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ABSTRACT: A metal-free [2 + 2 + 2] cycloaddition of alkyne-cyanamides or ynamide-nitriles with ynamides is described for
the efficient synthesis of amino-substituted α- and δ-carbolines. This novel methodology is environmentally friendly and allows
for highly regioselective access to carboline derivatives in good to excellent yields with wide functional group tolerance.

α- and δ-Carbolines (pyridoindoles) are key structural motifs
in a diverse array of natural products and pharmaceuticals,1

and this two-ring system has proven to be a privileged
pharmacophore for application in the design of compounds
with wide ranging pharmacological properties such as
antibacterial, antitumor, anti-inflammatory, anxiolytic, kinase
inhibitory, and central nervous system stimulating properties.2

As important carboline derivatives, amino-substituted α- and δ-
carbolines are of particular utility. For instance, amino-
substituted α-carbolines have potent cyclin-dependent kinase
(CDK) inhibitory and antiproliferative activities;1a,3 amino-
substituted δ-carbolines have been documented to induce and
stabilize the G-quadruplex, and consequently inhibit c-MYC
promoter and telomerase activity.4 Although several ap-
proaches such as Graebe−Ullmann reaction, Fischer reaction,
photochemical cyclization, metal-complex catalyzed annulation
or intramolecular cyclization, and intramolecular Diels−Alder
reaction have been established for the construction of α- and δ-
carbolines,5,6 and relatively few methods are available for the
synthesis of amino-substituted α- and δ-carbolines,4b,7 these
methods usually suffer from serious drawbacks such as harsh
reaction conditions, tedious procedures, and low yields.
Therefore, exploring efficient methods to synthesize α- and
δ-carbolines especially the amino-substituted α- and δ-
carbolines is of significant importance.
Although recently rapid development in transition-metal-

catalyzed [2 + 2 + 2] cycloaddition offers an attractive
approach for the preparation of fused pyridines,8 the synthetic
approaches to α- and δ-carbolines have met with limited
success. In 2017, Liu et al. disclosed the first example of Ni(II)
phosphine complex-catalyzed [2 + 2 + 2] cycloaddition of

alkynes with functionalized alkyne-nitriles to provide α- and δ-
carbolines.9 Among this work, only one amino-substituted δ-
carboline was synthesized but with low regioselectivity
(Scheme 1a). And for the synthesis of amino-substituted α-
carbolines from ynamides, there has been no report about it up
to now. Recently, metal-free reactions have attracted attention
as environmentally friendly and we have successively
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Scheme 1. Synthesis of Amino-Substituted α- and δ-
Carbolines by [2 + 2 + 2] Cycloaddition
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developed metal-free strategies to synthesize 2,4-diaminopyr-
idines and 2-aminonaphthalenes via the cycloadditions of
ynamides.10−12 Herein, we present the first example of
constructing amino-substituted α-carbolines via TMSOTf-
catalyzed [2 + 2 + 2] cycloaddition of alkyne-cyanamides
with ynamides (Scheme 1b). Meanwhile, ynamide-nitriles
undergo this efficient cycloaddition providing amino-substi-
tuted δ-carbolines with high regioselectivities (Scheme 1c).
Our initial investigation was in optimizing the cycloaddition

of alkyne-cyanamide 1a and ynamide 2a (Table 1).

Fortunately, we isolated 2-amino-α-carboline 3a in high yield
under the catalysis of BF3·Et2O or AlCl3 (entries 1 and 2).
However, bidentate Lewis acid ZnI2 was a poor promoter
appearing to impede the cycloaddition (entry 3). Then
nonmetallic Tf2O, TfOMe, TMSOTf, TfOH, TFA, and CSA
were tested. Excitingly, Tf2O, TfOMe, TMSOTf, and TfOH
could also catalyze the reaction to provide cycloadduct 3a, with
TMSOTf leading to the highest yield (entries 4−9). With the
optimized catalyst, solvent screening revealed that DCE
resulted in a quantitative yield just the same as DCM (entry
10), and other solvents such as toluene, THF, and Et2O led to
decreased yields (entries 11−13).
With suitable conditions in hand, the scope of this

