Photochemistry

Rapid Synthesis of D-A'- π -A Dyes through a One-Pot Three-Component Suzuki–Miyaura Coupling and an Evaluation of their Photovoltaic Properties for Use in Dye-Sensitized Solar Cells**

Shunsuke Irie,^[a] Shinichiro Fuse,^{*[a, b]} Masato M. Maitani,^[a] Yuji Wada,^[a] Yuhei Ogomi,^[c] Shuzi Hayase,^[c] Tatsuo Kaiho,^[d] Hisashi Masui,^[e] Hiroshi Tanaka,^[a] and Takashi Takahashi^[e]

Abstract: Twenty-four D-A' $-\pi$ -A dyes were rapidly synthesized through a one-pot three-component Suzuki–Miyaura coupling reaction, which was assisted by microwave irradiation. We measured the absorption spectra, electrochemical properties, and solar-cell performance of all the synthesized dyes. The D5 π A4 dye contained our originally designed rigid and nonplanar donor and exerted the highest efficiency at 5.4%. The short-circuit current (J_{sc}) was the most important parameter for the conversion efficiency (η) in the case of the organic D-A'- π -A dyes. Optimal ranges for the D-A'- π -A dyes were observed for high values of J_{sc}/λ_{max} at $\lambda = 560-620$ nm, an optical-absorption edge of $\lambda = 690-790$ nm, and $E_{\rm HOMO}$ and $E_{\rm LUMO}$ values of <1.14 and -0.56 to -0.76 V, respectively.

Introduction

Dye-sensitized solar cells (DSSCs) have garnered considerable attention due to characteristics such as a high power-conversion efficiency (PCE), simple fabrication procedures, and a low production cost.^[1] As sensitizers, dye molecules play a crucial role in DSSCs.^[2] The most common, readily available high-performing dyes are the ruthenium-centered polypyridyls.^[2] Metalfree, organic dyes comprise a very important class of compound owing to their large molar absorptivity, design flexibility, and lower potential production costs relative to the rutheni-

[a]	S. Irie, Dr. S. Fuse, Dr. M. M. Maitani, Prof. Y. Wada, Dr. H. Tanaka Department of Applied Chemistry Tokyo Institute of Technology 2-12-1, Ookayama, Meguro-ku Tokyo 152-8552 (Japan)
[b]	Dr. S. Fuse Present address: Chemical Resources Laboratory Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku Yokohama, 226-8503 (Japan) E-mail: sfuse@res.titech.ac.jp
[c]	Dr. Y. Ogomi, Prof. S. Hayase Graduate School of Life Science and Systems Engineering Kyushu Institute of Technology Fukuoka 808-0196 (Japan)
[d]	Dr. T. Kaiho Brine Resources Research & Development Division Kanto Natural Gas Development Co., Ltd. Chiba 297-8550 (Japan)
[e]	Dr. H. Masui, Prof. T. Takahashi Yokohama University of Pharmacy 601, Matano-cho, Totsuka-ku Yokohama, 245-0066 (Japan)
[**]	A = Acceptor, D = donor.
	Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/chem.201504277.

um-polypyridyl dyes.^[3] However, one of the main drawbacks of organic dyes is a poor light response in the red to near-infrared (NIR) region ($\lambda > 600$ nm).^[3a, c] NIR dyes should have narrow HOMO-LUMO gaps to enable sufficient photoabsorption in the NIR region. On the other hand, high HOMO and low LUMO values of the NIR dyes decrease the driving force of electron transfer at the TiO₂/dye or dye/electrolyte interfaces. Therefore, fine tuning of the HOMO and LUMO values is generally important for the development of high performance NIR dyes. It is important to create templates of the NIR organic dyes, and the HOMO and LUMO values can be readily tuned by rapid structural modification.^[4] In addition, NIR organic dyes with sufficient chemical stability are highly desired, and although many organic NIR dyes such as cyanines^[5] and squaraines^[6] have been reported, few can satisfy all the above criteria (NIR-absorption, ready structural modification, and sufficient chemical stability).

We have developed a sequential/one-pot palladium-catalyzed cross-coupling approach to the rapid synthesis of systematically modified π -conjugated molecules.^[7] Based on the developed synthetic methodology, we constructed a library of UV/Vis-absorbing organic donor- π -acceptor (D- π -A) dyes for DSSCs, evaluated their properties, and elucidated the structure-function relationships.^[7a,d,e] Recently, Zhu and co-workers reported organic D-A'- π -A dyes.^[8] The electron-withdrawing benzothiadiazole, benzotriazole, and quinoxaline structures were used for the A' moiety, and the absorption of the dyes was redshifted. However, the PCE edges of these dyes usually are as high as $\lambda = 700$ nm.^[8b, 9]

Herein, we wish to report novel D-A'- π -A dyes with a strong electron-withdrawing triazoloquinoxaline structure used for the A' moiety to enable power conversion in the NIR region. The HOMO-LUMO level could be readily tuned by rapid struc-

Chem. Eur. J. 2016, 22, 2507 – 2514

Wiley Online Library

tural modification based on a microwave-assisted one-pot three-component coupling approach. The D3 π A4, D5 π A2, and D5 π A4 dyes exerted good PCE in the UV–NIR regions ($\lambda <$ 900 nm). In addition, we disclose the optimal HOMO and LUMO values of the NIR organic dyes that enable both sufficient NIR absorption and smooth electron transfer at the interfaces in DSSCs.

