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ABSTRACT: Catalytic amounts of B(C6F5)3 have been found to be able to promote the intramolecular cyclization of vinyl-substi-
tuted N,N-dialkyl arylamines to afford nitrogen-containing heterocycles. Our mechanistic studies indicate the reaction is initiated by 
abstraction of an α-hydride from an N-alkyl substituent by B(C6F5)3, which is followed by cyclization, and is concluded by delivery 
of the hydride to the cyclic cationic intermediate. The dual roles of B(C6F5)3, first as an oxidant and then as a hydride-carrying 
reductant, have enabled a rare redox-neutral cyclization process between a sp3 carbon and an electron-rich olefin without using a 
transition metal or an external oxidant. 
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Studies of C–H functionalization reactions have attracted tre-
mendous attention due to their fast and convenient access to 
new carbon-carbon and carbon-heteroatom bonds with selective 
disconnection of ubiquitous carbon-hydrogen bonds.1 To acti-
vate the α-C–H bonds adjacent to a nitrogen atom in particular, 
common methods include 1) lithiation followed by addition 
with an electrophile,2 2) oxidation to generate an iminium ion 
that is subsequently trapped by nucleophiles,3 3) transition 
metal-catalyzed C–H activation reactions,4,5 and 4) carbene in-
sertions6 (Scheme 1a). These methods require the use of either 
stoichiometric amounts of an organometallic reagent or an oxi-
dant, or catalytic amounts of a transition metal with a tailor-
made ligand. Alternatively, the hydride-transfer-induced intra-
molecular cyclization reactions have been found effective in 
constructing various cyclic and heterocyclic scaffolds via direct 
activation of α-C–H bonds (Scheme 1b).7 These reactions rely 
on the use of starting materials having both a good hydride do-
nor (e.g. α-C–H bonds) and a good hydride acceptor (e.g. alde-
hydes, imines, and α,β-unsaturated carbonyls) so that a hydride 
transfer from the donor to the acceptor will initiate the cycliza-
tion process. The high energy barrier for the hydride transfer is 
the primary challenge for the reactivity. To improve the reac-
tivity, Lewis acids or Brønsted acids were often added to in-
crease the electrophilicity of acceptors by coordination. Despite 
this, these cyclization reactions are still limited in substrate 
scope, and starting materials without an acceptor group are nor-
mally unreactive.   

During the past decade, the versatile reactivities of B(C6F5)3 
with small molecules have been utilized to develop a myriad of 
catalytic organic reactions.8 Among them, hydrogenations,9 

hydrosilylations,10 transfer hydrogenations,11 and transfer 
hydrosilylations12 have been extensively studied. However, a 
known reactivity of B(C6F5)3, that is its capability to abstract a 
hydride from α-carbons of an amine to generate an iminium ion 
and a borohydride,13 has rarely been studied for a catalytic  

Scheme 1. C–H functionalizations of α-C–H bonds adjacent 
to a nitrogen atom. 

 
reaction, and the existing examples have been confined to 
transfer hydrogenation reactions using amines as a hydride 
donor,11a dehydrogenation reactions of heterocycles14 and 
intermolecular coupling reactions15 between tertiary amines and 
electron-deficient olefins. Recently, we questioned whether this 
reactivity could be utilized in promoting hydride-transfer-
induced cyclization reactions. Specifically, we hypothesized 

Page 1 of 6

ACS Paragon Plus Environment

ACS Catalysis

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

that B(C6F5)3 could function as an transient hydride acceptor so 
that the requirement of having an acceptor group in a starting 
material could be obviated. Herein, we report that B(C6F5)3 is 
able to function as a transient acceptor in the cyclization 
reactions of vinyl-substituted N,N-dialkyl arylamines (Scheme 
1c). Our mechanistic studies indicate the conventional two-step 
mechanism in a hydride-transfer-induced cyclization reaction 
has been broken down into three steps: borane-mediated 
hydride abstraction, cyclization, and rebound of hydride from 
B(C6F5)3. Notably, when our paper was under review, the 
Paradies group reported a similar cyclization process using an-
other group of vinyl-substituted N,N-dialkyl arylamines.16 In 
their report, the hydride abstraction occurs at a secondary N-
alkyl group so that the obtained products contain tetrasubsti-
tuted stereocenters. And, N-methyl was unreactive under their 
reaction conditions.  

