

Available online at www.sciencedirect.com

Inorganica Chimica Acta 360 (2007) 2653-2660

www.elsevier.com/locate/ica

Multiple coordination modes of hemilabile 3-dimethylaminopropyl chalcogenolates in platinum(II) complexes: Synthesis, spectroscopy and structures

Sandip Dey ^a, Vimal K. Jain ^{a,*}, Ray J. Butcher ^b

^a Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India ^b Department of Chemistry, Howard University, Washington, DC 20059, USA

> Received 28 August 2006; accepted 3 January 2007 Available online 13 January 2007

Abstract

© 2007 Elsevier B.V. All rights reserved.

Keywords: Chalcogenolate; N ligands; Platinum(II); NMR; X-ray crystal structure

1. Introduction

The chemistry of aminochalcogenolate ligands, R_2N - $(CR'_2)_nE^-$, has been a subject area of considerable research for over the last two decades and has been dominated by thiolate derivatives [1–15]. The complexes containing heavier analogs (Se or Te) have been studied only recently [16–21]. These ligands show versatile coordination chemistry as internal functionalization through N donor provides a way to suppress polymerization of metal chalcogenolates, whereas their hemilability makes them superior catalysts [22,23]. The structures of aminoalkylchalcogenolate metal complexes are greatly influenced by the nature of the metal ion, the number of intervening atoms separating the N and E centers and the substituents on the N atom. Recently we have examined the chemistry of *N*,*N*-dimethylaminopropyl

* Corresponding author. *E-mail address:* jainvk@barc.gov.in (V.K. Jain). chalcogenolates, $Me_2NCH_2CH_2CH_2E^-$ (E = S, Se, Te), of palladium and have shown the diverse coordination possibilities of the ligand [19–21]. Only a few examples of platinum complexes with N,N'-dimethylaminopropyl selenolates are reported [19]. To assess the trend with the variation in chalcogen ligand in platinum complexes, we have prepared several platinum(II) complexes with Me_2NCH_2 - $CH_2CH_2E^-$ (E = S, Se, Te) and compared their chemistry with palladium derivatives.

2. Experimental

The solvents were dried and distilled under a nitrogen atmosphere prior to use. All reactions were carried out in a Schlenk flask under a nitrogen atmosphere. Tellurium and Me₂NCH₂CH₂CH₂Cl · HCl were obtained from commercial sources. Dichalcogenides (Me₂NCH₂CH₂CH₂E)₂ (E = S [21,24], Se [19] and Te [21]) were prepared according to the literature methods. Elemental analyses were carried

out by the Radio Chemistry Division of BARC. Melting points were determined in capillary tubes and are uncorrected. ${}^{1}H$, ${}^{13}C{}^{1}H$, ${}^{77}Se{}^{1}H$ and ${}^{195}Pt{}^{1}H$ NMR spectra were recorded on a Bruker DPX-300 NMR spectrometer operating at 300, 75.47, 57.24 and 64.52 MHz, respectively. Chemical shifts are relative to internal chloroform peak at δ 7.26 ppm for ¹H and δ 77.0 ppm for ¹³C{¹H}, Me₂Se for ⁷⁷Se{¹H} and Na₂PtCl₆ for ¹⁹⁵Pt{¹H}. A 90° pulse was used in every case. A weighting function was applied in ¹³C{¹H}, 77 Se{ 1 H} and 195 Pt{ 1 H} NMR spectra. The IR spectra were recorded as Nujol mulls between CsI plates on a Bomen MB-102 FT-IR spectrometer. UV-Vis absorption spectra were recorded on a Chemito Spectrascan UV 2600 double-beam UV-Vis spectrophotometer using quartz cuvettes with a diameter of 1 cm. Cyclic voltammetry was carried out at a scan rate of 100 mV s^{-1} in CH₂Cl₂/0.1 M Bu₄NPF₆, using a three-electrode configuration (glassy carbon electrode, platinum counter electrode, calomel reference electrode) and an Ecochemie potentiostat 100 with autolab software. The ferrocene/ferrocenium couple served as the external reference. FAB mass spectra were recorded on a JEOL SX 102/DA-6000 mass spectrometer at CDRI, Lucknow, India.

2.1. Synthesis

2.1.1. Preparation of $[PtCl(SeCH_2CH_2CH_2NMe_2)]_2$ (1b)

To a methanolic solution of NaSeCH₂CH₂CH₂NMe₂ (prepared from $(Me_2NCH_2CH_2CH_2Se)_2$ (202 mg, 0.61) mmol) and NaBH₄ (47 mg, 1.24 mmol) in 15 cm³ methanol), an aqueous solution of K₂PtCl₄ (507 mg, 1.22 mmol) was added with vigorous stirring which continued for 3 h. The solvents were stripped off in vacuo and the residue was washed with hexane and acetone. The residue was extracted with dichloromethane $(3 \times 15 \text{ cm}^3)$, filtered through a G-3 filter and the filtrate was passed through a Florisil column. The yellow solution was concentrated to 5 cm³ and acetone-hexane mixture was added to yield a yellow powder (yield 213 mg, 44%), m.p. >195 °C (dec). Anal. Calc. for C₁₀H₂₄Cl₂N₂Pt₂Se₂: C, 15.2; H, 3.1; N, 3.5. Found: C, 15.1; H, 3.4; N, 3.5%. UV–Vis (CH₂Cl₂) λ_{max}: 260 (sh), 303 (3820), 331 (2320), 380 (sh). IR v_{Pt-Ct} : 280 cm⁻¹. ¹H NMR in CDCl₃ δ: 1.86–1.99 (m); 2.06–2.14 (m); 2.50–2.75 (m), 2.78 (s), 2.83 (s) (NMe₂); 3.00–3.09 (m). ${}^{13}C{}^{1}H$ NMR in CDCl₃ δ : 19.4 (s, -CH₂-); 27.1 (s, SeCH₂, ${}^{2}J({}^{195}\text{Pt}-{}^{13}\text{C})$ 56 Hz); 50.3, 53.6 (each s, NMe₂); 65.3 (s, NCH₂). ${}^{77}\text{Se}{}^{1}\text{H}$ NMR in CDCl₃ δ : -109 (${}^{1}J({}^{195}\text{Pt}-{}^{77}\text{Se})$ = 364 Hz). ${}^{195}\text{Pt}{}^{1}\text{H}$ NMR in CDCl₃ δ : -3209. FAB-MS m/z: 791 [M], 755 [M-Cl], 719 $[M-(CH_2CH_2NMe_2)], 670 [M-(Cl+CH_2CH_2CH_2NMe_2)].$ Cyclic voltammetry (CH₂Cl₂): E_{pa} (ox) 1.10; E_{pc} (red) -2.36.

