

Contents lists available at ScienceDirect

Journal of Fluorine Chemistry

journal homepage: www.elsevier.com/locate/fluor

¹⁹F NMR studies on positional variations of trifluoromethyl groups in CF₃-substituted aromatic group 15 trivalent chlorides

Stéphanie M.M. Cornet^a, Keith B. Dillon^{b,*}, Bao Yu Xue^c

^a OECD Nuclear Energy Agency, 12 boulevard des Iles, 92100 Issy-les-Moulineaux, France ^b Chemistry Department, University of Durham, South Road, Durham DH1 3LE, UK ^c Institute of Chemistry, Henan Academy of Sciences, Zhenzzhou 450002, PR China

ARTICLE INFO

Article history: Received 10 September 2015 Accepted 10 November 2015 Available online 14 November 2015

Keywords: ¹⁹F NMR CF₃-substituted aromatics Group 15 Trivalent chlorides

1. Introduction

The bulky highly electronegative fluoromes ligand Ar (2,4,6- $(CF_3)_3C_6H_2$) has been used extensively to stabilise both main group and transition metal low-coordinate species [1-42]. This substituent is usually attached to the central element E by displacement of halide, using the lithio-derivative ArLi of the parent hydrocarbon $1,3,5-(CF_3)_3C_6H_3$ (ArH). Much less use has been made of the fluoroxyl ligand $2,6-(CF_3)_2C_6H_3$ (Ar'), because although the precursor hydrocarbon 1,3-(CF₃)₂C₆H₄ (Ar'H) is readily available, it can lithiate in two positions, giving rise to a mixture of 2,6-(CF₃)₂C₆H₃ (Ar') and 2,4-(CF₃)₂C₆H₃ (Ar") derivatives [37-39,43-50]. While both ligands are again highly electronegative, there is clearly more steric protection in the ortho-positions for the Ar' species. A procedure has subsequently been described for preparing 2,4-(CF₃)₂C₆H₃ (Ar") derivatives, including Ar"₂PCl (7), selectively in high yield [51]. More recently we have carried out some reactions with $1,4-(CF_3)_2C_6H_4$ (Ar"'H). Monolithiation of Ar'"H leads to a single product Ar"'Li, but this leads to one ortho-CF₃ group only in the 2,5-(CF₃)₂C₆H₃ (Ar"')-substituted compounds, hence giving less steric protection than in the Ar or Ar' species, but comparable with that in Ar" derivatives [52,53]. While ¹⁹F solution-state NMR spectra for the reaction products have been recorded routinely in most instances, the results have not been

E-mail addresses: StephanieCornet@oecd.org (Stéphanie M.M. Cornet), k.b.dillon@durham.ac.uk (K.B. Dillon), byxue@hotmail.com (B.Y. Xue).

ABSTRACT

Several Group 15 trivalent chlorides with CF₃-substituted aromatic groups R present, including at least one *ortho*-CF₃ substituent, R_nECl_{3-n} (n = 1 or 2; E = P, As, Sb or Bi) have been studied by ¹⁹F solution-state NMR spectroscopy. In compounds with both *ortho*- and *para*-CF₃ groups, the chemical shifts of the *para*-CF₃ fluorines are very similar, irrespective of the central element E. Much more variation is found in the shifts of the *ortho*-CF₃ fluorines, which may be correlated with the nature of the aromatic group, the electronegativity of E and the occurrence of short E–F contacts, as demonstrated by previous crystallographic studies of some of these compounds.

© 2015 Elsevier B.V. All rights reserved.

considered in detail until very recently, and then only for several chloro-compounds of the Group 14 elements Si, Ge or Sn with Ar, Ar' or Ar" substituents [54]. The results showed that in compounds with para-CF₃ groups their ¹⁹F chemical shifts were comparatively little affected by changing the central element, whereas the shifts of the ortho-CF₃ groups showed much larger variations, which could be correlated with both the electronegativity of the central element and the existence of intramolecular E-F contacts between the central element and fluorines in the o-CF₃ groups, (at least one interaction per CF₃ group), at distances appreciably shorter than the sum of the van der Waals radii. Analysis of the spectra enabled structures to be assigned, even in mixtures of products. We have now extended this study to a large number of chloro-derivatives of Group 15 elements E (E = P, As, Sb or Bi) with Ar, Ar', Ar'' or Ar''' substituents, using both data from the literature and some recorded for new compounds. The ³¹P NMR solution-state spectra have also been obtained for the phosphorus(III) species.

2. Results and discussion

The phosphorus compounds studied are shown in Fig. 1, and their ¹⁹F and ³¹P NMR data are collected in Table 1. It is worth noting that the more sterically hindered disubstituted possible product Ar'_2PCl (**6**) from the reaction of the Ar'Li/Ar''Li mixture with PCl₃ was not detected in solution; the other two possible disubstituted products Ar'Ar''PCl (**11**) and Ar''_2PCl (**7**) have both been isolated from this mixture, and characterised by single-crystal X-ray diffraction [37,46]. Nevertheless there is a report of the crystal and molecular structures of Ar'_2PCl (**6**) in the Cambridge

^{*} Corresponding author. Tel.: +44 01913342004.

Fig. 1. Structures of phosphorus(III) compounds (1)-(11).

Table 1	
¹⁹ F and ³¹ P NMR data for P(III) chlorides (1)–(11).	