We commenced the study by testing styryl-substituted N,N-
dimethyl-1-naphthylamine S1 as the starting material (Table 1). 
Conventionally, S1 is unreactive for cyclization due to the lack 
of an acceptor group. The absence of any cyclization product 
after reacting S1 in toluene at 80 °C for 48 h proved its poor 
reactivity (entry 1). Encouragingly, in the presence of 10 mol% 
of B(C6F5)3, the desired cyclization occurred, giving product P1 
in 72% yield (entry 2). Less Lewis acidic triarylboranes, 
including B(p-C6F4H)3, B(2,6-F2C6H3)3 and BPh3, were found 
less active or inactive (entries 3–5). After an extensive 
optimization, we discovered that the addition of a silyl triflate 
as an addtive could influence the reactivity. The addition of 20 
mol% of TMSOTf improved the yield to 88% (entry 6) while 
the addition of bulkier Lewis acids, such as TESOTf and 
TBSOTf, decreased the yields (entries 7 and 8). On the contrary, 
the addition of TMSCl or TESCl as an additive had no obvious 
influence on the reactivity (entries 9 and 10). Without B(C6F5)3, 
TMSOTf itself was unable to promote the reaction probably 
because of its relatively weak Lewis acidity (entry 11). Various 
solvents were next evaluated (entries 12–16), but toluene still 
gave the highest yield. We then tested several commonly used 
Lewis acids as a substitute for B(C6F5)3, including BF3•OEt2, 
Sc(OTf)3, Zn(OTf)2 and FeCl3, but these Lewis acids were 
found to be inactive (entries 17–20). 

Table 1. Optimization of the reaction conditionsa 

 
entry Lewis acid additive solvent yield (%)b 

1 none none toluene n. d. 

2 B(C6F5)3 none toluene 72 

3 B(p-C6F4H)3 none toluene 51 

4 B(2,6-F2C6H3)3 none toluene n. d. 

5 BPh3 none toluene n. d. 

6 B(C6F5)3 TMSOTf toluene 88 

7 B(C6F5)3 TESOTf toluene 70 

8 B(C6F5)3 TBSOTf toluene 42 

9 B(C6F5)3 TMSCl toluene 74 

10 B(C6F5)3 TESCl toluene 75 

11 none TMSOTf toluene n. d. 

12 B(C6F5)3 TMSOTf p-xylene 75 

13 B(C6F5)3 TMSOTf PhCF3 31 

14 B(C6F5)3 TMSOTf DCE 40 

15 B(C6F5)3 TMSOTf 1,2-Cl2C6H4 34 

16 B(C6F5)3 TMSOTf THF 4 

17 BF3•OEt2 TMSOTf toluene n. d. 

18 Sc(OTf)3 TMSOTf toluene n. d. 

19 Zn(OTf)2 TMSOTf toluene n. d. 

20 FeCl3 TMSOTf toluene n. d. 

a Unless otherwise specified, all reactions were performed in 0.5 
mL toluene with 0.2 mmol S1 under N2. b Isolated yield; n. d. = not 
detected. 

With the optimal conditions in hands, we began to investigate 
the scope of this cyclization reaction (Table 2). Various aryl 
groups on the olefin was first examined. Alkyl (P2), halo (P3 
and P4) and Bpin (P5) at the para position of a phenyl ring were 
tolerated, giving the desired products in 75–86% yields. Meta-
substituted (P6 and P7), ortho-substituted (P8) phenyls  and 2-
naphthyl (P9) were also compatible. Changing the aryl group to 
an alkyl group, such as methyl (P10), npropyl (P11), isopropyl 
(P12), cyclohexyl (P13) and benzyl (P14), was feasible; the 
desired products were obtained in 55–67% yields. We 
subsequently tested sterically encumbered tri-substituted 
olefins. Gratifyingly, these substrates underwent cyclization 
with exclusive formation of the cis products (P15–P17) in 84–
86% yields. Interestingly, with a starting material having a 
conjugated diene (S18), double bond migration occurred after 
cyclization, affording P18 in 69% yield. Moreover, a starting 