Results and Discussion

We selected the highly electron-withdrawing triazoloquinoxaline^[10] structure as the A' moiety. The triazoloquinoxaline structure is reportedly an acceptor unit in low-bandgap D–A polymers.^[10] The use of the triazoloquinoxaline accepter allowed us to introduce side chains to improve the solubility of the dyes. We planned to couple donor block I with the aromatic scaffold of II because the C–Br bond of the first coupling product would be less reactive relative to the corresponding C–Br bond of the aromatic scaffold II. Therefore, an undesirable overreaction that afforded a D-A'-D compound would be suppressed (Figure 1).^[7b–d] A one-pot Suzuki–Miyaura (SM) cou-

Figure 1. One-pot approach to the synthesis of D-A'- π -A dyes based on the Suzuki–Miyaura (SM) coupling. B=(dihydroxy)boryl or (pinacolato)boryl.

pling^[11] with III would afford the desired coupling product IV. The subsequent removal of the tert-butyl group in block A would afford the desired compound V. The NIR dyes and their synthetic intermediates are usually highly planar molecules; therefore, the isolation of the dyes from undesired planar products tended to become tedious. The one-pot procedure facilitates the laborious purification step. In addition, tuning of the HOMO-LUMO values is particularly important in the development of NIR dyes for DSSCs, which are usually influenced by the donor and acceptor structures. Therefore, this approach provides an opportunity to tune the HOMO-LUMO values by rapidly altering the donor and acceptor structures. Moreover, the designed dyes contained neither di- nor trisubstituted unstable acyclic alkenes, which are frequently found in conventional NIR dyes, such as cyanines and squaraines. Thus, we anticipated that the designed dyes would retain sufficient chemical stability.

The triazoloquinoxaline block \mathbf{A}' was synthesized in accordance with a modified procedure.^[10] The alkylation of 1,2,3-benzotriazole (1) and the following dibromination afforded **3** (Scheme 1). A slightly modified nitration procedure^[10c,d,12] afforded the desired dinitro product **4** in a good yield. The re-

Scheme 1. Synthesis of the triazoloquinoxaline block A'. Ac = acetyl, Ph = phenyl.

duction of dinitro aryl **4** and the subsequent quinoxaline ring formation afforded the desired dibromo triazoloquinoxaline \mathbf{A}' in an excellent yield.

The key SM coupling of triazologuinoxaline block $\mathbf{A}^{\prime [13]}$ with the simple donor building block D1^[14] was examined by using a combination of Pd catalysts (Pd(OAc)₂,^[15] [Pd(PPh₃)₄],^[16] and [Pd₂(dba)₃],^[17] phosphine ligands (PPh₃, PCy₃·BF₄, 2-(di-tert-butylphosphino)biphenyl (JohnPhos),^[18] XPhos,^[19] [(tBu₃P)H]BF,^[20] and 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene (Xantophos)),^[21] bases (NaOH and Na₂CO₃), and solvents (THF/H₂O, toluene/EtOH/H₂O, and toluene/H₂O). As a result, the combination of Pd(OAc)₂, Xantphos, and Na₂CO₃ in toluene/H₂O at 60 °C for 8 hours afforded the best result (Table 1, entry 1). The microwave-irradiation conditions shortened the reaction time from 8 to 3 hours, and slightly improved the yield of the desired product (Table 1, entry 2). The SM coupling of A' with D2^[14] and D4, which contained our originally developed fusedring structure,^[7d] was examined under microwave-irradiation conditions (Table 1, entries 3 and 4). The use of D2 afforded better results.

A one-pot SM coupling was examined (Table 2). The **D** block, **A**' block, Na₂CO₃, Pd(OAc)₂, and Xantphos were placed in an argon atmosphere. Toluene and H₂O were added, and the mixture was degassed with argon. The reaction tube was equipped with a rubber cap and placed in the microwave-synthesis system that operated at 60 °C and 200 W for 3 hours. After cooling to room temperature, the π A block, Na₂CO₃, [Pd₂(dba)₃], [(tBu₃P)H]BF, toluene, and H₂O were added in succession, and the mixture was degassed with argon.^[7d] The resultant mixture was stirred at room temperature for 3–

CHEMISTRY A European Journal Full Paper

19 hours (as monitored by TLC analysis). A standard workup procedure afforded the desired coupling products.

