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Highly stereoselective Reformatsky reaction and Pd-cata-
lyzed arylation using 1-(alkoxycarbonyl)cyclopropylzinc bro-
mide proceeded to give the trans-adduct as the major product in
good to high yields with good to excellent stereoselectivities.

Zn-enolate is one of the useful reagents in organic
chemistry.1 The most representative synthetic protocol is the
Reformatsky reaction.2 During the course of our synthetic
studies on the transformation of cyclopropanes,3 we reported the
SmI2-promoted Reformatsky-type reaction of 1-chlorocyclopro-
panecarboxylate (Scheme 1, eq 1).3a,3b On the other hand, highly
stereoselective CC bond-forming reactions on cyclopropane
rings are significantly important for the synthesis of pyrethroids
and other biologically active cyclopropanes.4,5 In 1993, Harada
and Oku reported the stereoselective CC bond-forming
reactions of 1,1-dibromocyclopropanes via 1-halocyclopropyl
zincates (Scheme 1, eq 2).6 However, the fundamental Refor-
matsky reaction using Zn-enolate generated from 1-bromo-
cyclopropanecarboxylic ester has not been investigated. In
addition, although palladium-catalyzed arylation of Zn-enolate
of α-bromo isobutyrate has been reported (Scheme 1, eq 3),7 the
Pd-catalyzed coupling8 on a cyclopropane ring using Zn-enolate
has not yet been investigated.

Here, we present highly stereoselective CC bond-forming
reactions using 1-(methoxycarbonyl)cyclopropylzinc bromide
D, which includes the Reformatsky reaction and Pd-catalyzed
coupling to afford a variety of tri- or tetrasubstituted cyclo-
propanes (Scheme 2).

Initially, we tried to prepare the Zn-enolate from the α-
chlorocyclopropanecarboxylic ester that was used in the SmI2-
promoted Reformatsky-type reaction.3a However, Zn-enolate
was not generated from the α-chlorocyclopropanecarboxylic
ester and starting material was recovered (Scheme 3). Thus, Zn-
enolate has been prepared from bromoester 1a that has a higher

reactivity than the chloroester.9 Treatment of Zn-enolate D with
cyclopentanone resulted in a Reformatsky reaction to afford
alcohol 2a in high yield with excellent trans-selectivity
(Scheme 3 and Table 1, Entry 1). This result encouraged us to
investigate the Reformatsky reaction on a carbonylcyclopropane
ring. Tables 1 and 2 list the results of the Reformatsky-type
reaction of 1 with several aldehydes and ketones. The salient
features were as follows: (i) α-bromocyclopropanecarboxylates
1a and 1b underwent the desired Reformatsky addition with
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Scheme 1. Back-ground for this study.
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Scheme 2. CC bond-forming reactions using Zn-enolate D.
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Scheme 3. Initial investigations of the Reformatsky reaction using
methyl α-halocyclopropanecarboxylates.

Table 1. Stereoselective Reformatsky reaction of α-bromoesters 1
with ketones

Entry Substrate R1 R2 R3 Product Yielda/%

1 1a Ph H (CH2)4 2a 63
2 1a Et 2b 61
3 1a i-Pr ® 0
4 1b (CH2)4 (CH2)4 2c 60
5 1b Et ® 0
6 1b i-Pr ® 0

aIsolated.
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ketones to give trans-adducts 2a, 2b, and 2c, respectively, in
good yield with excellent trans-selectivity (trans-add/cis-add =
>99/1) (Table 1, Entries 1, 2, and 4). (ii) A similar reaction of
2,3-cis-disubstituted cyclic substrate 1b with cyclopentanone
also gave the corresponding trans-adduct with excellent trans-
selectivity (trans-add/cis-add = >99/1) (Table 1, Entry 4). (iii)
Increase in the stereocongestion between the ketone and the
substituted cyclopropane prevented the reaction from occurring
(Entries 3, 5, and 6). (iv) Reactions of 1b with aldehydes also
proceeded to provide good to high yields with excellent trans-
selectivities (trans-add/cis-add = >99/1) at the α-position and
moderate diastereoselectivities10 [2 (re-face-adduct)/3 (si-face-
adduct) = 56/4462/38] at the β-position (Table 2, Entries 1
3). Products 2d and 2e are important intermediates for the highly
diastereoselective synthesis of dihydronaphthalenelignan de-
livatives.3e,3f