Table 2. Investigation of vinyl-substituted N,N-dialkyl ar-
ylaminesa 

toluene, 80 oC, 48 h
R3

N
R1 R1

N
R1

B(C6F5)3 (10 mol%)
TMSOTf (20 mol%)

N

R3

N

R

R = H (P1), 88%
R = Et (P2), 75%
R = Cl (P3), 81%
R = Br (P4), 86%
R = Bpin (P5), 78%b

N

P6, 68%

N Cl

P8, 41%b

N

2-nap

P9, 74%b

N

Me

N

nPr

N N

Ph

N

N NN

N

P10, 67%b P11, 66%b

P12, 60%b P13, 66%b P14, 55%b P15, 86%b

P17, 84%cP16, 85%b P18, 69%b

P23, 87%

Me

N

F

N

Ph

P22, 33%b

P7, 81%

R2 R2

S1-S23 P1-P23

N
Ph

P19, 38%d

H

R4

N
CH3(CH2)4

nBu

P20, 94%e

N
Bn

Ph

Ph Me

P21, 97% (14:1)f  
a Unless otherwise specified, all reactions were performed in 0.5 
mL toluene with 0.2 mmol substrate under N2; Isolated yields were 
reported. b Reaction temperature, 120 °C. c Reaction temperature, 
100 °C. d Reaction temperature, 140 °C; reaction solvent, p-xylene. 
e Reaction temperature, 25 °C.  f Reaction temperature, 40 °C; 14:1 
is the ratio of cis/trans. 
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material having a phenyl group at the distal carbon of the olefin 
underwent a cyclization/dehydrogenation reaction to give P19 
in 38% yield. Changing the N-alkyl group from methyl to 
npentyl (P20) and benzyl (P21)17 was feasible. However, 
changing the naphthylamine to an aniline significantly 
decreased the reactivity; product P22 was obtained in only 33% 
yield. On the contrary, a pyrenamine-derived substrate was 
highly reactive, giving the corresponding product (P23) in 87% 
yield. 

We reasoned that the decreased reactivity of the N,N-dime-
thylaniline (P22) compared with those N,N-dimethylnaphthyla-
mines might be due to the diminished steric hindrance around 
the nitrogen atom, resulting in undesired acid/base coordination. 
Therefore, in order to improve the reactivity, we changed the N 
alkyl substituent from methyl to benzyl to increase steric bulk 
around the nitrogen atom and simultaneously to provide more 
stabilization to the iminium ion by conjugation. To our delight, 
N,N-dibenzylanilines were significantly more reactive (Table 3). 
Anilines with various phenyls at the proximal carbon of the ole-
fin were tolerated, providing products P24–P33 in 54–95% 
yields with good stereocontrol in favor of the cis configuration. 
Notably, in the reaction of S31, a separate olefin group was pre-
served (P31) without undergoing an intermolecular Friedel-
Crafts reaction; and in the reaction of S32, a coordinative MeS 
group did not inhibit the reaction. Furthermore, 2-naphthyl (P34) 
and heterocyclic aryls (P35 and P36) were compatible substit-
uents. Various substituents on the aniline ring were also tested. 
The presence of para (P37–P39), ortho (P40, P41) and meta 
(P42, P43) substituents was allowed, giving the cyclization 
products in 48–81% yields. A staring material with a fused car-
bocyclic structure was reactive, giving P44 in 38% yield. More-
over, same as the reaction with P18, the double bond migration 
occurred with a substrate having a conjugated diene, generating 
P45 in 51% yield and 1.7:1 diastereomeric ratio. An N-benzyl-
N-methylaniline underwent cyclization selectively at the benzyl 
side, giving P46 in 75% yield with the trans isomer as the major 
diastereomer.18   

