action outcome by perturbing the activation barriers for possible diver-
gent pathways along the reaction coordinate. Kinetic reactivity is typi-
cally enhanced by virtue of induced intramolecularity as well as enforced
proximity between the reactive group on the substrate and a free coor-
dination site on the metal. Regioselectivity is dictated by preferential
formation of a thermodynamically and/or kinetically stabilized metal-
lacycle over an energetically disfavored constitutional isomer. Stereose-
lectivity can also be controlled in key bond-making and bond-breaking
steps through stereochemical information on (or in the vicinity of) the
coordinating atom(s).

Strategic application of substrate directivity in palladium-catalyzed
alkene functionalization is a potent platform for achieving challenging
modes of bond construction.”® Palladium-catalyzed Wacker oxidation
and Mizoroki-Heck arylation of alkenes constitute the bedrock of mod-
ern homogeneous catalysis research, with the power of these reactions
stemming from their ability to forge diverse C-C and C-heteroatom
bonds from simple alkene starting materials.'® ? In the traditional reac-
tion pathways, upon nucleometalation (or migratory insertion), the re-
sulting alkylpalladium(II) intermediate undergoes facile f-H elimina-
tion to deliver the final oxidized alkene product. With substituted alkene
starting materials, the regioselectivities of the initial addition step and
subsequent B-H elimination step are not straightforward to control in
the absence of a strong steric or electronic bias between the two alkenyl

1e3 and others'® * have studied substrate-

carbon atoms. Our laboratory
directed palladium-catalyzed alkene functionalization reactions that in-
itiate via Wacker- or Heck-type pathways. In these systems, strongly co-

ordinating mono-, bi-, and tri-dentate directing auxiliaries can be used
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to control the regioselectivity of the alkene addition step and stabilize
the resulting intermediate such that downstream elementary steps, such
as protodemetalation, oxidative addition, or transmetalation, outcom-
pete B-H elimination.

The design of new directing groups with distinct coordination prop-
erties constitutes a significant challenge and opportunity in this area of
study, given the ability of the directing group to engender control of
pathway selectivity during catalysis. In our past work we have used the
strongly coordinating 8-aminoquinoline (AQ) and 2-pyridyl-8-amino-
quinoline (PAQ) directing groups, which are efficient at suppressing f-
H elimination to enable 1,2-difunctionalization and hydrofunctionali-
zation. Based on these precedents, we hypothesized that a more weakly
coordinating group may lead to a different scenario in which a p-H elim-
ination step would now be kinetically accessible. Specifically, we sought
to identify a directing group that would lie in the “goldilocks” region—
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Table 1. Optimization of Directing Group for Oxidative Heck Coupling with 1,2-Dialkyl Alkenes®
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Tsolated yields except where otherwise noted. “Determined by 'H NMR of the crude reaction using 1,3,5-trimethoxybenzene as internal standard.

‘n.r.=no reaction. “Inseparable from 22% of two unidentifiable isomers that contain a 1,2-disubstituted internal olefin motif. ‘Inseparable from 26%

of two unidentifiable isomers that contain a 1,2-disubstituted internal olefin motif. Tsolated as a 7:1 mixture of isomers ( Z:E).

possessing sufficient coordination strength to facilitate complete selec-
tivity in the nucleopalladation step, even with especially challenging
substrates (such as 1,2-dialkyl alkenes), yet still weakly coordinating
enough to allow selective p-H elimination. Such a reaction sequence
would be synthetically valuable by allowing formal C(alkenyl)-H func-
tionalization,” enabling conversion of a simple alkene starting material
into a regio- and stereodefined tri- or tetra-substituted alkene product
(Scheme 1).

To validate this general hypothesis, we elected to focus on the palla-
dium(1II)-catalyzed oxidative Heck reaction, anticipating that newly
identified directing groups would also find utility in other palla-
dium(1I)-catalyzed reactions (vide infra). Despite extensive efforts over
the past several decades, knowledge gaps persist in Heck-type chemis-
try. Directed variants of the palladium(IT)-catalyzed oxidative Heck re-
actions, for instance, are relatively rare, with White’s seminal study of
heteroatom-directed oxidative Heck arylation of terminal alkenes a no-
table exception.® A closely related body of literature has examined di-
rected variants of classical-polarity palladium(0)-catalyzed Mizoroki-
Heck reactions,’® with pioneering work here including contributions by
Hallberg,® Carreterro,® Yoshida,” and others.® These studies have typi-
cally focused on heteroatom-substituted alkene substrates, including vi-
nyl sulfides, ethers, or silanes, and in these designs, the coordinating
group is built into the heteroatom linkage. For these systems, competi-
tive binding of the phosphine ligand versus the directing group is an im-
portant consideration. Included in these studies are relatively few alkyl-
substituted alkenes, with examples mostly limited to terminal allylic al-
cohols, amines, and their derivatives.

