NEW SYNTHETIC APPROACHES TO $Mn_2(CO)_{10-n}L_n$ DERIVATIVES (L = PHOSPHINES): THEIR CATALYTIC ACTIVITY IN THE HOMOGENEOUS HYDROGENATION OF DIPHENYLACETYLENE AND THE CRYSTAL STRUCTURE OF $Mn_2(CO)_9(PPh_2H)$

ROBERTO GIORDANO and ENRICO SAPPA*

Dipartimento di Chimica Inorganica, Chimica Fisica e Chimica dei Materiali, Università di Torino, Via P. Giuria 7, 10125 Torino, Italy

and

ANTONIO TIRIPICCHIO* and MARISA TIRIPICCHIO CAMELLINI

Istituto di Chimica Generale e Inorganica, Università di Parma, Centro di Studio per la Strutturistica Diffractometrica del CNR, Viale delle Scienze, 43100 Parma, Italy

and

MARTIN J. MAYS

University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, U.K.

and

MICHAEL P. BROWN

Donnan Laboratory, University of Liverpool, Grove Street, Liverpool LS9 3BX, U.K.

Abstract—Novel $Mn_2(CO)_{10-n}L_n$ complexes have been investigated as hydrogenation catalysts and a representative member has been structurally characterized.

We are investigating the behaviour of carbonyl clusters, and in particular that of phosphine-substituted and phosphido-bridged derivatives as homogeneous hydrogenation catalysis.¹ We have studied the behaviour of $Mn_2(CO)_{10}$ (1), $Mn_2(CO)_9$ (PPh₂H) (2), $Mn_2(\mu$ -H)(μ -PPhH)(CO)₈ (3), $Mn_2(\mu$ -H)(μ -PPh₂)(CO) (4) and $Mn_2(\mu$ -PPh₂)₂(CO)₈ (5) in the hydrogenation of diphenylacetylene.

Phosphine-substituted dimanganese derivatives are generally obtained by thermal or photochemical activation of the CO's, generally in non-selective processes; indeed it is believed that Mn---Mn bond cleavage occurs and that the phosphine-substituted fragments recombine in a random fashion.³

We have attempted the synthesis of Mn_2 (CO)_{10-n}L_n derivatives by labilization of CO's with Me₃NO⁴ in relatively mild conditions (L = PPh₃, PPh₂H, PPh₂CH=CH₂, PPh₂PC=CPPh₂). Heating Mn₂(CO)₁₀ with a 1-5 molar excess of ligand in hexane or heptane, in the presence of dry Me₃ NO for 2 min, leads to mixtures containing 30-40% of Mn₂(CO)₉L, about 5-10% of Mn₂(CO)₈L₂ (one or two isomers) and about 50% of unreacted carbonyl (which was re-used).

The complexes were identified by spectroscopy and, in particular, by ³¹P NMR; for 2 a sharp singlet at δ 51.12 was observed. However, for the other monosubstituted complexes sharp singlets centred at δ 50–60 and a broad peak at δ 20–30 was found (but for PPh₃, a sharp singlet at δ 29.52, a broad peak at δ 74.62 ppm). This should indicate

^{*} Authors to whom correspondence should be addressed.

Complex	Reaction time ^a		Selectivity to:		
		Conversion	cis-stilbene	trans-stilbene	<i>trans–cis</i> ratio ^b
1	1–27	5.0-12.5	24.0-22.4	76.0–77.6	3.2-3.5
2	1-48	5.1-11.9	15.7-21.0	84.3-79.0	5.4-3.8
3	1–76	14.2-21.3	28.9-27.2	71.1-72.8	2.5-2.7
4 ^c	48	50.4	20.2	79.8	3.9
5	148	5.8-15.4	25.9-27.3	74.1–72.7	2. 9 –2.7

Table 1

^{*a*} Minimum and maximum value; 1 atm H_2 .

^b Initial and final value.

^c Under 34 atm pressure of H₂.

that mostly equatorial, monosubstituted complexes are obtained.

Thus, apparently, the use of Me₃NO gives, in most cases, stereospecific substitution of one equatorial CO, a statistically favoured process. In order to confirm the structure of 2, a suitable crystal of 2 was selected for an X-ray diffraction study. Crystal data: $C_{21}H_{11}Mn_2O_9P$, M = 548.16, monoclinic space group C_2/c , a = 24.038(8), b = 14.645(6), c = 16.328(6) Å, $\beta = 125.58(2)^{\circ}$, Z = 8, $d_{calc} =$ 1.559 g cm⁻³, μ (Mo- K_{α}) = 11.50 cm⁻¹. Of 4409 reflections collected on an Enraf-Nonius CAD-4 diffractometer (Mo- K_{α}) (3 < θ < 24°), 1548, having $I > 2\sigma(I)$, were used in the refinement. All nonhydrogen atoms were refined anisotropically. Hydrogen atoms were clearly located and refined isotropically. Final R and R_w values were 0.0363 and 0.0436, respectively. Atomic coordinates have been deposited with the Director, Cambridge Crystallographic Data Centre. The structure of 2 is shown in Fig. 1. The Mn-Mn distance

Fig. 1. View of the molecular structure of $Mn_2(CO)_9$ (PPh₂H). of 2.910(2) Å, is practically identical to that found in $Mn_2(CO)_{10.5}$

Monosubstituted derivatives, characterized as axial, were obtained with PPh₃, PBu₃, P(OPh)₃, AsPh₃, PPhMe₂ (X-ray structure),⁶ AsPhMe₂, PPh₂Me and PF₃; only with PH₃ was an equatorial derivative observed.⁷ A few X-ray structures for axial,⁶ diaxial⁸ and diequatorial⁸ complexes have been reported; thus **2** is the first confirmed example of equatorial substitution.

Some preliminary results in homogeneous hydrogenation of diphenylacetylene are given in Table 1.

Worthy of note are the high *trans-cis* stilbene ratios observed; identification of the organometallic species in the hydrogenation solutions is in progress in order to gain better insight into the reaction mechanisms.

REFERENCES

- M. Castiglioni, R. Giordano, E. Sappa, A. Tiripicchio and M. Tiripicchio Camellini, J. Chem. Soc., Dalton Trans. 1986, 23; M. Castiglioni, R. Giordano and E. Sappa, J. Organomet. Chem. 1988, 342, 111.
- J. A. Iggo, M. J. Mays, P. R. Raithby and K. Henrick, J. Chem. Soc., Dalton Trans. 1983, 205.
- P. M. Treichel, in *Comprehensive Organometallic* Chemistry (Edited by G. Wilkinson, F. G. A. Stone and E. W. Abel), Vol. 4, Ch. 29, p. 1. Pergamon Press, Oxford (1982).
- 4. G. A. Foulds, B. F. G. Johnson and J. Lewis, J. Organomet. Chem. 1985, 296, 147.
- M. R. Churchill, K. N. Amoh and H. J. Wasserman, Inorg. Chem. 1981, 20, 1609; M. Martin, B. Rees and A. Mitschler, Acta Cryst. 1982, 38B, 6.
- 6. M. Laing, E. Singleton and R. Reinmann, J. Organomet. Chem. 1973, 56, C21.
- E. O. Fischer and W. A. Hermann, Chem. Ber. 1972, 105, 186.
- M. Laing, T. Ashworth, P. Sommerville, E. Singleton and R. Reinmann, J. Chem. Soc., Chem. Commun. 1972, 1251.