We then investigated the reaction mechanism by several con-
trol experiments (Scheme 2). Firstly, we subjected the deuter-
ium-labelled N,N-dimethylnaphthylamine S1-[D6] to the stand-
ard reaction conditions (Scheme 2a), the corresponding product 
was obtained in 46% yield with deuterium exclusively trans-
ferred to the benzylic position, which is consistent with the pro-
posed mechanism shown in Scheme 1c. The significantly di-
minished yield compared to the reaction of non-deuterated S1 
is indicative of a large kinetic isotope effect, which suggests that 
either the hydride abstraction from α-carbons or the hydride ad-
dition to cyclic benzylic cations is probably the rate-determin-
ing step. To look into the details, we performed two crossover 
experiments. One experiment was done by subjecting a 1:1 mix-
ture of S10 and S1-[D6] to the reaction conditions (Scheme 2b). 
It was observed that significant exchange of H/D occurred at α-
carbons and benzylic carbons in the obtained cyclization prod-
ucts. This result suggests that the hydride abstraction is reversi-
ble, and the resulting borohydrides are not confined to their par-
ent ion pairs and would freely react with iminium ions and cy-
clic benzylic cations produced from other molecules. Moreover, 
the ratios of H to D at α-carbons of these products were close to 
1, but the ratios of H to D at benzylic carbons were relatively 
large. Therefore, the hydride abstraction and its reverse reaction 
should be relatively facile while the hydride addition to cyclic 
benzylic cations is highly possibly the rate-determining step. 

We subsequently performed a similar crossover experiment us-
ing S1 and S1-[D6] with a shortened reaction time of 2 h 
(Scheme 2c). At low conversions, the ratio of H to D at the ben-
zylic carbon was 77:23, giving an approximate KIE value of 
3.35, which is in agreement with the hydride addition as the 
rate-determining step.19 

Table 3. Investigation of vinyl-substituted N,N-dibenzylani-
linesa 

 
a Unless otherwise specified, all reactions were performed in 1.0 
mL toluene with 0.2 mmol substrate under N2; Isolated yields were 
reported; cis/trans ratios were given in parentheses.  b 2.0 mL tolu-
ene was used. c Reaction temperature, 60 °C.  d Reaction time, 24 
h. e Reaction temperature, 90 °C. f Reaction temperature, 40 °C. g 
Solvent, p-xylene; reaction temperature, 140 °C; trans/cis = 3.0:1. 
 
Scheme 2. Control Experiments 

  
The role of TMSOTf was then studied. We monitored both 

reactions of S1 with and without the addition of TMSOTf (20 
mol%) for the first two hours using 1H NMR, and the yield of 
P1 was plotted against the reaction time (Figure 1a). The graph 
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indicates that the reactivity enhancement by TMSOTf is obvi-
ous. We hypothesized that the hydride exchange between the 
borohydride anion [B(C6F5)3–H]– and TMSOTf might occur to 
generate small amounts of a pentacoordinate anion 
[Me3Si(OTf)H]–,20 which is a better hydride donor than 
[B(C6F5)3–H]– because of the weaker Lewis acidity of TMSOTf, 
so that the rate-determining hydride addition to the cyclic ben-
zylic cation would be facilitated.21 To gain experimental 
evidence, we firstly prepared [B(C6F5)3–H]– by reacting Et2NPh 
with B(C6F5)3,22 whose 11B NMR spectrum gave a characteristic 
doublet signal at δ -23.4 (d, J = 77.5 Hz) due to B–H coupling. 
After the addition of 1 equiv. of TMSOTf, this signal became a 
broad singlet, indicating the hydride exchange between 
[B(C6F5)3-H]– and TMSOTf might have occurred (Figure 1b). 

 

Figure 1. (a) Yield of P1 versus reaction time for reactions with 
(red) and without (blue) TMSOTf, (b) 11B NMR spectra (128 MHz, 
25 ºC, C6D6) of [B(C6F5)3-H]– before (left) and after (right) the 
addition of TMSOTf. 

In summary, we have developed a B(C6F5)3-catalyzed 
hydride-transfer-induced cyclization reaction of vinyl-
substituted N,N-dialkyl arylamines. The use of B(C6F5)3 as a 
transient hydride acceptor has enabled the cyclization of 
substrates without an acceptor unit. Moreover, this protocol 
features broad substrate scope and provides easy acess to 
various synthetically useful N-heterocyles. Further studies 
aiming at extending the reaction to other hydride donors (e.g. α-
C–H bonds adjacent to an oxygen atom) as well as developing 
enantioselective variant using a chiral borane catalyst are under 
way in our laboratory.  
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