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Gram-Scale Synthesis of Luciferins Derived from Coelenterazine 
and Original Insights in Their Bioluminescence Properties
Eloi P. Coutant,a Sophie Goyard,b Vincent Hervin,a Glwadys Gagnot,ac Racha Baatallah,a Yves 
Jacob,d Thierry Rose*b

 and Yves L. Janin*a

 

An original gram-scale synthesis of O-acetylated forms of 
coelenterazine, furimazine or hydroxy-bearing analogues of these 
luciferins is described. The comparisons over two hours of their 
bioluminescence, using the nanoKAZ/NanoLuc luciferase, is 
providing remarkable insights usefull for the selection of a 
substrate adapted for a given application.

Bioluminescence is based on the combination of at least 
oxygen, a small chemical cofactor and an enzyme. As depicted 
in scheme 1, extensive research,1 led to the discovery that many 
sea-dwelling bioluminescent species2, 3 are using coelenterazine 
(CTZ, 1) or varguline (2) and harbor a large variety of luciferases 
or photoproteins (which are calcium-dependent luciferases) to 
produce light with these. Across the years, because of the many 
uses of bioluminescence-based tools in life sciences,4-10 
attempts were made to improve the signal intensity, duration 
and/or the emission wavelength. This started with the isolation 
of a wide range of coelenterazine-using luciferases and their 
combination with analogues of coelenterazine (1). It then 
moved to the analysis of the effect of luciferase mutations on 
the bioluminescence properties and the best results obtained 
so far were achieved by the association of mutated luciferases 
and luciferins analogues.11-25 It is the combinations of an 
extensively mutated form of the catalytic subunit of Oplophorus 
gracilirostris luciferase (nanoKAZ/NanoLuc)20, 21 and furimazine 
(3),20 or bisdeoxycoelenterazine (bis-CTZ, 4),21 which appears to 
be the current state of the art in regard with signal intensity and 
duration. 
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Scheme 1. Structures of coelenterazine (1), varguline (2), furimazine (3), and 
bisdeoxycoelenterazine (4) and retrosynthesis of imidazo[1,2-a]pyrazine-3(7H)-ones

Concerning the chemistry of these luciferins, they are oxygen-
sensitive and readily decompose in solution especially in the 
presence of a base, or upon light exposure.26 As depicted above, 
many27 if not all28-30 the reported preparations of imidazo[1,2-
a]pyrazin-3(7H)-ones 5 are requiring an aminopyrazine (6) prior 
to the construction of the imidazole ring via a condensation with 
α-ketoesters (7) or α-ketoaldehydes (8). Recent improvements 
have extended this access to original luciferins24, 26 but to avoid 
some of its inherent limitations, we focused on an alternative 
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initially explored on a model compound.31 This path not only 
avoids the use of the non-trivial intermediates 7-8, but it also 
offers, via a key N-arylation of halogenopyrazines (9), the 
recourse to a wide range of the far more available α-amino 
esters (10).32-34 As depicted in scheme 2, an original preparation 
of chloropyrazines 9a-c was achieved starting with a 1,4-
addition reaction between β-nitrostyrenes 11a-c and 
phenylalanine ethyl ester (12). 
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Scheme 2. i: neat. ii: Zn, H3O+, Cl-, dioxane. iii: 130 °C, neat. iv: S8, 1,3-Cl2C6H4, 
reflux. v: PhPOCl2, 100 °C. vi: AcOOH, AcOEt. vii: chlorobenzene, reflux or NaOH, 
EtOH, reflux. . vii: Cs2CO3, Pd(OAc)2, BINAP, MeCN, 60 °C. viii: NaOH, THF, 20 °C. ix: Ac2O, 
20 °C. x: H2, Pd/C, AcOEt, AcOH, EtOH. xi: EtOH, DMSO, H3O+, Cl-, 50 °C.

