

# Redox-Neutral Couplings between Amides and Alkynes via Cobalt(III)-Catalyzed C–H Activation

Lingheng Kong, Songjie Yu, Xukai Zhou, and Xingwei Li\*

Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China

**Supporting Information** 

**ABSTRACT:** C–H activation assisted by a bifunctional directing group has allowed the construction of heterocycles. This is ideally catalyzed by earth-abundant and eco-friendly transition metals. We report Co(III)-catalyzed redox-neutral coupling between arenes and alkynes using an NH amide as an electrophilic directing group. The redox neutral C–H activation



electrophilic directing group. The redox-neutral C-H activation/coupling afforded quinolines with water as the sole byproduct.

The past decades have witnessed significant progress in metal-catalyzed C–H bond activation as an advantageous strategy in the construction of complex molecules.<sup>1</sup> The ubiquity of C-H bonds and highly atom- and step-economic transformations in C-H activation have attracted increasing attention in utilizing arenes as direct substrates. The activation of unreactive arene C-H bonds typically requires the assistance of a proximal directing group.<sup>1,2</sup> However, in most cases, the directing group (DG) only exhibited a ligating effect or acted as a simple nucleophile in postcoupling transformations. Thus, the DG was carried over to the final product with limited functional diversity. To overcome this limitation, functionalizable DGs with nucleophlicity, electrophilicity, and redox property have been designed.<sup>3</sup> Electrophilic DGs are bifunctional in that they consist of a nucleophilic coordinating site and an electrophilic center. This discrepancy has been reconciled in recent work by Cheng,<sup>4</sup> Glorius,<sup>5</sup> Shi,<sup>6</sup> and others<sup>7</sup> in Rh(III)-catalyzed C–H activation. However, reports in this regard remain limited, particularly in the context of heterocycle synthesis.<sup>8</sup>

Recently, cost-effective Cp\*Co(III) complexes have been increasingly employed as highly efficient catalysts for the C-H activation of arenes, as in the reports by Kanai,<sup>9</sup> Glorius,<sup>10</sup> Ackermann,<sup>11</sup> Ellman,<sup>12</sup> Daugulis,<sup>13</sup> Chang,<sup>14</sup> and others,<sup>15</sup> where the DGs are single-functional and Co(III)-catalyzed annulation reactions are rare.<sup>9e,11c,15c</sup> We reasoned that bifunctional DGs with low electrophilicity can be viable in facilitating cyclization reactions when the electrophilicity is enhanced by Lewis acidic metals. With Lewis acidity higher than that of their Rh(III) and Ir(III) congeners, Cp\*Co(III) catalysts are expected to meet the criteria by activating both C-H bonds and the bifunctional DG. Amides are readily available DGs, and the bifunctionality of amides has been established in C-H activation systems, leading to annulation.<sup>6,9b,16,17</sup> In particular, Wang, Yu, and co-workers recently reported the synthesis of pyridines via [4 + 2] annulation between enamides and alkynes (Scheme 1). On the other hand, while access to isoquinolines has been extensively explored in Rh- and Ru-catalyzed C-H activation,<sup>18</sup> examples of quinoline synthesis via a C-H activation pathway are very limited,<sup>19</sup> especially under redox-neutral conditions. We

Scheme 1. C-H Activation for the Synthesis of Heterocycles



now report Co(III)-catalyzed, redox-neutral couplings between amides and alkynes, leading to efficient synthesis of quinolines.

We initiated our studies with the development of a synthetic method to access quinolines. Traditional quinoline syntheses such as the Doebner-Von Miller, Skraup, Combes, Knorr, and Friedlander methods typically suffered from harsh conditions, necessity of using toxic and corrosive reagents, and a limited substrate scope.<sup>20</sup> We began our quinoline synthesis using acetanilide (1a) and diphenylacetylene (2a) as model substrates (Table 1). When the reaction was conducted in DCE using  $[Cp*CoCl_2]_2/AgSbF_6$  (4 mol %/20 mol %) as the catalyst at 130  $^{\circ}$ C, the desired quinoline **3aa** was isolated in only 35% yield as a result of dehydrative annulation (entry 1). The silver additive had a significant impact on the reaction efficiency. Switching the additive to AgNTf<sub>2</sub> improved the yield to 43% (entry 2), but essentially no product was detected when other additives such as AgOAc, AgOTf, and AgOPiv were used (entries 4-6). Solvent screening revealed that DCE was the most efficient medium (entries 7 and 8). The amount of the silver additive had a significant effect on the reaction efficiency. While moderate yield was observed using 0.5 equiv of AgNTf<sub>2</sub>, the yield was