2.1.2. Preparation of $[PtCl(SCH_2CH_2CH_2NMe_2)]_2$ (1a)

Prepared similarly to **1b** from K_2PtCl_4 and $NaSCH_2-CH_2CH_2NMe_2$ in 32% yield as a yellow crystalline solid. M.p. >200 °C (dec). *Anal.* Calc. for $C_{10}H_{24}Cl_2N_2Pt_2S_2$: C, 17.2; H, 3.5; N, 4.0. Found: C, 17.1; H, 3.7; N, 4.0%. UV–Vis (CH₂Cl₂) λ_{max} : 288 (2230), 318 (sh), 366 (440) nm. IR v_{Pt-Cl} : 280 cm⁻¹. ¹H NMR in CDCl₃ δ : 1.98–2.13 (m); 2.38–2.43 (m); 2.66–2.74 (m), 2.81 (s, *J*(Pt–H) = 19 Hz), 2.89 (s, *J*(Pt–H) = 26 Hz), 3.26–3.32 (m). ¹³C{¹H} NMR in CDCl₃ δ : 25.6 (s, SCH₂–, ²*J*(¹⁹⁵Pt–¹³C) 40 Hz); 27.1 (s, –CH₂–); 51.4, 52.8 (each s, NMe₂); 63.0 (s, NCH₂–). ¹⁹⁵Pt{¹H} NMR in CDCl₃ δ : –2862 (s). Cyclic voltammetry (CH₂Cl₂): E_{pa} (ox) 0.94; E_{pc} (red) –2.46.

2.1.3. Preparation of $[Pt(SCH_2CH_2CH_2NMe_2)_2]_n$ (2a)

To a freshly prepared methanolic solution (8 cm^3) of NaSCH₂CH₂CH₂NMe₂ (prepared from (Me₂NCH₂CH₂- $(CH_2S)_2$ (271 mg, 1.15 mmol) and NaBH₄ (88 mg, 2.32 mmol)), an aqueous solution (8 cm^3) of $K_2 \text{PtCl}_4$ (473 mg, 1.14 mmol) and acetone (10 cm³) was added with vigorous stirring which continued for 4 h. The solvents were evaporated under reduced pressure. The residue was washed with hexane and extracted with acetone $(3 \times 20 \text{ cm}^3)$. The yellow solution was filtered, passed through a Florisil column and concentrated to 5 cm³ under vacuum, and after cooling at -5 °C for 24 h gave a yellow powder in 28% yield (138 mg). M.p. 208 °C (dec). Anal. Calc. for C₁₀H₂₄N₂PtS₂: C, 27.8; H, 5.6; N, 6.5; S, 14.9. Found: C, 27.0; H, 5.8; N, 6.6; S, 14.0%. UV–Vis (CH₂Cl₂) λ_{max} : 284 (10200), 300 (9800), 380 (sh) nm. ¹H NMR in CDCl₃ δ : 2.28 (s, NMe₂); 2.34 (br); 2.45 (br), 2.53 (br) $(-CH_2-CH_2-CH_2-)$. ¹³C{¹H} NMR in CDCl₃ δ : 31.5 (s, SCH₂); 32.2 (s, -CH₂--); 45.4 (s, NMe₂); 58.7 (s, NCH₂--). Cyclic voltammetry (CH₂Cl₂): E_{pc} (red) -1.76.

2.1.4. Preparation of $[Pt(SeCH_2CH_2CH_2NMe_2)_2]_n$ (2b)

To a freshly prepared methanolic solution (10 cm^3) of NaSeCH₂CH₂CH₂NMe₂ (prepared from (Me₂NCH₂CH₂- CH_2Se_2 (348 mg, 1.05 mmol) and NaBH₄ (81 mg, 2.14 mmol) in methanol), a dichloromethane solution (20 cm^3) of PtCl₂(PhCN)₂ (493 mg, 1.04 mmol) was added with vigorous stirring which continued for 4 h whereupon an orange precipitate formed. The solvents were evaporated under reduced pressure and the residue was washed with hexane and ether. The residue was extracted with hot dichloromethane $(3 \times 20 \text{ cm}^3)$ and filtered. The filtrate was concentrated to 5 cm^3 and hexane was added to give an orange powder (153 mg, 28% yield). M.p. 205 °C (dec). Anal. Calc. for C₁₀H₂₄N₂PtSe₂: C, 22.9; H, 4.6; N, 5.3. Found: C, 22.0; H, 4.1; N, 4.9%. ¹H NMR in CDCl₃ δ : 2.22 (s, NMe₂); 2.32–2.38 (br, –CH₂–CH₂–CH₂–). ¹³C{¹H} NMR in CDCl₃ δ : 25.5 (s, SeCH₂); 32.1 (s, -CH₂-); 45.5 (s, NMe₂); 59.6 (s, NCH₂-).

2.1.5. Reaction of $(Me_2NCH_2CH_2CH_2S)_2$ with K_2PtCl_4 (3a)

To a methanolic solution (15 cm^3) of $(Me_2NCH_2CH_2-CH_2S)_2$ (152 mg, 0.64 mmol), an aqueous solution (10 cm^3) of K_2PtCl_4 (530 mg, 1.28 mmol) was added with stirring which continued for 4 h, whereupon a pale yellow precipitate formed. The precipitate was filtered through a

G-3 filter, washed thoroughly with H₂O, followed by methanol and acetone, and finally dried under vacuum (yield 317 mg, 65%). M.p. 210 °C (dec). *Anal.* Calc. for $C_{10}H_{24}Cl_4N_2Pt_2S_2$: C, 15.6; H, 3.2; N, 3.6; S, 8.3. Found: C, 13.7; H, 3.0; N, 3.2; S, 10.5%.