These successful results led us to investigate the Pd-
catalyzed coupling of the cyclopropyl-Zn-enolate, generated
from α-bromo-β-phenylcyclopropanecarboxylates, with phenyl
iodides. Optimizations of reaction conditions are summarized in
Table 3. Treatment of the Zn-enolate, generated from 1a, with
iodobenzene at 66 °C in THF in the presence of [Pd(PPh3)4]
afforded diphenylcyclopropanecarboxylic esters 3a and 4a in
38% yield (Entry 1). In the cases of Pd(OAc)2 with phosphine
ligands, such as PPh3, dppf, BINAP, JohnPhos adversely
affected the coupling. Use of a tri(o-tolyl)phosphine ligand7a

increased the yield of the coupling (Entry 4). The same reaction
at room temperature resulted in decreased yield (Entry 5). In the
case of [Pd2(dba)2] rather than Pd(OAc)2, a tri(o-tolyl)phosphine
ligand also promoted the desired reaction to provide good to
high yields (Entries 8 and 9). Use of four equivalents of the
ligand increased the yield slightly. Buchwald ligands,11 such as
Johnphos, X-Phos, and S-Phos are also effective in promoting
the coupling in moderate to good yields (4868%) with good
trans-selectivities (70/3083/17). In the presence of PEPPSI-
IPr, small amounts of esters 3a and 4a were obtained (Entry 13).
Notably, the coupling reaction using [PdP(t-Bu)3Br]27a promoted
the reaction in high yield with high trans-selectivity (Entry 14).
The same reaction at rt50 °C gave 3a and 4a in 64% yield
(Entry 15). Thus, the use of [PdP(t-Bu)3Br]2 at 66 °C in THF

(method A) is the most efficient condition for this coupling
(Entry 14). Other conditions involving Pd(OAc)2 with two
equivalents of P(o-Tol)3 (method B) and [Pd2(dba)3] with four
equivalents of P(o-Tol)3 (method C) are also considered to
be practical conditions (Entries 4 and 9) even though the
diastereomer ratios (dr) are moderate.

Next, we investigate the coupling reaction of cyclopropyl-
Zn-enolate with several kinds of aryl or allyl iodide under the
identified optimized conditions. The reaction of 1a with p-anisyl
iodide in the presence of [PdP(t-Bu)3Br]2 (method A) proceeded
to give diarylcyclopropane 3b as the major product in high yield
with high trans-selectivity (Table 4, Entry 2). In the case of
methyl p-iodobenzoate, the reaction proceeded to afford 3c as
the major product with minor diastereomer 4c in moderate yield
(Entry 4). Use of Pd(OAc)2 with 2 equiv of P(o-Tol)3 (method
B) reversed the stereoselectivity (Entries 3 and 5). Under
condition B, the coupling of 1a with o-substituted phenyl iodide
took place with high trans-selectivity (Entries 6 and 7). Under
condition A, the same reaction of styryl iodide increased the
yield of the coupling with high trans-selectivity (Entry 8). In the
case of cis-disubstituted analog 1b instead of 1a, the coupling
proceeded in 3866% yields with excellent trans-selectivities
(>99/1) (Entries 916). Regardless of the method (A, B, or C),
yields and stereoselectivities (>99/1) were similar for reactions
of 1b (Entries 911). The electron-withdrawing group on the
benzene ring decreased the yield of the coupling (Entry 13).
This result is consistent with the reaction of 1a (Entries 4 and 5).
In the references and Supporting Information,12 we considered
the stereoselectivity based on the plausible transition state in the
Pd-catalyzed coupling reaction of cyclopropyl-Zn-enolate with
aryl iodide.