Received: December 22, 2015

Table 1. Screening of Reaction Conditions<sup>a</sup>

| 0 + Ph-==<br>NH<br>1a 2a          | −Ph<br>solvent, 130 °C                                                                | l2<br>C, 16 h                                             | Ph<br>Ph<br>Ph<br>Me<br>3aa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-----------------------------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| cat. (mol %)                      | additive (mol %)                                                                      | solvent                                                   | yield <sup>b</sup> (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $[Cp*CoCl_2]_2 (4)$               | $AgNTf_2(20)$                                                                         | DCE                                                       | <5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $\left[Cp*CoCl_{2}\right]_{2}(4)$ | $AgSbF_{6}(20)$                                                                       | DCE                                                       | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $\left[Cp*CoCl_{2}\right]_{2}(4)$ | $AgNTf_2(20)$                                                                         | DCE                                                       | 43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $[Cp*CoCl_2]_2 (4)$               | AgOAc (20)                                                                            | DCE                                                       | <5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $[Cp*CoCl_2]_2 (4)$               | AgOTf (20)                                                                            | DCE                                                       | <5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $[Cp*CoCl_2]_2 (4)$               | AgOPiv (20)                                                                           | DCE                                                       | <5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $[Cp*CoCl_2]_2 (4)$               | $AgNTf_2(20)$                                                                         | dioxane                                                   | <5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $\left[Cp*CoCl_{2}\right]_{2}(4)$ | AgNTf <sub>2</sub> (20)                                                               | PhCl                                                      | <5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $[Cp*CoCl_2]_2 (4)$               | $AgNTf_2(50)$                                                                         | DCE                                                       | 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $[Cp*CoCl_2]_2 (4)$               | AgNTf <sub>2</sub> (100)                                                              | DCE                                                       | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $[Cp*CoCl_2]_2 (6)$               | AgNTf <sub>2</sub> (100)                                                              | DCE                                                       | 93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $[Cp*CoCl_2]_2 (8)$               | AgNTf <sub>2</sub> (100)                                                              | DCE                                                       | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                   | $\begin{array}{c} & \begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $ | $ \begin{array}{c} & & & & & & & & & & & & & & & & & & &$ | $\begin{array}{c} & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ \\ & \begin{array}{c} & \end{array} \\ \\ & \end{array} \\ \\ & \begin{array}{c} & \end{array} \\ \\ & \end{array} \\ \\ & \end{array} \\ \\ & \begin{array}{c} & \end{array} \\ \\ & \end{array} \\ \\ & \begin{array}{c} & \end{array} \\ \\ & \end{array} \\ \\ \\ & \end{array} \\ \\ & \end{array} \\ \\ & \begin{array}{c} & \end{array} \\ \\ & \end{array} \\ \\ & \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ $ |

"Reaction conditions: acetanilide 1a (0.2 mmol), 2a (0.24 mmol), solvent (4 mL), 130  $^{\circ}$ C, 16 h, sealed tube under air. <sup>b</sup>Isolated yield after chromatography.

dramatically improved when 6 mol % of  $[Cp*CoCl_2]_2$  and AgNTf<sub>2</sub> (1 equiv) was used (entry 11), where a stoichiometric amount of AgNTf<sub>2</sub> likely serves as both a halide scavenger (catalyst activation) and a Lewis acid (activation of the carbonyl group). Notably, no extrusion of air was necessary. Furthermore, when the scale of the reaction was enlarged to 1 mmol with a reduced catalyst loading (3 mol %), product **3aa** was isolated in moderate yield (60%). In comparison, essentially no desired reaction was observed when the Ru-catalyzed conditions that proved optimal for the coupling between enamides and alkynes were employed.<sup>17</sup>