Similarly Se (**3b**) [m.p. 188 °C (dec). *Anal.* Calc. for $C_{10}H_{24}Cl_4N_2Pt_2Se_2$: C, 13.9; H, 2.8; N, 3.2. Found: C, 12.6; H, 2.8; N, 3.5%] and Te (**3c**) [m.p. 158 °C (dec). *Anal.* Calc. for $C_{10}H_{24}Cl_4N_2Pt_2Te_2$: C, 12.5; H, 2.5; N, 2.9. Found: C, 11.1; H, 2.3; N, 2.5%] derivatives were prepared.

2.1.6. Preparation of [Pt(SePh)(SeCH₂CH₂CH₂NMe₂)]₂ (4a)

To a methanolic solution (10 cm^3) of NaSePh (prepared from Ph₂Se₂ (80 mg, 0.26 mmol) and NaBH₄ (20 mg, 0.53 mmol) in methanol), a dichloromethane solution $[PtCl(SeCH_2CH_2CH_2NMe_2)]_2$ (20 cm^3) of (200 mg, 0.25 mmol) was added with stirring. The color changed immediately to orange. After 3 h of stirring, the solvents were evaporated in vacuo, and the residue was extracted with toluene $(3 \times 15 \text{ cm}^3)$ and filtered. The filtrate was concentrated under vacuum to 5 cm³. To this a mixture of acetone and hexane was added whereupon an orange powder separated (98 mg, 38% yield). M.p. >190 °C (dec). Anal. Calc. for C₂₂H₃₄N₂Pt₂Se₄: C, 25.6; H, 3.3; N, 2.7. Found: C, 24.9; H, 3.1; N, 3.0%. UV–Vis (CH₂Cl₂) λ_{max}: 354 nm. ¹H NMR in CDCl₃ δ : 2.09 (s, with a very broad base) $(SeCH_2CH_2CH_2);$ 7.11 (br), 7.85 (br) (Ph). ¹³C{¹H} NMR in CDCl₃ δ : 24.5 (br, -CH₂-); 31.6 (br, SeCH₂); 45.4 (s, NMe₂), 59.3 (each s, NCH₂); 123.2 (br); 134.9 (br, Ph).

2.1.7. *Preparation of* [*Pt*(*OAc*)(*SeCH*₂*CH*₂*CH*₂*NMe*₂)]₂ (4b)

To a dichloromethane solution (20 cm^3) of [PtCl-(SeCH₂CH₂CH₂NMe₂)]₂ (170 mg, 0.21 mmol), a methanolic suspension (5 cm³) of AgOAc (72 mg, 0.43 mmol) was added with vigorous stirring which was continued for 6 h. This was centrifuged to remove AgCl and then filtered through a G-3 funnel. The filtrate was dried under vacuum and the yellowish green solid was recrystallized from CH₂Cl₂-acetone mixture in 45% (81 mg) yield. M.p. >172 °C (dec). *Anal.* Calc. for C₁₄H₃₀N₂O₄Pt₂Se₂: C, 20.1; H, 3.6; N, 3.3. Found: C, 19.4; H, 3.3; N, 3.6%. ¹H NMR in CDCl₃ δ : 1.99 (s, OAc); 2.66, 2.83 (each s, NMe₂); 2.31 (br); 2.60 (br, m); 3.10 (m) (CH₂-). ¹³C{¹H} NMR in CDCl₃ δ : 17.6 (s, OAc); 23.6 (s, CH₂); 27.5 (s, SeCH₂), 50.8, 53.0 (each s, NMe₂); 65.4 (s, NCH₂); 177.3 (CO).

2.1.8. Preparation of [PtCl(SCH₂CH₂CH₂NMe₂)-(PPr₃)]₂ (**5***a*)

To a dichloromethane solution (20 cm^3) of $[Pt_2Cl_2-(\mu-Cl)_2(PPr_3)_2]$ (180 mg, 0.21 mmol), a methanolic solution of NaSCH₂CH₂CH₂CH₂NMe₂ (prepared from (Me₂NCH₂-CH₂CH₂S)₂ (50 mg, 0.21 mmol) and NaBH₄ (16 mg, 0.42 mmol)) stirred for 3 h. The solvents were stripped off in vacuo, the residue was washed with hexane and extracted with acetone $(3 \times 5 \text{ cm}^3)$. The solution was concentrated to 5 cm³, few drops of hexane were added to yield (120 mg, 56%) an yellow oil. *Anal.* Calc. for C₂₈H₆₆Cl₂N₂-P₂Pt₂S₂: C, 33.0; H, 6.5; N, 2.8; S, 6.3. Found: C, 32.2; H, 6.4; N, 3.0; S, 6.4%. ¹H NMR in CDCl₃ δ : 1.02 (br, P–C–CC*H*₃); 1.57 (br, PC–CH₂–); 1.79 (br, PCH₂); 2.20, 2.37 (each s, NMe₂); 2.28–2.83 (br, m, –CH₂CH₂CH₂–). ³¹P{¹H} NMR in CDCl₃ δ : 1.1, ¹*J*(¹⁹⁵Pt–³¹P) = 3184 Hz. ¹⁹⁵Pt{¹H} NMR in CDCl₃ δ : -3802 (d, ¹*J*(¹⁹⁵Pt–³¹P) = 3206 Hz). Cyclic voltammetry (CH₂Cl₂): *E*_{pc} (red) –0.81, –2.37.