Across all Heck-type chemistry, internal asymmetrically substituted
di- and tri-substituted alkenes remain difficult substrates. Sigman has
developed elegant catalytic systems for both oxidative and non-oxida-
tive redox relay asymmetric Heck arylation of internal alkenes.® In these
reactions, the highly electron-deficient palladium catalyst undergoes
rapid B-H elimination/reinsertion (chain-walking) to an appropriate
terminating group (e.g, an alcohol). Complementing such chain-walk-
ing Heck systems with those that preserve the alkene in a precise geo-
metric relationship to the newly installed aryl group would be desirable
in situations where the alkene is required in the resulting product. In
parallel to this study, Shenvi reported an intermolecular Heck coupling
that can direct arylation of electronically unbiased tri- and tetra-substi-
tuted alkenes and establish quaternary carbons while migrating the ole-
fin only one position and not into conjugation with the carboxylic acid
directing group as is common in redox-relay Heck reactions.'

RESULTS AND DISCUSSION

Directing Group and Reaction Optimization. The investigation
commenced by testing a series of potential directing groups for their
ability to promote a classically challenging oxidative Heck reaction with
a 1,2-substituted alkene. We focused on thioether-based directing
groups (I) due to on their ease of installation via nucleophilic substitu-
tion chemistry, ability to be productively removed in a variety of prepar-
atively useful reactions (e.g, Julia olefination), and established effective-
ness as directing groups in palladium complex formation'' and cataly-

sis.12
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57 selected for further investigation.
58
59
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Scope of Oxidative Heck Reaction. We proceeded to investigate
the substrate and coupling partner scope of this directed oxidative Heck
reaction (Scheme 2). Arylboronic acids with a variety of functional
groups, including electron-withdrawing and electron-donating moie-
ties, reacted under the standard conditions to give products 2a-k in
high yields. Heteroarylboronic acids also gave the corresponding prod-
ucts 2l-p in reasonable yields. Notably, (E)-(3-phenylprop-1-en-1-
yl)boronic acid provided product in reasonable yield; however both
(E)- and (Z)-isomers, 2p, were formed in a 3:2 ratio. Two representa-
tive alkylboronic acids, methylboronic acid and neopentylboronic acid,
were tested, but unfortunately these were not competent coupling part-
ners in the reaction.

Next, we moved on to probe the alkene scope (Scheme 2). We found
that alkyl branching was tolerated at both the a- and p-positions, as ex-
emplified by products 4a and 4b, which were formed in nearly quanti-
tative yields. We next tested a substrate containing an intervening alco-
hol, which is an established terminating group in Heck chain-walking
processes. Nevertheless, in this case we observed that product 4c, with
the alcohol intact, was formed in high yield. The fact that the corre-
sponding ketone product is not formed in this case demonstrates that
the alternative endo-p-H elimination pathway from the putative pal-
ladacycle intermediate is disfavored. Furthermore, 1,1-disubstituted al-
kenes were found to be tolerated, allowing for formation of 4d in mod-
erately high yield and 4e, a derivative of the natural product isopulegol,
in high yield. As observed in the directing group optimization table (Ta-
ble 1), both E- and Z-configured 1,2-disubstituted alkenes gave high
yield of the desired products (E)-II and (Z)-II, respectively, and im-
portantly in both cases, the products were obtained as single alkene ste-
reoisomers. With (E)-I as arepresentative internal alkene, other aryl bo-
ronic acids were tested, and it was found that an electron-rich aryl group
led to higher reactivity compared to an electron-poor aryl group (vide
infra). In the case of the p-CF;-substituted example, a 3:1 ratio of con-
jugated to non-conjugated products was obtained, suggesting that the
identity of the aryl group can influence the energy barriers for competi-
tive p-H elimination pathways following migratory insertion—at least
to some extent. A series of other internal alkenes bearing different linear
alkyl chains were tested (4h-4j) along with examples containing an ad-
ditional functional group potentially capable of coordinating the cata-
lyst or perturbing the electron properties of the alkene (4k-4m), and in
all cases moderate to high yield of the desired, conjugated product was
observed. Different tether lengths were also examined, and it was found
that both 7,8- and §,e-unsaturated alkenes (4n and 40) are competent
in this system. No reaction was observed with the corresponding allylic
substrate. Across this series of substrates, preference for aryl addition to
the alkenyl carbon atom distal from the (BT)S group is consistent with
the notion that the (BT)S group is coordinated during migratory inser-
tion. Although some exceptions exist,>** directed Heck-type reac-
tions typically favor formation of the regioisomer arising from a transi-
tion state where the migrating aryl or alkenyl group is exo-cyclic to in-

cipient palladacycle,'#5-*

even with internal non-conjugated al-
kenes, 1 likely due to minimization of strain compared to the alter-

native possibility with the aryl group in an endo-cyclic orientation.