Treatment of the coupling products with TFA followed by simple removal of the volatile TFA afforded the desired carboxylic acids in good purity. The obtained carboxylic acids were used to measure the absorption spectra and the electrochemical and photovoltaic properties without further purification.

All the synthesized dyes were soluble in DMF, CH_2CI_2 , and $CHCI_3$, but were not soluble in MeOH, MeCN, or acetone. As expected, the synthesized dyes were sufficiently stable under a fluorescent lamp in air (>1 month) as solids or in solution (i.e., CH_2CI_2).

The absorption spectra and electrochemical properties of the 24 dyes were measured (see Figure S1 in the Supporting Information and Table 3). As expected, the absorption wavelengths of the D-A'- π -A dyes containing the strong electron-withdrawing triazoloquinoxaline structure were redshifted ($\Delta\lambda \approx 200$ nm) relative to our previously synthesized D- π -A dyes 1 and 2 (Figure 2).^[7d]

As the donors influenced the E_{HOMO} values of the dyes, the E_{HOMO} value became more positive on the order of $\mathbf{D3} < \mathbf{D5} < \mathbf{D6} \approx \mathbf{D4} \leq \mathbf{D1} \leq \mathbf{D2}$ (Figure 3 a). On the other hand, the acceptors influenced the E_{LUMO} value of the dyes; therefore, the E_{LUMO} value became more negative on the order of $\pi \mathbf{A1} < \pi \mathbf{A3} \leq \pi \mathbf{A2} \leq \pi \mathbf{A4}$ (Figure 3 d). The HOMO values of all the synthesized dyes met the minimum requirement for a dye sensitizer in DSSCs, and HOMO level had a more positive value than the iodine/iodide redox potential (+0.4 V vs. the normal hydrogen electrode (NHE)). On the other hand, the E_{LUMO} value of 7 dyes (i.e., $\mathbf{D1}\pi\mathbf{A1}$, $\mathbf{D1}\pi\mathbf{A2}$, $\mathbf{D1}\pi\mathbf{A3}$, $\mathbf{D2}\pi\mathbf{A1}$, $\mathbf{D3}\pi\mathbf{A1}$, $\mathbf{D4}\pi\mathbf{A1}$, and $\mathbf{D5}\pi\mathbf{A1}$) was more positive than the conduction-band edge of TiO₂ (-0.5 V vs. NHE).

fluoroacetic acid, Xphos = 2-dicyclohexylphosphino-2',4',6'-triisopropylbiphenyl.

Photovoltaic properties were evaluated for the solar cells that were prepared by using the 24 synthesized dyes and D149^[22] (Table 4). Four dyes (i.e., D3 π A4, D4 π A2, D5 π A2, and D5 π A4) exerted good PCEs (\geq 4.5%). To our delight, the D5 π A4 dye, which contained our originally developed rigid and nonplanar D5 unit, exerted the highest PCE at 5.4%.

Cham	Eur I	2016	22	2507	2514
cnem.	EUR. J.	2016.	22.	2507-	2514

Table 3. Photophysical and electrochemical properties of the 24 dyes.						
Entry	Dye	λ _{max} [nm] ^[a]	$\varepsilon [Lmol^{-1} cm^{-1}]^{[b]}$	Opt. edge [nm] ^[c]	<i>E</i> _{НОМО} [V] ^[d] (vs. NHE)	E _{LUMO} [V] ^[e] (vs. NHE)
1	D1 πA1	664	19600	843	1.10	-0.37
2	D1πA2	592	14600	756	1.35	-0.29
3	D1 πA3	629	23800	785	1.12	-0.46
4	D1πA4	578	25 200	729	1.14	-0.56
5	D2πA1	595	35 100	746	1.27	-0.39
6	$D2\pi A2$	520	12400	658	1.28	-0.60
7	$D2\pi A3$	558	14900	687	1.24	-0.57
8	D2 πA4	511	13 500	627	1.24	-0.74
9	D3 πA1	714	22 200	887	0.91	-0.49
10	D3 πA2	630	27 300	811	0.93	-0.60
11	D3 πA3	669	21900	852	0.92	-0.54
12	D3 πA4	617	25 200	788	0.93	-0.65
13	D4πA1	644	19600	805	1.07	-0.47
14	D4πA2	564	12600	695	1.02	-0.76
15	D4 π A 3	602	18200	741	1.06	-0.62
16	$D4\pi A4$	552	13200	681	1.09	-0.73
17	D5 πA1	685	42800	873	1.00	-0.42
18	D5 πA2	604	38400	772	1.01	-0.59
19	$D5\pi A3$	641	31100	830	0.99	-0.51
20	D5 πA4	589	14100	765	1.02	-0.61
21	D6 π A 1	617	23 100	759	1.05	-0.58
22	$D6\pi A2$	546	18100	665	1.05	-0.82
23	$D6\pi A3$	575	20 500	721	1.04	-0.68
24	D6 π A 4	529	17 500	657	1.05	-0.84