With the establishment of the optimized conditions, the scope and generality of the reactions were next evaluated (Scheme 2). It was found that a range of acetanilide bearing various electrondonating, -withdrawing, and halogen substituents at the *para* positions all coupled smoothly with **2a**, and the quinoline products were isolated in 34–94% yields. A *para*-nitro group,





<sup>a</sup>Reaction conditions: amide (0.2 mmol), alkyne (0.24 mmol), [Cp\*CoCl<sub>2</sub>]<sub>2</sub> (6 mol %), AgNTf<sub>2</sub> (1.0 equiv), DCE (4.0 mL), 130 <sup>o</sup>C, 16 h, sealed tube under air. <sup>b</sup>Isolated yield. <sup>c</sup>With 4 mol % of catalyst.

which is often problematic in C-H activation systems, is also compatible, albeit with lower yield (3ia). Various meta substituents such as methyl (3ka), methoxy (3la), chloro (3ma), bromo (3na), and CF<sub>3</sub> (3oa) groups were fully tolerated, and in these cases, C-H activation occurred at the less-hindered position. In contrast to the high selectivity, the coupling of N-(3fluorophenyl)acetamide afforded a mixture of regioisomeric products (**3pa** and **3pa**') in 1.2:1 ratio and in 81% total yield as a result of the reduced steric bulk of the fluoro group. The C-H activation reaction is not limited to a monosubstituted arene, and 2,3-disubstituted acetanilides also reacted under optimized conditions to afford the desired products (3wa and 3xa) in good yields and high regioselectivity (>17:1). Meanwhile, amides bearing other acyl groups (3qa, 3ra, 3sa, and 3ta) also coupled efficiently to provide the quinolines in 60-81% yields. In contrast, pivaloyl (3ua) and trifluoroacetyl (3va) amides failed to undergo any coupling, indicating that the electronic and steric effects of the acyl group played an important role.

We next investigated the scope of the alkyne in the coupling with 1a (Scheme 3). Symmetrically substituted diarylacetylenes

Scheme 3. Scope of Alkyne Substrates a, b



<sup>*a*</sup>Reaction conditions: acetanilide (0.2 mmol), alkynes (0.24 mmol),  $[Cp*CoCl_2]_2$  (6 mol %), AgNTf<sub>2</sub> (1 equiv), DCE (4 mL), 130 °C, 16 h, sealed tube under air. <sup>*b*</sup>Isolated yield. <sup>*c*</sup>Alkyne (0.3 mmol) was used. <sup>*d*</sup>Only the major isomer was shown.

bearing halogen or methyl groups at the *para* and *meta* positions gave the desired products 3ab-3af in 58-94% yield. The alkynes can also be extended to heteroaryl substitution with di(2thienyl)acetylene with excellent yield (3ag, 96\%). In addition, unsymmetrical alkynes displayed good to high reactivity and moderate to high regioselectivity. Of note, couplings for alkyland aryl-disubstituted alkynes gave excellent yields (3ak-3am, 88-95%) and high regioselectivities (8-11:1), while other unsymmetrical alkynes offered high reactivity but lower regioselectivity.

To demonstrate the synthetic utility, a derivatization reaction was carried out for a quinoline product. Treatment of quinoline **3aa** with *m*-CPBA led to the quantitative formation of the corresponding quinoline *N*-oxide. A functionalized acetophenone (4) was isolated in high yield via a Rh(III)-catalyzed C–H activation with subsequent O-atom transfer (Scheme 4).<sup>21</sup>

To shed light on the mechanism, the kinetic isotope effect was studied by two side-by-side reactions using **1a** and **1a**- $d_5$  under the standard conditions, from which a  $k_H/k_D$  value of 3.4 was obtained on the basis of <sup>1</sup>H NMR analysis (Scheme 5). In addition, the competitive coupling of an equimolar mixture of **1a** and **1a**- $d_5$  with diphenylacetylene gave a consistent value of  $k_H/k_D = 5.3$ . These results indicated that C-H activation is likely

Scheme 4. Transformations of a Coupled Product



Scheme 5. Mechanistic Studies



involved in the turnover-limiting step. To further investigate the electronic preference of the reaction, competitive coupling of **1b** and **1h** differing in electronic effects was performed, and the coupling was favored for the more electron-rich substrate (**1b**). Furthermore, to probe if the annulation proceeded with the intermediacy of an olefin, styrene **5** was prepared and subjected to the standard reaction conditions. No desired product was observed; instead, an indoline was generated in good yield (Scheme 5). This indicates that the reaction did not proceed via initial full hydroarylation and subsequent cyclization.