Tri- and tetra-substituted olefins (3p-3r) were also examined
(Scheme 3). In these cases complex product mixtures were typically ob-
tained, indicating that these substrate classes are generally incompatible
with this method, likely due to increased steric hindrance and due to a
greater number of possible side reactions.'® With tetrasubstitued sub-
strate 3p, the formation of products 4r and 4s suggests that positional
isomerization of the alkene takes place under the reaction conditions
with this substrate. One interpretation of this result is that in cases
where migratory insertion is sluggish due to steric hindrance, other off-
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Figure 1. (A) Same-excess experiments with and without product.
(B) Different-excess experiments of starting material, phenylboronic
acid, and benzoquinone. “Due to the consumption of 1 equivalent of
Benzoquinone per turnover, reactions were set up with Pd(OAc)2 (2.5
mM) and with (E)-I (variable), 111, BQ, and (E)-II (for same-excess
3) corresponding to the expected amounts at time = 80 min for the
standard reaction in DMSO (2.0 mL), at 45 °C, and in air. *Reaction
conditions: (E)-I (variable), III (variable), Benzoquinone (variable),
Pd(OAc); (variable), DMSO (2.0 mL), 45 °C, air.

cycle pathways can predominate. With substrates 3p and 3r, the re-
quirement to undergo B-hydride elimination in an endo-fashion (to-
wards the directing group and within the palladacycle) rather than the
preferred exo-fashion is also likely a contributing factor to low yields.
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With alkene 3q, the product distribution suggests that the migratory in-
sertion step was selective, but that subsequent p-H elimination was un-
selective. Of the three tri/tetrasubstitued alkenes tested, 3r offered the
highest selectivity. In this case, product 4w containing a quaternary car-
bon was formed as the main product along with regioisomer 4xin a S:1
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Ba (BT)S/W[Ph
DMSO, 45 °C

BTSN + Ph-B(OH),

Me
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10 mol% 50 mM 70 mM 75 mM 5.00 mM
7.5 mol% 50 mM 70 mM 7S mM 3.7S mM
S mol% 50 mM 70 mM 75 mM 2.50 mM
4 mol% 50 mM 70 mM 7S mM 2.00 mM
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40
35 m 10 mol%
]
= 30 s " A A7.Smol%
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\E/ 20 u A A o+ Smol%
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° M X 8=
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Figure 2. Reaction conditions (E)-I (50 mM), III-1 (70 mM), Ben-
zoquinone (75 mM), Pd(OAc). (variable), DMSO (2.0 mL), 45 °C,
air.
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Figure 3. Reaction conditions (E)-I (50 mM), III-1-3 (70 mM),
Benzoquinone (75 mM), Pd(OAc): (S mol%), DMSO (2.0 mL), 45
°C, air.
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ratio and 49% combined yield.

Reaction Progress Kinetic Analysis (RPKA). The high regio- and
stereo selectivity of this method with diverse 1,2-disubstituted alkenes
prompted us to delve into the reaction mechanism by combining reac-
tion kinetics and computational studies. First, to elucidate the kinetic

possible monodentate coordination modes
Pd"

r\f N, N IPd”
Co-, OO 0
S R S R S R

pd!
possible bidentate coordination modes

Pg"
NT | NG R
\ \
>, >
S R S<pgi

Scheme 4. Potential Binding Modes of Pd"to (BT)S Group
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Scheme 6. Relative energies of Possible Intermediates in the Ox-
idative Heck Reaction®

“Relative free energies of the intermediates of the catalytic cycle

a) before and b) after migratory insertion.
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features of catalytic process, we performed reaction progress kinetic
analysis (RPKA)'* using representative (E)- and (Z)-alkene substrates.
Insights for both substrate types were generally mutually consistent, so
the ensuing analysis focuses on the (E) substrate, and information re-
garding the (Z)-alkene substrate can be found in the SI. Regarding gen-
eral kinetic behavior, we noted that the reaction appears to contain two
regimes: one that is operative until 35-50% conversion is reached (rep-
resenting approximately the first 60 min for the reaction with the (E)-
alkene and 30 min for the reaction with the (Z)-alkene under standard
conditions), and a second regime from that point forward where the re-
action proceeds more slowly. This could arise from several different

+
AGpmso SW/
(AHpmso) N,
kcal/mol

INT2

migratory insertion

root causes, including uncharacterized catalyst deactivation processes.
Though both regimes are valuable to understand, we focused our atten-
tion on this initial stage of the reaction, as it is more likely to reflect the
intrinsic kinetics before other off-cycle processes predominate.