2.1.9. Preparation of $[PtCl(SeCH_2CH_2CH_2NMe_2)-(PPr_3)]_2$ (5b)

Compound **5b** prepared according to the literature method [19]. ¹H NMR in CDCl₃: 1.05 (t, 7 Hz, PCH₂CH₂*Me*); 1.56–1.85 (m, PCH₂CH₂, NCH₂); 2.24(s, NMe₂); 2.45 (br, NCH₂); 2.62 (br, m, SeCH₂). ³¹P{¹H} NMR in CDCl₃: -0.1, ¹*J*(Pt–P) = 3122 Hz. ¹⁹⁵Pt{¹H} NMR in CDCl₃: -3960 (d), ¹*J*(Pt–P) = 3097 Hz.

2.1.10. Preparation of [PtCl(TeCH₂CH₂CH₂NMe₂)-(PEt₃)]₂ (**5c1**)

To a freshly prepared methanolic solution of NaTe-CH₂CH₂CH₂NMe₂ (prepared from (Me₂NCH₂CH₂CH₂-Te)₂ (100 mg, 0.23 mmol) and NaBH₄ (18 mg, 0.48 mmol)), an acetone suspension of [Pt₂Cl₂(μ -Cl)₂(PEt₃)₂] (179 mg, 0.23 mmol) was added with stirring which continued for 4 h at room temperature. The solvents were evaporated under vacuum. The residue was extracted with hexane (3 × 8 cm³) followed by acetone (3 × 8 cm³). The extracts were separately dried under vacuum and studied by NMR spectroscopy.

Hexane soluble part: ¹H NMR in CDCl₃: 1.09–1.25 (m, PCH₂*Me*); 1.78–2.14 (m, PCH₂); 2.18 (s, minor); 2.20 (d, 3.8 Hz, NMe₂, major); 2.23–2.43 (m); 2.63–2.65 (m). ³¹P{¹H}: 4.6 (s, ¹*J*(Pt–P) = 3030 Hz, minor); 7.5 (s, ¹*J*(Pt–P) = 3046 Hz, major) (other small peaks were also present). *Anal.* Calc. for C₂₂H₅₄Cl₂N₂P₂Pt₂Te₂: C, 23.5; H, 4.8; N, 2.5%.

Acetone fraction contained mainly $\sim 90\%$ cis-[PtCl₂-(PEt₃)₂], ³¹P{¹H} NMR: 9.8 (¹J(Pt-P) = 3492 Hz); ¹⁹⁵Pt{¹H} NMR: -4475 (t, ¹J(Pt-P) = 3496 Hz). ³¹P{¹H} NMR: 8.1 (¹J(Pt-P) = 3054 Hz); ¹⁹⁵Pt{¹H} NMR: -4735 (d, ¹J(Pt-P) = 3065 Hz) (minor).

2.1.11. Preparation of $[PtCl(TeCH_2CH_2CH_2NMe_2)-(PMePh_2)]_2$ (5c2)

To a methanolic solution of NaTeCH₂CH₂CH₂NMe₂ (prepared from (Me₂NCH₂CH₂CH₂Te)₂ (78 mg, 0.18 mmol) and NaBH₄ (15 mg, 0.40 mmol) in methanol) was added an acetone suspension (15 cm³) of [Pt₂Cl₂(μ -Cl)₂-(PMePh₂)₂] (167 mg, 0.18 mmol) with vigorous stirring which continued for 4 h. The solvents were removed in vacuo. The residue was washed with hexane (2 cm³) and extracted with acetone (3 × 8 cm³) and filtered. The filtrate

Table 1Crystallographic and structure refinement data for 1b and 5a

Compound	1b	5a
Chemical formula	$C_{10}H_{24}Cl_2N_2Pt_2Se_2$	$C_{28}H_{66}Cl_2N_2P_2Pt_2S_2$
Formula weight	791.32	1017.96
Crystal size (mm)	$0.71 \times 0.33 \times 0.18$	$0.28 \times 0.24 \times 0.10$
Temperature (K)	103(2)	103(2)
λ (Å)	0.71073	0.71073
Crystal system	monoclinic	monoclinic
Space group	$P2_1/n$	C2/c
Unit cell dimensions		
a (Å)	10.3406(19)	21.896(3)
b (Å)	8.6477(15)	11.5656(14)
c (Å)	19.141(3)	15.9619(19)
β (°)	97.809(2)	106.588(2)
$V(Å^3)$	1695.7(5)	3874.0(8)
$D_{\rm calc} ({\rm g}{\rm cm}^{-3})$	3.100	1.745
Ζ	8	8
$\mu ({\rm mm}^{-1})/F(000)$	21.075/1424	7.563/2000
θ Range for data collection (°)	2.13–28.27	1.94–30.87
Limiting indices	$-11 \leq h \leq 13$,	$-31 \leq h \leq 28$,
	$-11 \leq k \leq 11$,	$-16 \leq k \leq 15$,
	$-25 \leqslant l \leqslant 25$	$-22 \leqslant l \leqslant 22$
Goodness-of-fit on F^2	1.064	1.123
Absorption correction	SADABS	SADABS
Reflections collected/ unique	16000/4161	20802/5532
Data/restraints/ parameters	4161/6/167	5532/0/177
Final R_1 , wR_2 indices	0.0413, 0.1119	0.0573, 0.1199
R_1 , wR_2 (all data)	0.0451, 0.1142	0.0708, 0.1269
Largest difference in peak and hole $(e Å^{-3})$	3.569 and -3.723	5.895 and -4.797
Computer programs used	SHELXTL-5.1 [31]	SHELXTL-5.1 [31]

was concentrated to 5 cm³ and hexane (1 cm³) was added and cooled at $-5 \,^{\circ}$ C for 24 h whereupon pale yellow crystals separated (yield: 111 mg, 48%) (m.p. 172 °C). *Anal.* Calc. for C₃₆H₅₀Cl₂N₂P₂Pt₂Te₂: C, 33.5; H, 3.9; N, 2.2. Found: C, 33.9; H, 3.9; N, 2.1%. ¹H NMR in CDCl₃: 2.15 (d, 11 Hz, PMe₂); 2.03, 2.17, 2.26 (each s); 1.82–2.34 (broad+multiplets); 7.28–7.71 (m, Ph). ³¹P{¹H} NMR: 0.1 (s, ¹*J*(Pt–P) = 3110 Hz), -0.9 (s, ¹*J*(Pt–P) = 3075 Hz) (each 1:1); -1.7 (s, ¹*J*(Pt–P) = 3100 Hz, small). ¹⁹⁵Pt{¹H} NMR: -4754 (d, ¹*J*(Pt–P) = 3129 Hz), -4809 (d, ¹*J*(Pt–P) = 3084 Hz) (each 1:1); -4789 (d, ¹*J*(Pt–P) = 3058 Hz, minor) ppm. *cis*-[PtCl₂(PMePh₂)₂] -0.2; ¹*J*(Pt–P) = 3614 Hz.