Indeed, in our cases, it is only when removing the solvent that 
the 1,4 adducts 13a-c were formed. The use of zinc and 
hydrochloric acid in dioxane for their reduction provided an 
access to the diamines 14a-c including a compatibility with the 
benzyloxy groups of 13b-c. Their cyclization to give the 
(separable) piperazinone diastereoisomers 15a-c was then 
achieved with heat. The previously unreported use of sulfur as 
an oxidant was initially essential for their aromatization into the 
corresponding hydroxypyrazines 16a-c. Later on, we found an 
alternative via an original dehydration of the N-oxide 17a-b 
(obtained by the peroxyacetic acid treatment of 15a-b) using 
either heat or more preferably sodium hydroxide. Finally, from 
the hydroxypyrazines 16a-c, hot phenylphosphonic dichloride42 
was essential to prepare the chloropyrazines 9a-c, and this 
reagent could also be used to directly transform, for instance, 
N-oxide 17a into the chloropyrazine 9a. This was followed by 
the key Buchwald-Hartwig palladium-catalyzed N-arylation of 
the readily available33, 34 α-amino esters 10A-C by 
chloropyrazines 9a-c. Starting from related precedents,43-48 it 
quickly turned out that a mild temperature was required. The 
best conditions we found, 60 °C in acetonitrile with cesium 
carbonate for 12 hours using BINAP and palladium(II) acetate, 
led to the N-arylesters 18 in 69-90% yields. For the next step, 
we observed that the inherent instability of the target luciferins 
5aB limited its purification to a precipitation. To avoid this, we 
prepared the far more stable O-acetylated derivatives 20 in one 
pot from the N-arylesters 18 via the acid salts 19, generated in 
situ, and an ensuing treatment with an excess of acetic 
anhydride. These pro-luciferins turned out to be stable enough 
to withstand a chromatography but, even better, a simple 
recrystallization provided compounds 20aA-B in up to grams 
amount. For the synthesis of the phenol-bearing luciferins, a 
catalytic hydrogenation of O-benzyl-bearing compounds 20bA-
bC and 20cB-cC provided the corresponding O-acetylated 
luciferins 20dA-dB, 20dD, 20eB and 20eD. Then, as seen by 
LC/MS (supporting information, figure S1), a treatment of these 
O-acetylated luciferins 20 with a mixture of hydrochloric acid, 
ethanol and DMSO at 50 °C provided concentrated solutions of 
the pure luciferins 5 which could be used immediately, upon a 
dilution in the relevant buffer, or stored at low temperature. As 
depicted in figure 2, and described in the supporting 
information section, the bioluminescence properties of these 
luciferins were then studied using a purified recombinant 
nanoKAZ/NanoLuc luciferase. In comparison with the very low 
intensity of coelenterazine (1), or for that matter 
“isocoelenterazine” (5eD), furimazine (3) and 
bisdeoxycoelenterazine (4) were, as previously reported,20, 21 
providing vastly improved bioluminescence signals lasting at 
least two hours. Interestingly, the two monohydroxy-bearing 
analogues h-coelenterazine (5dA) and 5dB led to at least twice 
more intense signals but which lasted only minutes (figure 2B). 
Such initial intensity has actually been reported before for h-
coelenterazine (5dA).21 On the other hand, the isomeric mono 
hydroxy-bearing compound 5eB displayed a far more stable 
bioluminescence profile pretty much identical with the one 
observed for furimazine (3). With all these luciferins, the light 
intensity decreased with time: rather quickly for the “flash” and 
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much more slowly for the “glow” substrates. For the “flash” 
substrates, luciferins 5dA and 5dB, the decrease fitted with a 
first order equation. Adding further substrate after losing 90% 
of the initial light emission intensity did not, at best, produce 
any changes and could even causes a decrease of the remaining 
signal intensity. On the other hand, as depicted in figure 2C, 
adding instead the same amount of enzyme used at the start 
led to a recovery of the signal. For the others substrates, this 
enzyme death was less pronounced but took place anyway (see 
supporting information).
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Figure 2. Bioluminescence signals of the luciferins 5 using recombinant 
nanoKAZ/NanoLuc. (A) Luciferin structures; compounds 1, 3, and 4 are depicted in figure 
1. (B) Light intensity in RLU s-1 plotted vs. time over two hours, the insert zooms on the 
first two minutes of the reaction. (C) Bioluminescence profiles of compound 5dB at 
different concentrations along with the repeated addition (arrows) of luciferase.