[a] Absorption maxima in CH₂Cl₂. [b] Molar absorption coefficients in CH₂Cl₂. [c] Optical-transmittance edge was defined by extrapolating the leading edge of the optical-transmission spectra of the dyes on TiO₂ (see the Supporting Information) to the baseline. [d] The $E_{\rm HOMO}$ value was determined by means of cyclic voltammetry. [e] The $E_{\rm HOMO} - E_{\rm LUMO}$ gap was determined from the optical-transmittance edge; that is, the $E_{\rm HOMO} - E_{\rm LUMO}$ gap [eV] was calculated by using $\lambda = 1240$ [nm]/optical edge [nm] and the $E_{\rm LUMO}$ value was calculated by summation of the HOMO potential and the $E_{\rm HOMO} - E_{\rm LUMO}$ gap.

CHEMISTRY

A European Journal

Full Paper

Figure 2. Comparison of absorption spectra of D1A1 with our previously reported dyes 1 and 2 without the triazoloquinoxaline structure in CH_2CI_2 .

We previously reported that the short-circuit current (J_{sc}) was the most important parameter for the conversion efficiency (η) in the case of UV/Vis-absorbing D– π -A dyes.^[7d] Similarly, the J_{sc} value is strongly correlated with η (R^2 =0.98; Figure 4c) in the case of D-A'- π -A dyes, whereas no correlation was ob-

Figure 3. a) The average values for the E_{HOMO} versus the NHE of dyes containing D1 (4 dyes), D2 (4 dyes), D3 (4 dyes), D4 (4 dyes), D5 (4 dyes), and D6 (4 dyes). b) The average values for the E_{LUMO} versus the NHE of dyes containing D1 (4 dyes), D2 (4 dyes), D3 (4 dyes), D4 (4 dyes), D5 (4 dyes), and D6 (4 dyes). c) The average values for the E_{HOMO} versus the NHE of dyes containing π A1 (6 dyes), π A2 (6 dyes), π A3 (6 dyes), and π A4 (6 dyes). d) The average values for the E_{LUMO} versus the NHE of dyes), π A3 (6 dyes), and π A4 (6 dyes). The values are expressed as the mean \pm standard deviation (SD).

Chem. Eur. J. 2016, 22, 2507 - 2514

www.chemeurj.org

© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

Table 4. Photovoltaic properties of solar cells prepared by using the 24 dyes.						
Entry	Dye	$\eta^{\scriptscriptstyle{[a]}}$ [%]	FF ^[a]	$V_{\rm oc}^{\rm [a]}$ [V]	$J_{\rm sc}^{[a]} [{\rm mA cm^{-1}}]$	
1	D149	6.1	0.69	0.71	12.3	
2	D1 πA1	1.4	0.66	0.52	4.0	
3	D1 πA2	2.6	0.59	0.61	7.1	
4	D1 πA3	2.6	0.62	0.58	7.3	
5	D1 πA4	4.4	0.68	0.61	10.5	
6	D2 πA1	4.2	0.71	0.59	10.1	
7	D2 πA2	2.2	0.52	0.64	6.5	
8	D2 πA3	3.4	0.72	0.60	7.9	
9	D2 πA4	3.3	0.68	0.64	7.6	
10	D3 πA1	0.3	0.54	0.44	1.2	
11	D3 πA2	2.7	0.69	0.57	6.8	
12	D3 πA3	1.2	0.68	0.53	3.4	
13	D3 πA4	4.8	0.62	0.61	12.5	
14	D4πA1	2.8	0.69	0.55	7.5	
15	D4 πA2	4.8	0.67	0.61	11.5	
16	D4 πA3	4.4	0.70	0.61	10.4	
17	D4 πA4	4.1	0.67	0.63	9.7	
18	D5 πA1	0.7	0.69	0.48	2.1	
19	D5 πA2	4.5	0.66	0.56	11.6	
20	D5 πA3	3.2	0.67	0.55	8.6	
21	D5 πA4	5.4	0.64	0.63	13.3	
22	D6 πA1	3.1	0.70	0.56	7.9	
23	D6 πA2	2.0	0.71	0.63	4.4	
24	D6 πA3	4.1	0.66	0.61	10.2	
25	D6 πA4	3.9	0.66	0.64	9.2	
[a] Average values from two or three independent experiments.						

served between the fill factor (FF) and η ($R^2 = 0.058$; Figure 4a) and only a weak correlation was observed between the opencircuit voltage (V_{oc}) and η ($R^2 = 0.24$; Figure 4b).