2.2. X-ray crystallography

The unit cell parameters and the intensity data for yellow single crystals of [PtCl(SeCH₂CH₂CH₂NMe₂)]₂ (**1b**) and [PtCl(SCH₂CH₂CH₂CH₂NMe₂)(PPr₃)]₂ (**5a**) were collected at -170 °C on a Bruker Smart 1K CCD diffractometer using graphite-monochromated Mo K α radiation ($\lambda =$ 0.71073 Å), employing the ω scan technique. The intensity data were corrected for Lorentz, polarization and absorption effects [25]. The structure was solved and refined with SHELX program [26]. The non-hydrogen atoms were refined anisotropically. Selected crystallographic data are given in Table 1.

3. Results and discussion

3.1. Synthesis and NMR spectroscopic data

The reactions of NaECH₂CH₂CH₂NMe₂ with K₂PtCl₄ in 1:1 and 2:1 stoichiometry gave yellow-orange complexes of compositions $[PtCl(ECH_2CH_2CH_2NMe_2)]_2$ (1) (E = S)(1a); Se (1b)) and $[Pt(ECH_2CH_2CH_2NMe_2)_2]_n$ (2) (E = S)(2a); Se (2b)), respectively, as a sparingly soluble powder. Similar reactions with NaTeCH₂CH₂CH₂NMe₂, however, gave brown insoluble solid which was not characterized further. The reaction of Na₂PdCl₄ with (Me₂NCH₂CH₂-CH₂E)₂ in methanol affords dimeric [PdCl(ECH₂CH₂CH₂-NMe₂)]₂, which has been unambiguously characterized by X-ray crystallography [18,20]. The reaction of K_2PtCl_4 with (Me₂NCH₂CH₂CH₂Se)₂ gave an insoluble complex which was thought to be [PtCl(SeCH₂CH₂CH₂NMe₂)]₂ (1b), although microanalytical data were slightly different from the expected composition [18]. When this reaction was extended to other dichalcogenides (E = S or Te), insoluble products were formed which gave microanalysis slightly lower than that expected for 1. The analytical data are, however, closer to the composition, [Pt₂Cl₄{(Me₂- $NCH_2CH_2CH_2E_2$] (3). These complexes are soluble in coordinating solvents, like DMSO and pyridine, with which they react. The $^{195}Pt\{^{1}H\}$ NMR spectra of DMSO solutions of 3a and 3b exhibited major signals due to the cis and trans [PtCl₂(DMSO)₂] (δ -2964, -3455 ppm) and several small peaks in the regions -2858, -2900, -3250 and -3500 (3a); -3600 and -3800 ppm (3b), respectively. The peaks at -2858 (in **3a**) and -3193 (in **3b**) ppm may be due to 1a and 1b and the slight difference in chemical shift may be due to solvent effects. A similar ${}^{195}Pt{}^{1}H$ NMR spectrum was observed when a DMSO solution of [PtCl₂(DMSO)₂] was treated with (Me₂NCH₂CH₂CH₂Se)₂. These complexes also dissolved readily in pyridine to give deep colored solutions from which a colorless product was isolated. This colorless product has been characterized as [PtCl(py)₃]Cl (m.p. >260 (d)) from microanalysis (Anal. Calc.: C, 35.8; H, 3.0; N, 8.3. Found: C, 37.6; H, 3.7; N, 8.8%.) and ¹H NMR spectra. From these data it appears that these complexes 3 contain dichalcogenide ligand coordinated to platinum through chalcogen/nitrogen donors.

The FAB mass spectrum of **1b** displayed a multiplet at m/z 791 suggesting a dimeric formulation of **1**. The ¹H and ¹³C{¹H} NMR spectra of **1** displayed two signals for the methyl groups of NMe₂, suggesting that they are anisochronous. The ¹³C{¹H} signals for NCH₂ and ECH₂ in **1b** are deshielded as compared to the corresponding resonances for **1a**. The ¹⁹⁵Pt{¹H} spectra (Fig. 1) showed a single resonance, suggesting that there is only one type of platinum center. The ⁷⁷Se{¹H} NMR spectrum of **1b** displayed a single resonance at -104 ppm with ¹J(Pt–Se) of 364 Hz (Fig. 2). The ¹J(Pt–Se) in platinum(II) selenolate complexes has been reported in the range of 100–385 Hz [17,27]. The ¹H NMR spectra of **2** showed multiplets for CH₂ proton resonances and a singlet for NMe₂ protons. The ¹³C{¹H} NMR spectra displayed a single resonance for the methylene and methyl carbons of chalcogenolate groups.

The terminal chloride in **1b** can be replaced with other anionic ligands, viz., OAc, SePh. Thus the reaction of **1b** with NaSePh or AgOAc gave $[Pt(SePh)(SeCH_2CH_2CH_2N-Me_2)]_n$ (**4a**) or $[Pt(OAc)(SeCH_2CH_2CH_2NMe_2)]_n$ (**4b**), respectively. The NMR (¹H and ¹³C) data of **4b** can be compared with $[Pd(OAc)(SeCH_2CH_2CH_2NMe_2)]_2$, sug-

Fig. 1. $^{195}\text{Pt}\{^1\text{H}\}$ NMR spectrum of $[PtCl(SeCH_2CH_2CH_2NMe_2)]_2$ in CDCl3.