First, we performed a “same-excess” experiment, which simulates en-
tering the catalytic cycle after multiple catalyst turnovers in order to
probe for catalyst activation or deactivation pathways (Figure 1A). The
time-adjusted same-excess experiment without added product was ob-
served to proceed at a faster rate than the standard reaction, pointing to
possible catalyst deactivation or product inhibition. Results were similar

INT2 Acg P

INT3
p-H elimination

Figure 4. Computed energy profile for migratory insertion and p-hydride elimination steps.

TS1
AG* =14.3 kcal/mol

TS$1

TS2_E
AG* = 15.7 kcal/mol

Figure S. Computed transition states for migratory insertion (left) and B-hydride elimination (right) steps.
ACS Paragon Plus Environment
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Figure 6. Deuterated starting material experiment for the directed oxi-
dative Heck reaction. Reaction conditions (E)-I or (E)-I-d> (50 mM),
III-1(70 mM), Benzoquinone (7S mM), Pd(OAc). (S mol%), DMSO
(2.0mL), 45 °C, air.

BQ(H,) ArB(OH),
[Pd"]
BQ re- trans- B(OH)3
oxidation metalation
[Pd Ly-Pd'(Ar)
Pd-A
S(BT)
HX reductive elimination substrate coordination (%\
R
X-
S,
>$N\ X
LpePd'-H d Pd'ar

Pd-D -
p-H migratory =R
S
o
R d Pd"
BTSNy, WAr
Pd-c R
Scheme 7. (BT)S-directed Oxidative Heck Catalytic Cycle

with added product, suggesting that the catalyst is being deactivated
through off-cycle processes. Catalyst deactivation in this reaction can
take place if Pd(0) is not efficiently reoxidized, enabling precipitation of
palladium black.

Next, driving forces were determined through a series of “different-
excess” experiments (Figure 1B). We first varied catalyst concentration
and found that the reaction rates increased at higher catalyst concentra-
tion. Visualizing the data using the Burés method (Figure 2)** with an
x-axis that is normalized by catalyst concentration reveals that the reac-
tion is first-order in [Pd]. We then examined the effect of changing the
concentration of others reaction components, namely decreased alkene
concentration [(E)-I] (different-excess [(E)-I]), decreased phenyl-
boronic acid concentration [III] (different-excess [I1I]), and decreased
benzoquinone concentration [BQ] (different-excess [BQ]). Overlay
between the standard reaction and the different-excess BQ experiment
throughout the time course is consistent with apparent zero-order

ACS Catalysis

kinetics in [BQ]. The different-excess (E)-I and different-excess [111]
experiments overlay reasonably well with the standard reaction at <30%
conversion (first 30 min) and then deviate as the limiting reagents are
consumed. This indicates apparent zero-order kinetics in [(E)-I] and
[IIT] early in the reaction. First-order kinetics in [Pd] combined with
zero-order kinetics in [(E)-I], [II1], and [BQ], rule out substrate bind-
ing, transmetalation, and reoxidation, respectively as possible turnover-
limiting steps, pointing to either migratory insertion of a substrate-
bound [Pd(IT)-Ar] species or B-H elimination as possible turnover-lim-
iting steps. As mentioned above, electron-rich arylboronic acids were
found to be more reactive (Figure 3). To quantify this trend, we meas-
ured initial rates of the three representative arylboronic acids with p-
CF;, -H, and -OMe groups and found ke values of 1:3:8 across this se-
ries. This result does not necessarily allow one to disambiguate between
the two mechanistic possibilities described above, as migratory inser-
tion and B-H elimination could both potentially be facilitated by an elec-
tron-rich aryl group due to a more nucleophilic [Pd(II)-Ar] species and
a more hydridic C-H bond, respectively. Since the turnover-limiting
step cannot be distinguished based on the available rate dependencies,
we next turned to complementary techniques to gain insight on these
steps and other aspects of the catalytic cycle.