To determine the important factors for a high $J_{\rm sc}$ value to be obtained, correlations between the $J_{\rm sc}$ value and the absorption extinction coefficient (ε), absorption maximum ($\lambda_{\rm max}$), optical-absorption edge, and the HOMO ($E_{\rm HOMO}$) and LUMO ($E_{\rm LUMO}$) energies were examined (Figure 5). In the case of UV/Vis-absorbing D– π -A dyes, no obvious correlations between ε and $J_{\rm sc}$, $\lambda_{\rm max}$ and $J_{\rm sc}$, and the optical-absorption edge and $J_{\rm sc}$ were observed, whereas the $E_{\rm HOMO}$ and $E_{\rm LUMO}$ values were critical for high $J_{\rm sc}$ values.^[7d] The UV/Vis dyes with more positive $E_{\rm HOMO}$ values and $E_{\rm LUMO} < -0.80$ V exerted higher $J_{\rm sc}$ values The UV/Vis dyes that met the above criteria enabled smooth electron transfer at the TiO₂/dye or dye/electrolyte interfaces because of a sufficient driving force; thus, they exerted higher $J_{\rm sc}$ values.

Interestingly, no obvious correlation was observed between the ε and $J_{\rm sc}$ values in the case of NIR-absorbing D-A'- π -A dyes, whereas the optimal ranges for the $\lambda_{\rm max}$ values ($\lambda = 560$ – 620 nm), optical-absorption edge ($\lambda = 690$ –790 nm), and the $E_{\rm HOMO}$ and $E_{\rm LUMO}$ values of the dyes (< 1.14 and -0.56 to -0.76 V, respectively) for high $J_{\rm sc}$ values were observed (Figure 5 b-e, boxes). Generally, the $J_{\rm sc}$ value is correlated with the sensitizer-absorptive capability and the electron-injection efficiency. The dyes that can absorb long-wavelength light (i.e., long $\lambda_{\rm max}$, a long optical-absorption edge, and high $E_{\rm HOMO}$, and low $E_{\rm LUMO}$ values) would have a good absorptive capability. On the other hand, the electron-injection efficiency of the dyes

Figure 4. Correlation between a) FF and η , b) $V_{\rm oc}$ and η , and c) $J_{\rm sc}$ and η of the 24 dyes studied herein.

when absorbing long-wavelength light tended to decrease due to their high E_{HOMO} and low E_{LUMO} values (insufficient driving force of electron transfer at the TiO₂/dye or dye/electrolyte interfaces). Thus, it is conceivable that the optimal ranges of the λ_{max} value, optical-absorption edge, and E_{HOMO} , and E_{LUMO} values for high J_{sc} values were observed in the case of the D-A'- π -A dyes. In fact, the combinations of D4, D5, and D6 and $\pi A2$ and $\pi A4$ that met the criteria of the \textit{E}_{HOMO} and \textit{E}_{LUMO} values (<1.14 V and -0.56 to -0.76 V, respectively; Figure 3a,d) exerted high PCEs. Three of the four best PCE dyes (i.e., $D4\pi A2$, $D5\pi A2$, and $D5\pi A4$) were found in these combinations. It should be noted that as far as we could ascertain, there have been no reports that describe the proper HOMO and LUMO values of NIR organic dyes that will enable both sufficient NIR absorption and smooth electron transfer at the interfaces in DSSCs.

The photocurrent–voltage curves and the incident photonto-current conversion efficiency (IPCE) spectra of **D3** π **A4**, **D4** π **A2**, **D5** π **A2**, and **D5** π **A4** were compared with our previously reported best UV/Vis dye 3 (η =6.2%)^[7d] and D149 as a reference (Figure 6). As expected, the IPCE edges of the high-performance dyes **D3** π **A4**, **D5** π **A2**, and **D5** π **A4** exceeded

Figure 5. Correlations between a) ε and J_{scr} b) λ_{max} and J_{scr} c) optical-absorption edge and J_{scr} d) E_{HOMO} and J_{scr} and e) E_{LUMO} and J_{sc} of the 24 dyes studied herein.

CHEMISTRY

A European Journal Full Paper

Figure 6. Photocurrent–voltage curves obtained with DSSCs based on 3, D149, $D4\pi A2$, $D3\pi A4$, $D5\pi A2$, and $D5\pi A4$ under a) solar conditions with a standard air mass (AM) of 1.5 and b) incident photon-to-current conversion efficiency (IPCE) spectra for DSSCs based on 3, D149, $D4\pi A2$, $D3\pi A4$, $D5\pi A2$, and $D5\pi A4$.