Fig. 2. $^{77}Se\{^1H\}$ NMR spectrum of $[PtCl(SeCH_2CH_2CH_2NMe_2)]_2$ in CDCl_3.

gesting that **4b** may have binuclear selenolate bridged structure similar to the palladium complex [21]. The ¹H NMR spectrum of **4a**, however, showed broad resonances.

Treatment of $[Pt_2Cl_2(\mu-Cl)_2(PR_3)_2]$ with two equivalents of NaECH₂CH₂CH₂CH₂NMe₂ gave complexes of the general composition $[Pt_2Cl_2(\mu-ECH_2CH_2CH_2NMe_2)_2(PR_3)_2]$, which are formed as either *cis* (E = S; PR₃ = PPr₃) or a mixture of *cis* and *trans* (E = Se or Te) isomers. The tellurolate derivatives tend to disproportionate slowly to PtCl₂(PR₃)₂ in solution and the latter could be isolated by recrystallization. In contrast to the platinum complexes, similar reactions of $[Pd_2Cl_2(\mu-Cl)_2(PR_3)_2]$ with NaSeCH₂CH₂CH₂CH₂NMe₂ gave a mixture of products from which $[PdCl(SeCH_2CH_2CH_2NMe_2)]_2$ was isolated [21].

The ¹H NMR spectrum of **5a** showed two NMe₂ signals, suggesting that the complex has sym-cis configuration. The ${}^{31}P{}^{1}H$ NMR spectra of **5a** and **5b** displayed a singlet with platinum coupling. The magnitude of ${}^{1}J(Pt-P)$ can be compared with that of $[Pt_2Cl_2(\mu-ER')_2(PR_3)_2]$ (E = S or Se), therefore, a dimeric chalcogenolato-bridged structure may be suggested (A and B; E = S or Se) (see later, X-ray crystallography) [28,29]. The ³¹P spectra of 5c1, 5c2, however, displayed three resonances. These resonances can be attributed for *cis*- (A, E = Te) and *trans*- (B, E = Te) isomers. The third resonance can be assigned to a monomeric species (C, E = Te) [PtCl(TeCH₂CH₂CH₂NMe₂)(PR₃)]. The ¹⁹⁵Pt{¹H} NMR spectrum of [PtCl(TeCH₂CH₂CH₂N- Me_2)(PMePh₂)]_n (5c2) (Fig. 3) also displayed three doublets $(\delta^{195}\text{Pt} = -4754; -4809; -4789 \text{ ppm})$ due to phosphorous coupling. A small doublet at δ –4789 ppm may be attributed to the monomeric species. The former two doublets appearing in approximately 1:1 ratio may be assigned to the cis and trans isomers. The ¹⁹⁵Pt resonance gets shielded while ${}^{1}J(Pt-P)$ decreases on increasing the size of the chalcogen atom, -3802 (*cis*, **5a**, S, ${}^{1}J(Pt-P) = 3206$ Hz); -4065(*cis*, **5b**, Se, ${}^{1}J(Pt-P) = 3155 \text{ Hz}$); -4735 (*cis*, **5c1**, Te, ${}^{1}J(\text{Pt}-\text{P}) = 3065 \text{ Hz}$). The decreasing magnitude of ${}^{1}J(\text{Pt}-\text{P})$ P) with increasing size of chalcogen atom reflects their increasing trans influence of the chalcogenolate ligand [27]. This is manifested from facile disproportionation of tellurolate derivative in solution.

 $(E^{\cap}N = Me_2NCH_2CH_2CH_2E; E = S, Se, Te)$

3.2. Electronic spectra and electrochemistry

Absorption spectra and cyclovoltammetric peak potentials of a few complexes have been recorded in dichloromethane. These absorptions can be assigned as charge

Table 2

Se(1) - Pt(1) - Se(2)

N(2)-Pt(1)-Se(1)

Cl(1)-Pt(1)-Se(1)

N(2)-Pt(1)-Se(2)

Cl(1)-Pt(1)-Se(2)

Fig. 3. 195 Pt{ 1 H} NMR spectrum of [PtCl(TeCH₂CH₂CH₂NMe₂)-(PMePh₂)]_n (n = 1 or 2) in CDCl₃.

transfer transitions from electron-rich chalcogenolate ligand centers to unoccupied metal orbitals (LMCT). The absorptions of the complexes $[Pt(ECH_2CH_2CH_2NMe_2)_2]_n$ are intense and red-shifted in comparison to the corresponding complexes [PtCl(ECH₂CH₂CH₂NMe₂)]₂. According to cyclic voltammetry in CH₂Cl₂/0.1 M Bu₄NPF₆, the chelating bridging chalcogenolates in Pt(II) complexes 1 are oxidized irreversibly. The anodic peak potentials >0.9 V for 1a and 1b show that they are hard to oxidize, but in case of thiolate compound **1a** rather facile oxidation takes place in comparison to selenolate derivative 1b. The smaller reduction potential (-1.76 V) of hexameric [Pt(SCH₂CH₂-CH₂NMe₂)₂]₆ (2a) compared to dimeric [PtCl(SCH₂CH₂-CH₂NMe₂)]₂ (1a) may be explained due to increased orbital interaction of the metal based LUMO which shifts to lower energy in the case of 2a.

3.3. Crystal structures of 1b and 5a

The structure of $[PtCl(SeCH_2CH_2CH_2NMe_2)]_2$ (1b) was confirmed by single crystal X-ray diffraction methods. The ORTEP plot with atomic numbering scheme is shown in Fig. 4 and the selected bond lengths and angles are given in Table 2. The structure of the title complex 1b is isomor-

Fig. 4. Molecular structure of $[PtCl(SeCH_2CH_2CH_2NMe_2)]_2$ (1b) with atomic numbering scheme.