On the basis of our mechanistic experiments and previous reports, <sup>14a</sup> a plausible catalytic cycle is depicted in Scheme 6. The active cationic Co(III) catalyst is generated upon treatment of  $[Cp*CoCl_2]_2$  with AgNTf<sub>2</sub>. Cobalt-mediated C–H bond activation of acetanilide affords a six-membered metallacyclic intermediate I.<sup>14a</sup> Alkyne coordination and migratory insertion of the aryl group generates a Co(III) alkenyl species II. The Co–C bond of II undergoes migratory insertion into the carbonyl

Scheme 6. Proposed Mechanism



group, forming a Co(III) alkoxide species III. This migratory insertion is favored by the enhanced electrophilicity of the amide carbonyl assisted by the stoichiometric amount of  $AgNTf_2$ . Protonolysis of the Co–O bond produces a tertiary alcohol and regenerates the active catalyst, and the final product was released upon dehydration of the tertiary alcohol.

In conclusion, we have developed Cp\*Co(III)-catalyzed redox-neutral annulative couplings for the synthesis of quinolines between amides and alkynes via a C–H activation pathway. The reactions proceeded with high functional compatibility. Amides bearing various functional groups are viable substrates, and a wide range of aryl-, hetero-, and ester-substituted alkynes have been established as efficient coupling partners in the reactions. The coupling system represents a rare synthesis of quinolines via a C–H activation process. This efficient and concise protocol to access important quinoline scaffolds may find applications in the synthesis of complex products.

# ASSOCIATED CONTENT

## **Supporting Information**

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.orglett.5b03629.

General experimental procedures, characterization details, and <sup>1</sup>H and <sup>13</sup>C NMR spectra of new compounds (PDF)

# AUTHOR INFORMATION

#### **Corresponding Author**

\*E-mail: xwli@dicp.ac.cn.

# Notes

The authors declare no competing financial interest.

# ACKNOWLEDGMENTS

Financial support from the NSFC (Nos. 21525208 and 21472186) and the Dalian Institute of Chemical Physics, Chinese Academy of Sciences is gratefully acknowledged.

# REFERENCES

 (1) For a recent review on transition-metal-catalyzed direct C-H functionalization, see: (a) Colby, D. A.; Bergman, R. G.; Ellman, J. A. *Chem. Rev.* 2010, 110, 624. (b) Hartwig, J. F. Acc. Chem. Res. 2012, 45, 864. (c) Neufeldt, S. R.; Sanford, M. S. Acc. Chem. Res. 2012, 45, 936. (d) Kuhl, N.; Schröder, N.; Glorius, F. Adv. Synth. Catal. 2014, 356, 1443. (e) Cho, S. H.; Kim, J. Y.; Kwak, J.; Chang, S. Chem. Soc. Rev. 2011, 40, 5068. (f) Ackermann, L. Acc. Chem. Res. 2014, 47, 281. (g) Chen, X.; Engle, K. M.; Wang, D. H.; Yu, J.-Q. Angew. Chem., Int. Ed. 2009, 48, 5094. (h) Song, G.; Wang, F.; Li, X. Chem. Soc. Rev. 2012, 41, 3651. (i) Brückl, T.; Baxter, R. D.; Ishihara, Y.; Baran, P. S. Acc. Chem. Res. 2012, 45, 826. (j) Li, B.-J.; Shi, Z.-J. Chem. Soc. Rev. 2012, 41, 5588. (k) Yeung, C. S.; Dong, V. M. Chem. Rev. 2011, 111, 1215.