 $\lambda = 800$ nm. Relative to **3** and D149, the IPCEs for dyes **D3** π **A4**, **D5** π **A2**, and **D5** π **A4** were lower in the region $\lambda = 400-600$ nm and higher in the region $\lambda = 650-850$ nm. Thus, dyes **D3** π **A4**, **D5** π **A2**, and **D5** π **A4** would be an attractive element in the dye cocktails used in high-performance DSSCs.

Conclusion

We have achieved a rapid synthesis of 24 D-A'- π -A dyes by using a one-pot, three-component Suzuki–Miyaura coupling reaction assisted by microwave irradiation. The developed synthetic approach has allowed us to readily modify the dye structure. We measured the absorption spectra, electrochemical properties, and the cell performance of all the synthesized dyes. As expected, the absorption wavelength of the synthesized dyes was strongly redshifted ($\Delta\lambda \approx 200$ nm) relative to our previously synthesized D- π -A dyes due to the triazoloquinoxaline structure. The **D5** π **A4** dye contained our originally designed rigid nonplanar donor and exerted the highest effi-

Chem. Eur. J. 2016, 22, 2507 – 2514

CHEMISTRY A European Journal Full Paper

ciency at 5.4%. The $J_{\rm sc}$ value was the most important parameter for efficiency η in the case of these organic D-A'- π -A yes. The optimal ranges for high $J_{\rm sc}$ values of the D-A'- π -A dyes were observed at $\lambda_{\rm max}$ =560–620 nm, an optical-absorption edge of λ =690-790 nm, and $E_{\rm HOMO}$ and $E_{\rm LUMO}$ values of <1.14 and -0.56 -0.76 V, respectively. As far as we have been able to ascertain, there have been no reports that describe the proper HOMO and LUMO values of NIR organic dyes that enable both sufficient NIR absorption and smooth electron transfer at the interfaces in DSSCs. These results should be valuable in the design of high-performance D-A'- π -A dyes in the future. It should be noted that the IPCEs of the D3 π A4, D5 π A2, and D5 π A4 dyes are complementary to those of dye 3 and the D149 dye. Thus, these dyes would be an attractive element in the dye cocktails used for high-performance DSSCs.

Experimental Section

The experimental details are given in the Supporting Information, including the synthetic, photophysical, and electrochemical procedures and the characterization of the synthesized compounds.

Acknowledgements

The authors thank Dr. Akimi Nishimura (Kyushu Institute of Technology, Japan) for the preparation and evaluation of the DSSCs. The authors also thank Mr. Kohei Kashibuchi and Mr. Keitaro Hashimoto (Tokyo Institute of Technology, Japan) for measuring the photophysical and electrochemical properties of the dyes.

Keywords: combinatorial chemistry · cross-coupling · dyes/ pigments · solar cells · one-pot reactions

- a) B. O'Regan, M. Gratzel, *Nature* **1991**, *353*, 737–740; b) T. W. Hamann, R. A. Jensen, A. B. F. Martinson, H. Van Ryswyk, J. T. Hupp, *Energy Environ. Sci.* **2008**, *1*, 66–78; c) A. Hagfeldt, G. Boschloo, L. C. Sun, L. Kloo, H. Pettersson, *Chem. Rev.* **2010**, *110*, 6595–6663; d) Z. Ning, Y. Fu, H. Tian, *Energy Environ. Sci.* **2010**, *3*, 1170–1181; e) B. E. Hardin, H. J. Snaith, M. D. McGehee, *Nat. Photonics* **2012**, *6*, 162–169.
- [2] a) J. N. Clifford, E. Martinez-Ferrero, A. Viterisi, E. Palomares, *Chem. Soc. Rev.* 2011, 40, 1635–1646; b) Y. S. Yen, H. H. Chou, Y. C. Chen, C. Y. Hsu, J. T. Lin, *J. Mater. Chem.* 2012, 22, 8734–8747.
- [3] a) A. Mishra, M. K. R. Fischer, P. Bauerle, Angew. Chem. Int. Ed. 2009, 48, 2474–2499; Angew. Chem. 2009, 121, 2510–2536; b) Z. Ning, H. Tian, Chem. Commun. 2009, 5483–5495; c) Y. Ooyama, Y. Harima, Eur. J. Org. Chem. 2009, 2903–2934; d) C. Li, H. Wonneberger, Adv. Mater. 2012, 24, 613–636; e) B.-G. Kim, K. Chung, J. Kim, Chem. Eur. J. 2013, 19, 5220–5230.
- [4] Y. Hao, X. Yang, J. Cong, H. Tian, A. Hagfeldt, L. Sun, Chem. Commun. 2009, 4031–4033.
- [5] a) J. Tang, W. Wu, J. Hua, J. Li, X. Li, H. Tian, *Energy Environ. Sci.* 2009, *2*, 982–990; b) W. Wu, F. Guo, J. Li, J. He, J. Hua, *Synth. Met.* 2010, *160*, 1008–1014; c) K. Funabiki, H. Mase, A. Hibino, N. Tanaka, N. Mizuhata, Y. Sakuragi, A. Nakashima, T. Yoshida, Y. Kubota, M. Matsui, *Energy Environ. Sci.* 2011, *4*, 2186–2192; d) K. Sayama, S. Tsukagoshi, T. Mori, K. Hara, Y. Ohga, A. Shinpou, Y. Abe, S. Suga, H. Arakawa, *Sol. Energy Mater. Sol. Cells* 2003, *80*, 47–71.
- [6] a) A. Burke, L. Schmidt-Mende, S. Ito, M. Gratzel, Chem. Commun. 2007, 234–236; b) J.-H. Yum, P. Walter, S. Huber, D. Rentsch, T. Geiger, F. Nueesch, F. De Angelis, M. Graetzel, M. K. Nazeeruddin, J. Am. Chem.