cycloaddition was assessed in Scheme 2. Various ynamides
2a−n were initially surveyed. For ynamides bearing electron-
withdrawing and -donating sulfonyl systems, the reaction
proceeded smoothly and furnished the desired 2-amino-α-
carbolines 3a−c with excellent yields. And a slightly lower yield
of 3d was obtained, most likely due to the high chemical
reactivity of N-Mbs-substituted ynamide 2d leading to some
byproduct from hydrolysis reaction. Next, other N-alkenyl-,
alkyl-, and aryl-substituted ynamides were perfectly compatible
with the reaction conditions giving 2-amino-α-carbolines 3e−h
with high yields, even for the bulkier N-phenyl-substituted
ynamide. For other alkyl-, aryl-, and thienyl-terminated

ynamides, the desired cycloaddition products 3i−l were
obtained in excellent yields. Meanwhile, we found an
interesting temperature effect: the alkyl-terminal ynamides 2i
and 2j resulted in lower yields at room temperauture compared
with 100 °C. This loss of yield is caused by the higher
temperature improving the reactivity of cycloaddition, thereby
suppressing the hydrolysis of ynamides. A similar phenomenon
was also observed for the construction of 3m. We were also
excited to find that the highly reactive N-Ms-substituted
ynamide 2n underwent highly efficient cycloaddition giving 2-

Table 1. Condition Optimization of the Cycloaddition

entrya catalyst solvent time (h) yield (%)b

1 BF3·Et2O DCM 2.0 86
2 AlCl3 DCM 1.0 88
3 ZnI2 DCM 24.0 0
4 Tf2O DCM 1.0 61
5 TfOMe DCM 24.0 77
6 TMSOTf DCM 0.2 99
7 TfOH DCM 0.2 81
8 TFA DCM 24.0 0
9 CSA DCM 24.0 0
10 TMSOTf DCE 0.2 99
11 TMSOTf toluene 0.2 38
12 TMSOTf THF 24.0 0
13 TMSOTf Et2O 24.0 12
14c TMSOTf DCM 0.2 99

aUnless otherwise specified, reactions were performed using 1a (0.20
mmol), 2a (0.22 mmol), and catalyst (0.04 mmol) in solvent (1.0
mL) at rt. bIsolated yields. c1a (1.00 mmol) and 2a (1.10 mmol) were
added.

Scheme 2. Synthesis of 2-Amino-α-carbolinesa

aUnless otherwise specified, reactions were performed using 1 (0.20
mmol) and 2 (0.22 mmol) with TMSOTf (0.04 mmol) in DCM (1.0
mL) at rt. bReactions were performed in DCE (1.0 mL) at 100 °C.
c1.3 equiv of ynamide was used.
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amino-α-carboline 3n in almost quantitative yield. Next,
various aryl-, alkyl-, and H-terminated alkyne-cyanamides 1
were surveyed, and their reactions with ynamide 2a generated
these corresponding cycloadducts 3o−x with high to excellent
yields except 3q, 3r, and 3t. These examples revealed that the
lower the reactivity the aryl-terminated alkyne-cyanamides
exhibit, the less desirable the cycloadducts become (3q, r vs
3o, p). And for the benzyl-terminated alkyne-cyanamide giving
a 73% yield of 3t, this loss of yield is likely due to the benzyl-
terminated alkyne-cyanamide partly transformed into allene.
Moreover, TMS-substituted alkyne-cyanamide and terminally
unsubstituted ynamide were also amenable to the conditions,
giving 3y and 3z in moderate yields, respectively. The relative
stereochemistry of the 2-amino-α-carbolines was verified by
the single-crystal X-ray structure of 3a.
Next, we turned our attention to extend the above method

for the construction of amino-substituted δ-carbolines using
ynamide-nitriles 4 (Scheme 3). Although there has been only
one example reported about the construction of amino-
substituted δ-carboline via [2 + 2 + 2] cycloaddition of
ynamide-nitrile with ynamide catalyzed by nickel, it suffers