(2) (a) Engle, K. M.; Mei, T. S.; Wasa, M.; Yu, J.-Q. Acc. Chem. Res.
2012, 45, 788. (b) Song, G.; Li, X. Acc. Chem. Res. 2015, 48, 1007.
(c) Kuhl, N.; Hopkinson, M. N.; Wencel-Delord, J.; Glorius, F. Angew. Chem., Int. Ed. 2012, 51, 10236. (d) Chen, Z.; Wang, B.; Zhang, J.; Yu, W.; Liu, Z.; Zhang, Y. Org. Chem. Front. 2015, 2, 1107.

(3) For reviews, see: (a) Zhang, F.; Spring, D. R. *Chem. Soc. Rev.* 2014, 43, 6906. (b) Huang, H.; Ji, X.; Wu, W.; Jiang, H. *Chem. Soc. Rev.* 2015, 44, 1155.

(4) Muralirajan, K.; Parthasarathy, K.; Cheng, C.-H. Angew. Chem., Int. Ed. 2011, 50, 4169.

(5) Patureau, F. W.; Besset, T.; Kuhl, N.; Glorius, F. J. Am. Chem. Soc. 2011, 133, 2154.

(6) Li, B.-J.; Wang, H.-Y.; Zhu, Q.-L.; Shi, Z.-J. Angew. Chem., Int. Ed. 2012, 51, 3948.

(7) (a) Qi, Z.; Wang, M.; Li, X. Org. Lett. **2013**, *15*, 5440. (b) Chen, Y.; Wang, F.; Zhen, W.; Li, X. Adv. Synth. Catal. **2013**, 355, 353.

(8) Shi, X.; Li, C.-J. Adv. Synth. Catal. 2012, 354, 2933.

(9) (a) Yoshino, T.; Ikemoto, H.; Matsunaga, S.; Kanai, M. Angew. Chem., Int. Ed. **2013**, 52, 2207. (b) Ikemoto, H.; Yoshino, T.; Sakata, K.; Matsunaga, S.; Kanai, M. J. Am. Chem. Soc. **2014**, 136, 5424. (c) Sun, B.; Yoshino, T.; Matsunaga, S.; Kanai, M. Adv. Synth. Catal. **2014**, 356, 1491. (d) Suzuki, Y.; Sun, B.; Sakata, K.; Yoshino, T.; Matsunaga, S.; Kanai, M. Angew. Chem., Int. Ed. **2015**, 54, 9944. (e) Sun, B.; Yoshino, T.; Kanai, M.; Matsunaga, S. Angew. Chem., Int. Ed. **2015**, 54, 12968.

(10) (a) Yu, D.-G.; Gensch, T.; de Azambuja, F.; Vásquez-Céspedes, S.; Glorius, F. J. Am. Chem. Soc. 2014, 136, 17722. (b) Zhao, D.; Kim, J. H.; Stegemann, L.; Strassert, C. A.; Glorius, F. Angew. Chem., Int. Ed. 2015, 54, 4508. (c) Gensch, T.; Vásquez-Céspedes, S.; Yu, D.-G.; Glorius, F. Org. Lett. 2015, 17, 3714.

(11) (a) Li, J.; Ackermann, L. Angew. Chem., Int. Ed. 2015, 54, 8551.

(b) Li, J.; Ackermann, L. Angew. Chem., Int. Ed. 2015, 54, 3635. (c) Wang, H.; Koeller, I.; Liu, W.; Ackermann, L. Chem. - Eur. J. 2015,

21, 15525. (d) Ma, W.; Ackermann, L. ACS Catal. 2015, 5, 2822.

(12) (a) Hummel, J. R.; Ellman, J. A. J. Am. Chem. Soc. 2015, 137, 490.
(b) Hummel, J. R.; Ellman, J. A. Org. Lett. 2015, 17, 2400.

(13) (a) Grigorjeva, L.; Daugulis, O. Angew. Chem., Int. Ed. 2014, 53, 10209. (b) Grigorjeva, L.; Daugulis, O. Org. Lett. 2015, 17, 1204.