Soc. 2007, 129, 10320-10321; c) T. Geiger, S. Kuster, J.-H. Yum, S.-J. Moon, M. K. Nazeeruddin, M. Graetzel, F. Nueesch, Adv. Funct. Mater. 2009, 19, 2720-2727; d) L. Beverina, R. Ruffo, C. M. Mari, G. A. Pagani, M. Sassi, F. De Angelis, S. Fantacci, J.-H. Yum, M. Graetzel, M. K. Nazeeruddin, ChemSusChem 2009, 2, 621-624; e) J.-H. Yum, B. E. Hardin, S.-J. Moon, E. Baranoff, F. Nuesch, M. D. McGehee, M. Gratzel, M. K. Nazeeruddin, Angew. Chem. Int. Ed. 2009, 48, 9277-9280; Angew. Chem. 2009, 121, 9441-9444; f) L. Beverina, P. Salice, Eur. J. Org. Chem. 2010, 2010, 1207-1225; g) J.-H. Yum, E. Baranoff, B. E. Hardin, E. T. Hoke, M. D. McGehee, F. Nueesch, M. Graetzel, M. K. Nazeeruddin, Energy Environ. Sci. 2010, 3, 434-437; h) J.-Y. Li, C.-Y. Chen, C.-P. Lee, S.-C. Chen, T.-H. Lin, H.-H. Tsai, K.-C. Ho, C.-G. Wu, Org. Lett. 2010, 12, 5454-5457; i) S. S. Pandey, T. Inoue, N. Fujikawa, Y. Yamaguchi, S. Hayase, Thin Solid Films 2010, 519, 1066-1071; j) H. Choi, J.-J. Kim, K. Song, J. Ko, M. K. Nazeeruddin, M. Graetzel, J. Mater. Chem. 2010, 20, 3280-3286; k) S. S. Pandey, T. Inoue, N. Fujikawa, Y. Yamaguchi, S. Hayase, J. Photochem. Photobiol. A 2010, 214, 269-275; I) P. J. Holliman, M. L. Davies, A. Connell, B. V. Velasco, T. M. Watson, Chem. Commun. 2010, 46, 7256-7258; m) S. Kim, G. K. Mor, M. Paulose, O. K. Varghese, C. Baik, C. A. Grimes, Langmuir 2010, 26, 13486-13492; n) Y. Shi, R. B. M. Hill, J.-H. Yum, A. Dualeh, S. Barlow, M. Graetzel, S. R. Marder, M. K. Nazeeruddin, Angew. Chem. Int. Ed. 2011, 50, 6619-6621; Angew. Chem. 2011, 123, 6749-6751; o) J. Warnan, F. Buchet, Y. Pellegrin, E. Blart, F. Odobel, Org. Lett. 2011, 13, 3944-3947; p) J. H. Delcamp, Y. Shi, J.-H. Yum, T. Sajoto, E. Dell'Orto, S. Barlow, M. K. Nazeeruddin, S. R. Marder, M. Graetzel, Chem. Eur. J. 2013, 19, 1819-1827.