from poor regioselectivity.9 To our delight, under the above
optimal conditions of synthesizing 2-amino-α-carbolines 3,
most of the desired 3-amino-δ-carbolines 5 were formed in
high to excellent yields. Variations of the substituents on the
nitrogen atom or on the terminal of the starting ynamides 2
were initially investigated, the cycloaddition proceeded
smoothly leading to the desired products 5a−5m in high to
excellent yields. And even more surprisingly, this cycloaddition
was amenable to the formations of 3-amino-δ-carbolines 5n
and 5o using ynamide bearing a terminal TBS ether moiety
and terminally unsubstituted ynamide, respectively. Subse-
quently, various ynamide-nitriles 4 with aryl or alkyl
substituents were tested and proceeded smoothly with
ynamides 2, providing high to excellent yields of 3-amino-δ-
carbolines 5p−5z. Remarkably, compared with alkyl-termi-
nated ynamide-nitriles, aryl-terminated ynamide-nitriles af-
forded 3-amino-δ-carbolines with higher yields. To our delight,
the terminally unsubstituted ynamide-nitrile was also compat-
ible with the reaction conditions delivering 3-amino-δ-
carboline 5aa in 40% yield. And we were also excited to find
that, in the absence of ynamide 2, the [2 + 2 + 2] cycloaddition
of two discrete ynamide-nitriles 4 could also afford the
corresponding 3-amino-δ-carbolines 5cc and 5dd with
moderate yields, respectively (Scheme 4). The structure of 3-
amino-δ-carbolines was confirmed by the X-ray crystallo-
graphic analysis of 5y.

Further transformations of the as-synthesized amino-
substituted carbolines were explored (Scheme 5). For example,
6-bromo-δ-carboline 5bb, which was afforded in 94% yield
from the bromo-substituted ynamide-nitrile, was subsequently
modified via palladium-catalyzed Suzuki−Miyaura coupling
reaction to provide more complex 3-amino-δ-carboline 6 in
quantitative yield.13 In addition, deprotection of 5aa, 3x, and
3z could respectively afford benzylamino-δ-carboline 7aa and
benzylamino-α-carbolines 9x and 9z,14 which have potent
cyclin-dependent kinase inhibitory activities. Then 7aa, 9x, and
9z could be respectively transformed into their corresponding
free amines 8aa, AαC 10x, and MeAαC 10z,15 which were
isolated from pyrolysates of protein and tryptophan as a result
of extensive research on environmental mutagens and
carcinogens.16

Having uncovered these novel cycloadditions, we were
intrigued by their mechanisms. Based on our previous work,10a

postulated mechanisms leading to the formations of 2-amino-
α-carboline 3 and 3-amino-δ-carboline 5 are proposed as
shown in Scheme 6.17 The cycloaddition would be initiated by
the coordination of TMSOTf to ynamide 2 to generate silicon
π-alkyne species A. And then the nucleophilic addition of the
species A with the nitrile moiety on 1 or 4 gives nitrilium
species B or D. Subsequently, an intramolecular cyclization of

Scheme 3. Synthesis of 3-Amino-δ-carbolinesa

aUnless otherwise specified, reactions were performed using 4 (0.20
mmol), and 2 (0.22 mmol), and TMSOTf (0.04 mmol) in DCM (1.0
mL) at rt, Mbs = para-methoxy-benzene-sulfonyl; Cs = para-chloro-
benzene-sulfonyl; Ns = para-nitro-benzene-sulfonyl.

Scheme 4. [2 + 2 + 2] Cycloaddition of Two Discrete
Ynamide-Nitriles
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B via the intermediate C affords 2-amino-α-carboline 3.
Similarly, intermediate D undergoes the intramolecular

cyclization via the intermediate E to furnish the desired 3-
amino-δ-carboline 5.
In conclusion, we have presented here a novel and highly

efficient TMSOTf-catalyzed [2 + 2 + 2] cycloaddition of
alkyne-cyanamides or ynamide-nitriles with ynamides. This
strategy provides a straightforward way to furnish 2-amino-α-
carbolines and 3-amino-δ-carbolines in high to excellent yields
with wide diversity and functional group tolerance. More
importantly, this method first realized the synthesis of 2-
amino-α-carbolines via cycloaddition of alkyne-cyanamides
with ynamides and enables the preparation of 3-amino-δ-
carbolines with excellent selectivities. Plausible mechanisms of
the cycloaddition have been proposed. Further applications of
this newly developed metal-free strategy are under current
study in our group.
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