Directing Group Coordination. The results in Table 1 revealed the
structural features that are required for a suitable directing group,
demonstrating the importance of the embedded benzo-fused methyli-
dene dithioacetal motif in J and K. Nevertheless, K ((BT)S) also posses
an N(sp?) capable of coordinating the palladium catalyst, complicating
the potential coordination chemistry involved, which we sought to elu-
cidate through crystallography and computation studies. Several differ-
ent mono- and bidentate binding modes can be envisioned (Scheme 4),
and to probe this, we first attempted to synthesize various palladium
complexes of potential relevance to catalysis. Indeed, we were able to
obtain a representative product-bound palladium species by combining
2a and Pd(tfa). The resulting 2:1 complex, Pd-1, was amenable to
characterization by X-ray crystallography, and in the structure, the
(BT)S directing group is coordinated in a monodentate fashion
through the nitrogen atom, consistent with earlier literature precedents
(Scheme $).!6 In this case the alkene was not bound to the palladium
center. The same monodentate nitrogen binding mode was also later
observed with a representative starting material-palladium complex for
arelated C—H activation reaction (vide infra).

DFT Calculations. Next, we performed density functional theory
(DFT) calculations to further probe key aspects of the reaction mecha-
nism. First, the possible monodentate coordination modes were evalu-
ated using 1 as the model substrate. Geometry optimizations were per-
formed on the intermediates of the proposed catalytic cycle at the mi-
gratory insertion step. Three coordination modes were investigated, i.e.
coordination through N (INT1_N and INT2 N), coordination
through S of the heterocycle (INT1_S, INT2_S) and coordination
through S outside the heterocycle (INT1_S’, INT2_S’). The N-coor-
dinated intermediates were lowest in energy, followed by the S(proxi-
mal)-coordinated intermediates (Scheme 6). The S(distal)-coordi-
nated intermediates were highest in energy. These trends also held in
the corresponding transition state energies for the migratory insertion
step (see Figure S19 in the SI).

One explanation that reconciles these results with the observation
that both directing groups J and K ((BT)S) are similarly effective (Ta-
ble 1) is that the catalytic reaction can take place with the directing
group bound either through the proximal-S atom or through the N-
atom. With BT(S), the latter pathway is computationally predicted to
be lower-energy, though the former is also energetically accessible. The
S(proximal)-coordinated pathway is likely to be operative in cases such
as J, where the N-atom is absent.

ACS Paragon Plus Environment



oNOYTULT D WN =

ACS Catalysis

Probing the Turnover-Limiting Step. As experimental mechanistic
investigations revealed the rate determining step to be either migratory
insertion or B-hydride elimination, DFT calculations were performed to
locate the transition states to determine the energetics of these two
steps. A truncated (E) internal alkene was used as the model substrate
to minimize computational time. The energy profile is shown in Figure
4. The syn-migratory insertion step (TS1) has an activation free energy
barrier of 14.3 kcal/mol with respect to the m-alkene complex INTI.
The subsequent B-hydride elimination step has a higher activation en-
ergy barrier of 15.7 kcal/mol (TS2) indicating that the B-hydride elim-
ination is the turnover-limiting step. The optimized structures of TS1
and TS2 are shown in Figure S. The weaker coordination of the (BT)S
group is evidenced by the longer Pd N distances of the transition states
atboth migratory insertion (2.18 A) and f-hydride elimination (2.22 A)
steps. Shorter Pd N distances have been reported for transition states
with strongly coordinating directing groups such as 8-aminoquinoline
and 2-pyridyl-8-aminoquinoline (2.02-2.08 A).3%'” The energy profile
for the migratory insertion and B-hydride elimination was also calcu-
lated for the terminal alkene, 1 (see SI; Figure S17 and S18). The calcu-
lations revealed that the formation of the E-isomer is kinetically favored
at the rate- and stereoselectivity-determining step, f-hydride elimina-
tion, consistent with experimental selectivity (see SI).

With the computational data suggesting that f-hydride elimination is

containing deuterated ((E)-II-d;) and non-deuterated ((E)-II) alkenyl
positions (Figure 6). By monitoring desired product formation over the
initial 45 min, we indeed found a primary KIE, ku/ko = 2.0. Addition-
ally, we found that with the deuterated substrate the product distribu-
tion was not as clean, potentially due to other pathways (such as p-H
elimination at other positions) being kinetically competitive when the
typically favored B-H is replaced with a deuterium. Overall, the experi-
mental and computational results are consistent with p-H elimination
as the turnover-limiting step.