- [7] a) S. Fuse, Y. Asai, S. Sugiyama, K. Matsumura, M. M. Maitani, Y. Wada, Y. Ogomi, S. Hayase, T. Kaiho, T. Takahashi, *Tetrahedron* 2014, *70*, 8690–8695; b) S. Fuse, K. Matsumura, Y. Fujita, H. Sugimoto, T. Takahashi, *Eur. J. Med. Chem.* 2014, *85*, 228–234; c) S. Fuse, K. Matsumura, A. Wakamiya, H. Masui, H. Tanaka, S. Yoshikawa, T. Takahashi, *ACS Comb. Sci.* 2014, *16*, 494–499; d) S. Fuse, S. Sugiyama, M. M. Maitani, Y. Wada, Y. Ogomi, S. Hayase, R. Katoh, T. Kaiho, T. Takahashi, *Chem. Eur. J.* 2014, *20*, 10685–10694; e) K. Matsumura, S. Yoshizaki, M. M. Maitani, Y. Wada, Y. Ogomi, S. Hayase, T. Kaiho, S. Fuse, H. Tanaka, T. Takahashi, *Chem. Eur. J.* 2015, *21*, 9742–9747.
- [8] a) K. Pei, Y. Wu, W. Wu, Q. Zhang, B. Chen, H. Tian, W. Zhu, *Chem. Eur. J.* 2012, *18*, 8190–8200; b) Y. Wu, W. Zhu, *Chem. Soc. Rev.* 2013, *42*, 2039–2058; c) K. Pei, Y. Wu, A. Islam, Q. Zhang, L. Han, H. Tian, W. Zhu, *ACS Appl. Mater. Interfaces* 2013, *5*, 4986–4995; d) K. Pei, Y. Wu, H. Li, Z. Geng, H. Tian, W.-H. Zhu, *ACS Appl. Mater. Interfaces* 2015, *7*, 5296–5304.
- [9] H. Li, T. M. Koh, A. Hagfeldt, M. Gratzel, S. G. Mhaisalkar, A. C. Grimsdale, *Chem. Commun.* 2013, 49, 2409–2411.
- [10] a) F. M. Pasker, S. M. Le Blanc, G. Schnakenburg, S. Hoger, Org. Lett.
 2011, 13, 2338–2341; b) T. L. Tam, H. R. Li, Y. M. Lam, S. G. Mhaisalkar, A. C. Grimsdale, Org. Lett. 2011, 13, 4612–4615; c) T. L. D. Tam, W. T. Ye, H. H. R. Tan, F. Zhou, H. B. Su, S. G. Mhaisalkar, A. C. Grimsdale, J. Org. Chem. 2012, 77, 10035–10041; d) S. Ozdemir, M. Sendur, G. Oktem, O. Dogan, L. Toppare, J. Mater. Chem. 2012, 22, 4687–4694; e) J. Hai, B. Zhao, E. Zhu, L. Bian, H. Wu, W. Tang, Macromol. Chem. Phys. 2013, 214, 2473–2479.
- [11] a) N. Miyaura, K. Yamada, A. Suzuki, *Tetrahedron Lett.* **1979**, *20*, 3437–3440; b) N. Miyaura, A. Suzuki, J. Chem. Soc. Chem. Commun. **1979**, 866–867.
- [12] E. Wang, L. Hou, Z. Wang, S. Hellström, W. Mammo, F. Zhang, O. Inganäs, M. R. Andersson, Org. Lett. 2010, 12, 4470–4473.
- [13] We initially prepared triazoloquinoxaline blocks that retained two iodo groups or one iodo group and one bromo group; however, the SM coupling with these triazoloquinoxaline blocks and the D1 block afforded the desired coupling product in less than 10% yield, thus leading us to use the triazoloquinoxaline block A', which retained two bromo groups.
- [14] S. Fuse, H. Tago, M. M. Maitani, Y. Wada, T. Takahashi, ACS Comb. Sci. 2012, 14, 545–550.
- [15] T. A. Stephenson, S. M. Morehouse, A. R. Powell, J. P. Heffer, G. Wilkinson, J. Chem. Soc. 1965, 3632–3640.
- [16] L. Malatesia, M. Angoletta, J. Chem. Soc. 1957, 1186-1188.
- [17] Y. Takahashi, T. Ito, S. Sakai, Y. Ishii, J. Chem. Soc. D 1970, 1065-1066.
- [18] J. P. Wolfe, S. L. Buchwald, Angew. Chem. Int. Ed. 1999, 38, 2413-2416; Angew. Chem. 1999, 111, 2570-2573.

- [19] T. E. Barder, S. D. Walker, J. R. Martinelli, S. L. Buchwald, J. Am. Chem. Soc. 2005, 127, 4685–4696.
- [20] A. F. Littke, C. Y. Dai, G. C. Fu, J. Am. Chem. Soc. 2000, 122, 4020-4028.
- [21] M. Kranenburg, Y. E. M. Vanderburgt, P. C. J. Kamer, P. Vanleeuwen, K. Goubitz, J. Fraanje, Organometallics 1995, 14, 3081–3089.

[22] S. Ito, H. Miura, S. Uchida, M. Takata, K. Sumioka, P. Liska, P. Comte, P. Pechy, M. Gratzel, Chem. Commun. 2008, 0, 5194–5196.

Received: October 24, 2015 Published online on January 19, 2016