In conclusion, we achieved a few highly stereoselective
syntheses of cyclopropane derivatives by using the Reformatsky
reaction and Pd-catalyzed arylation of 1-(methoxycarbonyl)cy-
clopropylzinc bromide. The present methods are new avenues
for the stereoselective synthesis of highly substituted cyclo-
propylcarbonyl compounds.

Table 2. Stereoselective Reformatsky reaction of α-bromoesters 1
with aldehydes

Entry Substrate R1 R2 R3 Product Yielda/% drb

1 1a Ph H Ph 2d 92 56/44

2 1a
MeO

MeO

2e 96 62/38

3 1a n-Hept 2f 74 60/40
4 1b (CH2)4 Ph 2g 90 ®

5 1b
MeO

MeO

2h 94 ®

6 1b n-Hept 2i 57 ®

aIsolated. bRatio was determined by 1HNMR.

Table 3. Stereoselective Pd-catalyzed coupling of α-bromoester 1a
with iodobenzene

Entry Catalyst, Ligand Pd/equiv Temp./°C Yielda/% drb (3a/4a)

1 [Pd(PPh3)4] 0.05 66 38 77/23
2 Pd(OAc)2, 2 PPh3 0.05 66 34 83/17
3 Pd(OAc)2, dppf 0.05 66 35 83/17
4 Pd(OAc)2, 2 P(o-Tol)3 0.05 66 80 78/22
5 Pd(OAc)2, 2 P(o-Tol)3 0.05 rt 35 71/29
6 Pd(OAc)2, 2 JohnPhos 0.05 66 57 78/22
7 Pd(OAc)2, (R)-BINAP 0.05 66 39 87/13
8 [Pd2(dba)3], 2 P(o-Tol)3 0.05 66 76 36/64
9 [Pd2(dba)3], 4 P(o-Tol)3 0.05 66 82 42/58
10 [Pd2(dba)3], 4 JohnPhos 0.05 66 48 74/26
11 [Pd2(dba)3], 4 X-Phos 0.05 66 61 70/30
12 [Pd2(dba)3], 4 S-Phos 0.05 66 68 83/17
13 Pd-PEPPSI-IPr 0.05 66 3 nd
14 [PdP(t-Bu)3Br]2 0.05 66 91 94/6
15 [PdP(t-Bu)3Br]2 0.05 rt-50 64 94/6

aIsolated. bRatio was determined by 1HNMR.
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Table 4. Stereoselective Pd-catalyzed coupling of α-bromoesters 1
with aryl or alkenyl iodes

Substrate

1a

1b

R1 R2

Ph H

–(CH2)4–

Entry

1

2
3

4
5

6

7

8

9
10
11
12

13

14

15

16

Product

3a/4a

3b/4b

3c/4c

3d/4d

3e/4e

3f/4f

3g/4g

3h/4h

3i/4i

3j/4j

3k/4k

3l/4l

Yieldd/%

91a

67a

71b

42a

40b

45b

57b

74a

66c

64b

60a

63c

38c

61c

63c

52a

dre

94/6

88/12
29/71

87/13
33/67

97/3

97/3

95/5

>99/1
>99/1
>99/1
>99/1

>99/1

>99/1

>99/1

>99/1

R3I

PhI

PhI

I

OMe

I

Me

I

MeO2C I

MeO I

I

OMe

I

Me

MeO2C I

I

MeO I

aMethod A: [PdP(t-Bu)3Br]2 (0.025 equiv). bMethod B: Pd(OAc)2
(0.050 equiv), 2 P(o-Tol)3. cMethod C: [Pd2(dba)3] (0.025 equiv), 4
P(o-Tol)3 (0.10 equiv). dIsolated. eRatio was determined by 1HNMR.
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