(14) (a) Park, J.; Chang, S. Angew. Chem., Int. Ed. 2015, 54, 14103.
(b) Pawar, A. B.; Chang, S. Org. Lett. 2015, 17, 660. (c) Patel, P.; Chang, S. ACS Catal. 2015, 5, 853.

(15) (a) Zhang, Z.-Z.; Liu, B.; Wang, C.-Y.; Shi, B.-F. Org. Lett. 2015, 17, 4094. (b) Liang, Y.; Liang, Y.-F.; Tang, C.; Yuan, Y.; Jiao, N. Chem. -Eur. J. 2015, 21, 16395. (c) Zhang, Z.-Z.; Liu, B.; Wang, C.-Y.; Shi, B.-F. Org. Lett. 2015, 17, 4094. (d) Sen, M.; Kalsi, D.; Sundararaju, B. Chem. -Eur. J. 2015, 21, 15529. (e) Liu, X.-G.; Zhang, S.-S.; Wu, J.-Q.; Li, Q.; Wang, H. Tetrahedron Lett. 2015, 56, 4093.

(16) (a) Wang, F.; Qi, Z.; Sun, J.; Zhang, X.; Li, X. Org. Lett. 2013, 15, 6290. (b) Yang, X.-F.; Hu, X.-H.; Loh, T.-P. Org. Lett. 2015, 17, 1481.
(c) Wang, X.; Tang, H.; Feng, H.; Li, Y.; Yang, Y.; Zhou, B. J. Org. Chem. 2015, 80, 6238. (d) Manoharan, R.; Jeganmohan, M. Org. Biomol. Chem. 2015, 13, 9276.

(17) Wu, J.; Xu, W.; Yu, Z.-X.; Wang, J. J. Am. Chem. Soc. 2015, 137, 9489.

(18) Examples for isoquinoline synthesis: (a) Guimond, N.; Fagnou, K. J. Am. Chem. Soc. 2009, 131, 12050. (b) Fukutani, T.; Umeda, N.; Hirano, K.; Satoh, T.; Miura, M. Chem. Commun. 2009, 34, 5141. (c) Zhang, X.; Chen, D.; Zhao, M.; Zhao, J.; Jia, A.; Li, X. Adv. Synth. Catal. 2011, 353, 719. (d) Wang, Y.-F.; Toh, K. K.; Lee, J.-Y.; Chiba, S. Angew. Chem., Int. Ed. 2011, 50, 5927. (e) Hyster, T. K.; Rovis, T. Chem. Commun. 2011, 47, 11846. (f) Chinnagolla, R. K.; Pimparkar, S.; Jeganmohan, M. Chem. Commun. 2013, 49, 3703. (g) Kornhaaß, C.; Kuper, C.; Ackermann, L. Adv. Synth. Catal. 2014, 356, 1619.

(19) For selected examples, see: (a) Kaur, S.; Kumar, M.; Bhalla, V. *Chem. Commun.* **2015**, *51*, 16327. (b) Liu, X.; Li, X.; Liu, H.; Guo, Q.; Lan, J.; Wang, R.; You, J. *Org. Lett.* **2015**, *17*, 2936. (c) Shukla, S. P.; Tiwari, R. K.; Verma, A. K. *J. Org. Chem.* **2012**, *77*, 10382. (d) Song, G.; Gong, X.; Li, X. *J. Org. Chem.* **2011**, *76*, 7583. (e) Ji, X.; Huang, H.; Li, Y.; Chen, H.; Jiang, H. *Angew. Chem., Int. Ed.* **2012**, *51*, 7292.

(20) (a) Matsugi, M.; Tabusa, F.; Minamikawa, J. I. *Tetrahedron Lett.* 2000, 41, 8523. (b) Friedländer, P. *Ber. Dtsch. Chem. Ges.* 1882, 15, 2572. (c) Marco-Contelles, J.; Perez-Mayoral, E.; Samadi, A.; Carreiras, M. C.; Soriano, E. *Chem. Rev.* 2009, 109, 2652.

(21) (a) Zhang, X.; Qi, Z.; Li, X. Angew. Chem., Int. Ed. 2014, 53, 10794.
(b) Sharma, U.; Park, Y.; Chang, S. J. Org. Chem. 2014, 79, 9899.

D