By combining the insights gathered from both DFT calculations and
the kinetics experiments, we propose the general catalytic cycle as
shown in Scheme 7. For simplicity, only the N-bound intermediates are
shown, although as mentioned above S(proximal)-bound intermediates
are also energetically accessible and could be active participants in the
catalytic cycle. The reaction begins with substrate binding and
transmetallation steps (in either potential order) to give intermediate
Pd-B. Following this, a syn-migratory insertion gives the palladacycle
Pd-C. Product is then generated via p-H elimination giving the Pd-hy-
dride species Pd-D, which can undergo reductive elimination and reox-
idation with BQ to provide the Pd(II) species required for turnover.

C(aryl)-H Olefination Background. Having established the effi-
cacy of the (BT)S directing group in oxidative Heck chemistry, we were
interested in exploring its utility in other palladium(II)-catalyzed reac-

Pd(OAc), (10 mol%)
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+ R2 2 g
1]\ S)\S \/\Ra AGOAC (3 ). BQ (05 ] o4 O R3
R+ S(BT) gOAc (3 equiv), (0.5 equiv) 6a_ab R2
a 4A MS, DMSO (7 equiv) a-ab R
5a-n (1.2 equiv) t-AmylOH (0.1 M), 75 °C, 6 h

arene substrate scope
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Scheme 8. Scope for (BT)S-directed C-H Functionalization*®

“Reaction conditions: Sa—aa (0.10 mmol), Alkene (1.2 equiv), AgOAc (3 equiv) Benzoquinone (0.5 equiv), Pd(OAc)2 (10 mol%), tAmylOH (1
mL), Boc-L-phenylalanine (0.2 equiv), DMSO (7 equiv), 4A molecular sieves, 75 °C, air, 6 h. Percentages refer to isolated yields. *110 °C,
nBusNPFs (2 equiv), 2h. ‘Alkene (2.2 equiv). “Ratio of mono-, mono’-, and bis-olefinated products, respectively, with the major product depicted.

Mono- and mono’-olefinated products isolated as a mixture. ‘Ratio of mono- and bis-olefinated product, respectively, with the major product de-

picted. ‘Alkene (2.2 equiv), 24h. £24h. "Alkene (2.2 equiv), 24 h.

the turnover-limiting step, we next examined whether there was a ki-
netic isotope (KIE) in the rates between a representative substrate

tions involving distinct elementary steps. Specifically, we were attracted
to directed ortho-C—H olefination (Fujiwara-Moritani-type coupling)
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since the use of a versatile “masked olefin” directing group could allow
rapid access to anumber of conjugated natural products and materials.'®
Weakly coordinating directing groups, including those distal to the C—
H bond of interest, have provided a valuable solution in many arene C—
H functionalization reactions catalyzed by palladium, including
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Figure 7. (A) Same-excess experiment. (B) Different-excess experi-
ments of starting material and ethyl acrylate. “Due to secondary reaction
of ethyl acrylate, same-excess 1 and 2 were set up with amounts of ¢, 7,
6¢,6¢’,BQ (0.375 M), and AgOAc (2.250 M) to equal the amounts ob-
served by qNMR at time = 45 min for the standard reaction (see Figure
S16 in SI)."Reaction conditions unless otherwise stated: Sc (variable),
7 (variable), AgOAc (3 equiv), Benzoquinone (0.5 equiv), Pd(OAc):
(10 mol%), tAmylOH (1 mL), Boc-L-phenylalanine (0.2 equiv),
DMSO (7 equiv), 4A molecular sieves, 75 °C, air.
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amination,” formation of lactams,” construction of dihydrobenzofu-
rans,”! jodination,”” and olefination.”> We were encouraged to see that
Zhang has shown the utility of using phenyl-, methyl-, and p-tolyl-thi-
oethers?* and the corresponding sulfoxides® for directed arene olefina-
tion, suggesting that the (BT)S directing group may provide a suitable
directing group and then be able to serve as a modified Julia olefin pre-
cursor for easy transformation to the desired alkene. Furthermore, Maiti
has developed an innovative sulfone directing group for meta-hydrox-
ylation, which can subsequently serve as a Julia olefination precursor,
and we hoped to provide a similar solution for ortho-C-H functionali-
zation.?®

C-H Functionalization Substrate Scope. After reexamining the di-
recting groups A-H and K-Q_in Table 1 under optimized MPAA-
accelerated C-H olefination reaction conditions,”” it was clear that
(BT)S again was suitable in its ability to successfully direct the desired
reaction (Table S13 in supporting information).