Accordingly, the enzyme is irreversibly inactivated by a reaction 
product in all the cases with a constant (kinact) dependent on the 
substrate used. Of note is that when all the substrate has been 
consumed, the area below these curves is providing a molecules 
consumed per RLU produced ratio (see table 1). Concerning the 
kinetics of these reactions, they are fitting with a Michaelis-
Menten model, if we assume that the number of detected 
photons per consumed substrate molecule is constant 
whatever the substrate concentration (see the supporting 
information for a discussion). The KM and Vmax values were 
computed considering: 1) the luciferins (S) as the limiting 
substrates, O2 as saturating substrate 2) an inhibition of the 
enzyme E by excess of substrate through the binding of a second 
substrate (ESS) on the Michaelis’ complex (ES) with the 
dissociation constant KI and 3) a stochastic inactivation of the 
enzyme (E*) with the kinetic constant kinact. As seen in table 1 
and figure 3, coelenterazine (1) has a very high kcat but a poor 
photon emission efficiency. Interestingly, furimazine (3) and its 
isomer 5eB are the most efficient photon emitter per substrate 
molecule catalysis with the same kcat but furimazine (3) is 
somehow providing a longer life time of active enzyme (low 
kinact). All substrates are sensitive to substrate concentration 
beyond the KM, but two luciferins, coelenterazine (1) and 5eD, 
are more affected than others as seen with their low 
dissociation constants (KI). Of note is that the strong light 
intensity produced by the catalyzed oxidation of 5dB in a very 
short time (flash) does not mean the production of a high level 
of light intensity cumulated in two hours (ΣI) and the very long 
half-life (tI/2) with low light intensity (glow) provided by 
compound 5eD neither. Among these substrates, furimazine (3) 
is, so far, providing the best compromise. Also quite unexpected 
is the reason behind the fact that the natural substrate 
coelenterazine (1) leads to a signal two orders of magnitudes 
less intense than furimazine (3). Indeed, it is not because of a 
lesser catalytic activity but it is mostly due to a pretty much 
counter intuitive lesser number of photons detected by luciferin 
consumed.

Table 1. Kinetic parameters for each substrate.

3 4 5dA 5dB 1 5eB 5eD
Imax 

(106 RLU s-1)
1.69 3.28 2.05 3.11 0.23 1.98 0.10

t½ (min) 74.29 19.34 3.22 0.33 20.96 32.27 148
I (106 RLU) 84.98 80.85 5.61 11.57 6.29 62.97 6.04
K’M (10-6 M) 3.40 2.33 3.71 3.45 8.8 4.23 7.02

k’cat 

(1018 RLU s-1)
1.80 3.50 2.32 3.60 0.44 2.33 0.17

Molecules/RLU 1775 4581 12067 4463 101169 1804
7002

0
KI (10-6 M) 104.94 115.21 140.55 101.64 22.48 84.02 35.42
KM (10-6 M) 2.22 3.02 5.90 3.88 6.80 3.30 2.94
kcat (mol.s-1 

.molE-1)
106 534 932 535 1500 140 362

kinact (10-4 s-1) 1.5 5.2 425 375 3.8 4.5 3.1

An alternative relative depiction of some of these variables is provided figure 3.
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Figure 3 is probably providing a better visual representation of 
these differences. In comparison with the central equidistant 
triangle representing three characteristics of furimazine (3): 
maximum intensity (Imax), the sum of the signal (ΣI), and half-
life of the signal over two hours (t1/2), the values for the other 
substrates can vary widely. Accordingly, the next stage of our 
research will be to find out how specific structural features of 
the luciferins have an influence on these characteristics and 
more importantly, can such changes lead to even better 
luciferins.

Conclusions
In conclusion, the results of this work should herald more 
researches focusing/based on bioluminescent reporting 
systems using imidazo[1,2-a]pyrazine-3(7H)-one luciferins. 
Indeed, we describe here a simple mean to prepare these rather 
expensive luciferins in such amount that it should provide 
scientists with many more opportunities to design and use such 
reporting systems.

Figure 3. Depiction of the maxima of intensities (Imax), integrated signals (ΣI), and half-
time durations (t1/2) for all the luciferins, relative to furimazine (3) represented in light 
grey.

The kinetic analyses of light emission presented here are 
providing rather unexpected insights for distinct applications. 
The glowing property of some substrates is appropriate for high 
throughput in vitro bioassays and long imaging dynamics in vivo 
or in cellulo, whereas the flashier profile of other is appropriate 
for high sensitivity acquisition systems requiring more light in a 
short time. Moreover, it appears that if the actual catalytic 
efficiency of nanoKaz/NanoLuc is high, as it is in the 102-103 
molS/s·molE range, the detection of emitted photons is 
remarkably modest: only one RLU for more than 1800 
decarboxylated molecules at best. Also of note is the fast 
stochastic inactivation seen for some substrate in contrast with 
other which may reflect the existence of two distinct 
inactivation mechanisms which we are also trying to 
investigate. In any case, in view of all this, we believe that 
further luciferases mutagenesis and/or design of original 
luciferin analogues could lead to even more improved 
bioluminescence profiles.
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