Selected bond leng (1b)	ths (Å) and angles	(°) for [PtCl(SeCH ₂	$CH_2CH_2NMe_2)]_2$
Pt(1)–Se(1)	2.3915(8)	Pt(2)-Se(1)	2.3992(8)
Pt(1)-Se(2)	2.3938(8)	Pt(2)-Se(2)	2.3812(8)
Pt(1)-Cl(1)	2.3348(19)	Pt(2)–Cl(2)	2.3570(19)
Pt(1) - N(2)	2.134(6)	Pt(2) - N(1)	2.136(6)
Se(1) - C(21)	1.956(8)	Se(2)-C(11)	1.982(8)
N(2)-C(23)	1.499(10)	N(1)-C(13)	1.490(10)

Se(2) - Pt(2) - Se(1)

N(1)-Pt(2)-Se(2)

Cl(2)-Pt(2)-Se(2)

N(1)-Pt(2)-Se(1)

Cl(2)-Pt(2)-Se(1)

80.22(3)

95.34(17)

172.30(5)

173.78(18)

92.38(5)

80.13(3)

96.19(18)

171.93(5)

175.92(18)

91.84(5)

N(2)-Pt(1)-Cl(1)91.82(18) N(1)-Pt(2)-Cl(2)91.87(18) Pt(1)-Se(1)-Pt(2) 91.20(3) Pt(2)-Se(2)-Pt(1)91.58(3) 105.7(2)Pt(1)-Se(1)-C(21)103.8(2)Pt(2)-Se(2)-C(11)Pt(2)-Se(1)-C(21)107.7(2)Pt(1)-Se(2)-C(11)109.3(2)phous to those of the corresponding palladium derivatives, $[PdCl(ECH_2CH_2CH_2NMe_2)]_2$ (E = S, Se or Te) [19,21]. The molecule comprises of two distorted square planar platinum atoms bridged together by two selenolate groups of symmetrically chelated SeCH₂CH₂CH₂NMe₂ ligands. The coordination environment around each platinum atom is defined by two Se, one N and one Cl atoms. The two chloride ligands are mutually trans. The four-membered Pt₂Se₂ ring is non-planar. The various bond lengths and angles in the "PtClNSe2" fragments are comparable. The two Pt-Se distances trans to N and trans to Cl are essentially similar. The Pt-Cl [17,18,30], Pt-N [17,18,30], Pt-Se [17,18,30] and Se–C [21] distances are well within the range reported earlier. The Se-Pt-Se angles (80°) have reduced considerably from the ideal value of 90°, consequently

The molecular structure of [PtCl(SCH₂CH₂CH₂NMe₂)-(PPr₃)]₂ (**5a**), established by the X-ray diffraction method, is illustrated in Fig. 5. Selected bond lengths and bond angles are given in Table 3. The molecule is a centrosymmetric dimer comprising two distorted square planar platinum atoms bridged together by thiolate groups. The molecule has a sym-*trans* configuration with a planar four-membered "Pt₂S₂" ring, the bridging SCH₂CH₂CH₂-NMe₂ groups adopt an *anti* configuration with respect to each other. Owing to high *trans* influence of phosphine ligand, the Pt–S distances *trans* to P are longer than the one *trans* to Pt–Cl. Various other bond angles around each platinum atom are as expected for [Pt₂Cl₂(μ -ER)₂(PR₃)₂] (E = S or Se) [27,31].

other angles have opened up.

In conclusion, the chemistry of platinum(II) N,N-dimethylaminopropylchalcogenolates differs markedly from the corresponding palladium derivatives both in terms of stability and lability. While the platinum complexes of type **5** are readily isolated, the reactions to isolate palladium counterparts of **5** lead to the formation of a mixture of products. Different bonding modes, viz., chelating, chelating bridging, bridging of N,N-dimethylaminopropyl chalcogenolates, have been demonstrated.

Fig. 5. Molecular structure of [PtCl(SCH₂CH₂CH₂NMe₂)(PPr₃)]₂ (5a) with atomic numbering scheme.

Table 3 Selected bond lengths (Å) and angles (°) for [PtCl(SCH₂CH₂CH₂NMe₂)-(PPr₃)]₂ (5a)

Pt–P	2.264(2)	C(2)–C(3)	1.520(13)
Pt-S	2.383(2)	N–C(4)	1.466(12)
Pt-S#1	2.310(2)	N-C(5)	1.469(13)
Pt-Cl	2.355(2)	N-C(3)	1.470(12)
S-Pt#1	2.310(2)	P-C(1A)	1.831(9)
S-C(1)	1.845(9)	P-C(1B)	1.822(9)
C(1)-C(2)	1.519(13)	P-C(1C)	1.860(9)
P-Pt-S#1	97.19(8)	C(1)-S-Pt#1	106.7(3)
P-Pt-Cl	89.36(8)	C(1)–S–Pt	100.6(3)
S#1-Pt-Cl	172.98(8)	Pt#1–S–Pt	97.00(8)
P-Pt-S	178.55(9)	Pt-P-C(1A)	112.8(3)
S#1-Pt-S	83.00(8)	Pt-P-C(1B)	116.9(3)
Cl-Pt-S	90.39(7)	Pt-P-C(1C)	112.2(3)

Acknowledgments

We thank Drs. T. Mukherjee and S.K. Kulshreshtha for encouragement of this work. We are grateful to Dr. V.K. Manchanda, Head, Radiochemistry Division, BARC, for providing microanalyses of the complexes. We are also thankful to CDRI, Lucknow, for recording the FAB mass spectra.

Appendix A. Supplementary material

CCDC 616504 and 616503 contain the supplementary crystallographic data for ([PtCl(SeCH₂CH₂CH₂NMe₂)]₂) and ([PtCl(SCH₂CH₂CH₂CH₂NMe₂)(PPr₃)]₂). These data can be obtained free of charge via http://www.ccdc.cam. ac.uk/conts/retrieving.html, or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: (+44) 1223-336-033; or e-mail: deposit@ccdc.cam.ac.uk. Supplementary data associated with

this article can be found, in the online version, at doi:10.1016/j.ica.2007.01.002.