Therefore, we next examined the scope of the (BT)S-directed C-H
olefination reaction (Scheme 8). We were pleased to see that the elec-
tron-rich starting material Sa produced a nearly quantitative yield, and
electron-rich, electron-poor, and alkyl functional groups were tolerated
toyield 6b-h and 6k-n in moderate to high yields. The (BT)S directing
group can also promote ortho-olefination in polyaromatic ring systems,
such as naphthalene producing 6i-j in moderate yields. As expected, a
number of acrylates can be tolerated in this reaction to give 60—q and

cat. Pd"
@\/\DG L e ———> DG
H 9 (conditions) = Me
representative

a-olefin

= ;\Sip 2SI " s‘>§© )
e

S(BT)
yield: 38% no reaction no reaction
conditions: (as above) [Ref. 24] [Ref. 25]

Scheme 9. Unactivated Alkene Reactivity®

#(BT)S directed reaction run with the following conditions: starting
material (0.10 mmol), Alkene (1.2 equiv), AgOAc (3 equiv) Benzoqui-
none (0.5 equiv), Pd(OAc), (10 mol%), tAmylOH (1 mL), Boc-L-
phenylalanine (0.2 equiv), DMSO (7 equiv), 4A molecular sieves, 75
°C, air, 6 h; other reactions run both under above conditions and under
originally reported conditions.

s’k\
Neant
©/\S(BT) Pd(tfa), (0.5 equiv) | y_(;lz3
DCE, 45°C, 4 h FSC_{)_Pld'O
5c 2 N\)/S\/©

[X-ray]
Scheme 10. Crystal structureof Pd(tfa).o Sc complex
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6s-tin high yields. We were excited to see that this (BT)S-directed ole-
fination could also be expanded to other alkene classes such as acryla-
mide giving 6r and styrene giving 6u. Interestingly, methyl methacrylate
gave the non-conjugated product 6w, consistent with a mechanism in
which B-H elimination proceeds exo to the putative metalacycle in this
case. Other competent alkene coupling partners include phenyl vinyl
sulfone (6x), dodecene (6y), ethenesulfonyl fluoride (6z)%, and ethyl
crotonate (6aa).

Notably, 6y represents a somewhat unique product in directed arene
olefination, as the use of non-conjugated terminal alkenes remains
rare.”” Notably, the thioether** and sulfoxide®® directed reactions de-
signed by Zhang were replicated with similar yield as previously re-
ported for ethyl acrylate but yielded no product with dodecene showing
the unique characteristics of (BT)S (Scheme 9).

C-H Olefination RPKA. We decided to probe the catalytic cycle of
this reaction in an effort to better understand the role of (BT)S in di-
recting C-H olefination. To this end, same excess and different excess
experiments were performed using the simple, unsubstituted arene Sc
as a standard substrate.

Due to unique facets of this reaction, several experimental modifica-
tions were made compared to the standard same-excess and different-
excess protocols that are generally used. For both sets of data, starting
material concentration, [Sc], was plotted on the y-axis as opposed to
product because both 6¢c and 6¢” are formed in the reaction, with 6¢ pre-
sumably being formed from which a second catalytic cycle to install an
additional ethyl acrylate yields 6c’. Moreover, the presence of a

cat. [Pd]
CNt-Bu

NYS\/\%\Ph
S

v

(BT)S 2a H20,

(representative product)
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secondary reaction converting 6¢ to 6c” meant that the standard
method of assuming a one-to-one coupling (and hence consumption)
of starting material Sc and coupling reagent 7 for the design of the same-
excess experiment would not accurately reflect reaction conditions at 45
min. Therefore, values for Sc, 7, 6¢, and 6¢” as well as BQ were deter-
mined by gNMR at 45 min in the standard reaction, and those values
were used when designing the same-excess experiments (see Figure $16
in the Supporting Information). The amount of AgOAc was also low-
ered to appropriately reflect oxidant consumption for each presumed
cycle.

The same-excess data shows excellent overlay for the standard reac-
tion and same-excess 2, which mimics the standard reaction at 45 min
(Figure 7A). However, same-excess 1, which does not contain added
product, shows an accelerated rate. This qualitatively implies that the
decreased reaction rate is due to product inhibition rather than catalyst
deactivation. This result, in combination with the result from the differ-
ent-excess experiment discussed below, suggest a catalytic cycle in
which palladium coordinates strongly to the products 6c and 6c’, and,
due to this strong affinity, produces product 6¢” at a similar rate to the
rate of formation of product 6c at around 0.040M concentration of 6c.
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Scheme 11. Productive Removal and Transformation of the (BT)
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Scheme 12. Formal Synthesis of (+)-Salvianolic acid A and Salvianolic acid F

Regarding the different excess experiments, overlay between the
standard run and different-excess V shows a zero-order dependence in
[V] suggesting that ethyl acrylate is not involved in the turnover-limit-
ing step of this catalytic cycle (Figure 7B). Different-excess Sc has a re-
duced rate compared to the standard reaction, showing a positive-order
dependence in [Sc]. This result is potentially consistent with either ir-
reversible substrate binding between (BT)S and Pd or reversible sub-
strate binding followed by turnover-limiting C-H functionalization. We
favor the latter interpretation because substrate binding and dissocia-
tion is expected to be rapid. We were unable to detect the putative cy-
clopalladated intermediate under a variety of conditions, consistent
with the notion that C-H activation may be the slow step in catalysis.