References

- M. Capdevila, P. Gonzalez-Duarte, C. Foces-Foces, F.H. Cano, M. Martinez-Ripoll, J. Chem. Soc., Dalton Trans. (1990) 143.
- [2] M. Capdevila, W. Clegg, P. Gonzalez-Duarte, I. Mira, J. Chem. Soc., Dalton Trans. (1992) 173.
- [3] H. Barrera, J.C. Bayon, J. Suades, C. Germain, J.P. Declerq, Polyhedron 3 (1984) 969.
- [4] X. Solans, M. Font-Altaba, J.L. Brianso, J. Sola, J. Suades, H. Barrera, Acta Crystallogr., Sect. C 39 (1983) 1653.
- [5] M. Capdevila, P. Gonzalez-Duarte, J. Sola, C. Foces-Foces, F.H. Cano, M. Martinez-Ripoll, Polyhedron 8 (1989) 1253.
- [6] C.W. Schlapfer, K. Nakamoto, Inorg. Chim. Acta 6 (1972) 177.
- [7] H. Barrera, J.M. Vinas, M. Font-Altaba, X. Solans, Polyhedron 4 (1985) 2027.
- [8] J. Sola, R. Yanez, J. Chem. Soc., Dalton Trans. (1986) 2021.
- [9] J.A. Ayllon, P. Gonzalez-Duarte, C. Miravittles, E. Molins, J. Chem. Soc., Dalton Trans. (1990) 1793.
- [10] M. Capdevila, W. Clegg, P. Gonzalez-Duarte, B. Harris, I. Mira, J. Sola, I.C. Taylor, J. Chem. Soc., Dalton Trans. (1992) 2817.
- [11] J. Garcia-Anton, J. Pons, X. Solans, M. Font-Bardia, J. Ros, Inorg. Chim. Acta 357 (2004) 571.
- [12] D. Gibson, S.J. Lippard, Inorg. Chem. 25 (1986) 219.
- [13] I. Casals, P. Gonzalez-Duarte, W. Clegg, C. Foces-Foces, F.H. Cano, M. Martinez-Ripoll, M. Gomez, X. Solans, J. Chem. Soc., Dalton Trans. (1991) 2511.
- [14] S. Marchal, V. Moreno, G. Aullon, S. Alvarez, M. Quiros, M. Font-Bardia, X. Solans, Polyhedron 18 (1999) 3675.
- [15] (a) Y. Chikamoto, T. Kawamoto, A.I. Kamiyama, T. Konno, Inorg. Chem. 44 (2005) 1601;
 (b) M. Hirotsu, A. Kobayashi, T. Yoshimura, T. Konno, J. Chem. Soc., Dalton Trans. (2002) 878;
 (c) T. Konno, T. Machida, K. Okamoto, Bull. Chem. Soc. Jpn. 71 (1998) 175;
 (d) K. Okamoto, Y. Yoshinari, Y. Yamada, N. Sakagami, T. Konno, Bull. Chem. Soc. Jpn. 71 (1998) 1363.
- [16] S. Dey, V.K. Jain, S. Chaudhury, A. Knoedler, F. Lissner, W. Kaim, J. Chem. Soc., Dalton Trans. (2001) 723.

- [17] S. Dey, V.K. Jain, A. Knoedler, W. Kaim, S. Zalis, Eur. J. Inorg. Chem. (2001) 2965.
- [18] S. Dey, V.K. Jain, A. Knoedler, A. Klein, W. Kaim, S. Zalis, Inorg. Chem. 41 (2002) 2864.
- [19] S. Dey, V.K. Jain, A. Knoedler, W. Kaim, Inorg. Chim. Acta 349 (2003) 104.
- [20] S. Dey, V.K. Jain, A. Klein, W. Kaim, Inorg. Chem. Commun. 7 (2004) 601.
- [21] S. Dey, V.K. Jain, B. Varghese, T. Schurr, M. Niemeyer, W. Kaim, R.J. Butcher, Inorg. Chim. Acta 359 (2006) 1449.
- [22] J. Real, M. Pages, A. Polo, J.F. Piniella, A. Alvarez-Larena, Chem. Commun. (1999) 277.
- [23] (a) J.C. Bayon, C. Claver, A.M. Masdeu-Bulto, Coord. Chem. Rev. 193–195 (1999) 73;
 - (b) P. Espinet, K. Soulantica, Coord. Chem. Rev. 193-195 (1999) 499.
- [24] B.C. Cossar, J.O. Fournier, D.L. Fields, D.D. Reynolds, J. Org. Chem. 27 (1962) 93.
- [25] J.A. Ibers, W.C. Hamilton, Acta Crystallogr. 17 (1964) 78.

- [26] G.M. Sheldrick, SHELXL-97: A Computer Program for Crystal Structure Solution and Refinement, Universität Göttingen, Göttingen, Germany, 1997.
- [27] V.K. Jain, L. Jain, Coord. Chem. Rev. 249 (2005) 3075.
- [28] (a) H.C. Clark, V.K. Jain, G.S. Rao, J. Organomet. Chem. 279 (1985) 181;

(b) V.K. Jain, R.P. Patel, K. Venkatasubramanian, Polyhedron 10 (1991) 851.

- [29] V.K. Jain, S. Kannan, J. Organomet. Chem. 405 (1991) 265.
- [30] S. Dey, L.B. Kumbhare, V.K. Jain, T. Schurr, W. Kaim, A. Klein, F. Belaj, Eur. J. Inorg. Chem. (2004) 4510.
- [31] (a) M.C. Hall, J.A.J. Jarvis, B.T. Kilbourn, P.G. Owston, J. Chem. Soc., Dalton Trans. (1972) 1544;
 (b) V.K. Jain, S. Kannan, R.J. Butcher, J.P. Jasinski, J. Organomet. Chem. 468 (1994) 285;
 (c) V.K. Jain, S. Kannan, R.J. Butcher, J.P. Jasinski, Polyhedron 14
 - (1995) 3641;
 - (d) S. Dey, V.K. Jain, B. Varghese, J. Organomet. Chem. 623 (2001) 48.