Directing Group Coordination. Similar to our mechanistic studies
in the oxidative Heck reaction, we attempted to synthesize various com-
plexes relevant to catalysis, and in this case were able to successfully iso-
late a starting-material-bound palladium trifluoroacetate complex Pd-2,
which we could characterize by X-ray crystallography. As with the above
crystal for the oxidative Heck reaction, the complex shows coordination
of palladium through the nitrogen of the benzothiazole (Scheme 10).

Productive Removal and Transformation. Product 2a from the
oxidative Heck reaction was used as a model substrate for directing
group conversion and removal (Scheme 11). Moderate yield was ob-
served in a palladium-mediated isocyanide insertion, the product of
which was isolated as 8 after acidic workup.*® Fortunately, by treating
2a with ammonium molybdate tetrahydrate, the sulfone product 9
could be formed in quantitative yield with no apparent oxidation of the
olefin.*! Sulfone 9 can be subsequently modified through several meth-
ods. Treatment with sodium borohydride affords a nearly quantitative
yield of 10 containing the versatile sulfinic acid functional group.®> A
modified Julia olefination with vertraldehyde gave product 11 in 54%
isolated yield as the (E)-alkene.?* Sulfone 9 was also transformed to the
carboxylic ester 12 in high yield via treatment with ethyl cyanoformate
in the presence of LIHMDS and subsequent removal of the of the ben-
zothiazole-sulfone using Zn-dust from the isolated intermediate.** Oxi-
dation of 2a with mCPBA also gave high yield of sulfoxide 13. Succes-
sive treatment of 13 with ammonium acetate gave the sulfanone prod-
uct 14in 61% yield.* A representative C-H olefination product, 6c, was
also oxidized and subsequently transformed to the (E)-alkene 18 with
veratraldehyde in 78% isolated yield.

Synthetic Applications. To demonstrate the utility of the (BT)S di-
recting group in complex molecule synthesis, two natural products, sal-
vianolic acid F and (+)-salvianolic acid A were formally synthesized us-
ing the (BT)S-directed C—H olefination reaction as the key step follow-
ing a strategy inspired by the carbonyl directed synthesis by Xuan
(Scheme 12).* Through this approach, salvianolic acid F was

synthesized in S steps with a projected 19.2% overall yield from mercap-
tobenzothiazole, which represents the highest overall yield and lowest
step count synthesis yet published.”” (+)-Salvianolic acid A was also for-
mally synthesized in 9 steps overall in 14.1% projected yield with the
longest linear route being from the mercaptobenzothiazole represent-
ing 7 steps with a projected 16.6% yield. This synthesis of (+)-salvi-
anolic acid A has a similar step-count and slightly elevated yield com-
pared to the most recent, highest yielding synthesis yet published.3¢

CONCLUSION

In conclusion, we have demonstrated the utility of a new weakly-co-
ordinating heteroaryl thioether directing group, (BT)S, that can facili-
tate catalytic transformations that require conformational flexibility for
integral steps, such as p-hydride elimination (Scheme 13). This new di-
recting group, which can be readily introduced by nucleophilic substi-
tution of a hydroxyl or bromo functional group, serves as a versatile
functional group for downstream manipulation. We probed each of the
two reactions by performing RPKA and DFT, which helped to elucidate
aspects of the mechanism for both catalytic cycles. We also demon-
strated the utility of the (BT)S directing group by achieving high overall
yields in the synthesis of two natural products.

SYSMR cat. Pd" R
N Ar-BOM: <BT>S\/\)\N
(BT)S [Q]
l —PdOT—HOAc
+ t
S /N; OAc S ,N; OAc S ,; OAc
\F{‘d" — >’ \Iéd” — ‘Pld”
S ' Ar S S ' H
“R R A
H H HH R
selective C-C bond selective
migratory insertion rotation S-H elimination

Scheme 13. Illustration of the Selectivity of (BT)S
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selectivity controlled by weakly coordinating (BT)S directing group
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