Compound	Number	δ ¹⁹ F (ppm)		${}^{4}J_{\rm PF}$ (Hz)	δ^{31} P (ppm)	Ref.
ArPCl ₂	(1)	-53.7	-64.6	61	144.7	[3]
Ar'PCl ₂	(2)	-53.1ª		61	146.6	[43]
Ar"PCl ₂	(3)	-56.5	-63.6	84	151.6	this work
Ar"'PCl ₂	(4)	-56.8	-64.3	84	151.2	[52]
Ar ₂ PC1	(5)	-54.4	-64.1	42	74.9	[37]
Ar'2PCl	(6)					[57]
Ar" ₂ PCl	(7)	-57.3	-63.7	66	68.3	[37]
Ar ^{///} 2PCl	(8)	-58.0	-64.5	66	67.6	[52]
ArAr'PCl	(9)	-54.1 ^b	-64.0^{b}	42	76.6	[52]
		-54.3 ^c		42		
ArAr"PCl	(10)	-55.5^{b^*}	-63.6 ^b		69.9	[37]
		-58.6	-64.1	58		
Ar'Ar"PCl	(11)	−55.0 ^{∈,*}			67.3	[46]
		-58.9	-63.6	58		

^a Converted from CF₃COOH as reference;
 ^b Resonances for Ar group;
 ^c Resonance for Ar' group;
 * Broad

Broad.

structural database [55,56], from a private communication (reference code BADLAU) [57], although no preparative details or NMR data are available. Ar"PCl₂ (**3**) could not be separated from Ar'PCl₂(**2**), but was identified as a minor component in the solution produced by a 1: 1 reaction between PCl₃ and the Ar'Li/Ar"Li mixture (Experimental section). All the ³¹P shifts are entirely as

expected for compounds of the type $RPCl_2$ (between 152 and 144 ppm), and R_2PCl (between 77 and 67 ppm), where R is an aromatic group (Table 1) [58].

¹⁹F NMR data for some analogous derivatives of arsenic(III), antimony(III) and bismuth(III) are shown in Table 2, and their structures are illustrated in Fig. 2. The results for Bi are limited to

 $\mathbf{25}$

 F_3C

 $BiCl_2$

 CF_3

Table 2		
19F NMR data for group	15 compounds (12)-(26).	

Compound	Number	δ ¹⁹ F (ppm)		Reference
ArAsCl ₂	(12)	-53.5	-64.2	[25]
Ar'AsCl ₂	(13)	-52.9		This work
Ar"AsCl ₂	(14)	-57.7	-63.7	This work
Ar ₂ AsCl	(15)	-54.5	-63.9	[33]
Ar"2AsCl	(16)	-58.4	-63.6	This work
Ar'Ar"AsCl	(17)	-54.8^{a}		[37]
		-58.8 ^b	-63.5	
ArSbCl ₂	(18)	-55.6	-64.9	This work
Ar'SbCl ₂	(19)	-53.2		[50]
Ar"SbCl ₂	(20)	-54.9	-63.6	[50]
Ar ₂ SbCl	(21)	-55.1	-63.6	[14]
Ar'2SbCl	(22)	-55.1		[50]
Ar"2SbCl	(23)	-58.4	-63.7	[50]
Ar'Ar"SbCl	(24)	-55.5^{a}		[50]
		-58.4^{b}	-63.6 ^b	
ArBiCl ₂	(25)	-56.2	See text	[9]
Ar ₂ BiCl	(26)	-56.0	-63.3	[9]

^a Resonance for Ar' group.

^b Resonances for Ar" group.

literature data for Ar₂BiCl (**26**), which has been fully characterised by single-crystal X-ray diffraction, and a mention in the same paper of a very weak ¹⁹F NMR signal at -56.2 ppm, ascribed to the fluorines from the *ortho*-CF₃ groups of ArBiCl₂ (**25**), which is a probable precursor [9]. The non-observation of the signal for the *para*-CF₃ group fluorines from (**25**), which would be half the intensity of that from the *ortho*-CF₃ group fluorines, is thus not surprising. Results are included for three new arsenic compounds (**13**), (**14**) and (**16**), and one new antimony compound (**18**) (Experimental section), as shown in Table 2. The ¹⁹F NMR spectra for the Ar'Li/Ar''Li–AsCl₃ reaction mixture, together with those for Ar'Ar''AsCl, which has been characterised crystallographically [37], and for Ar''₂AsCl, are shown as a stackplot in Fig. 3.

As in the Group 14 elements, the ¹⁹F NMR signals for p-CF₃ groups show little variation (Tables 1 and 2); the entire range of shifts for p-CF₃ substituents is only from -63.3 to -64.9 ppm, irrespective of the central element E. Significant differences are found for *ortho*-CF₃ ¹⁹F resonances, however. There are variations depending on the nature of the organic group attached to E, on the element E itself, and on the probable number of short E–F contacts between fluorines from *ortho*-CF₃ groups and E, as shown in some instances by X-ray crystallography. These aspects are discussed in more detail below.

For all P and As compounds, the ¹⁹F NMR shift sequences for the o-CF₃ fluorines follow the frequency pattern Ar' > Ar > Ar'', with a larger difference between the values for Ar and Ar'' (Tables 1 and 2).

Fig. 3. Stackplot of ¹⁹F NMR spectra for the products of the AsCl₃-Ar'Li/Ar"Li reaction where: (a) initial reaction mixture, showing Ar'AsCl₂/Ar"AsCl₂/Ar"AsCl/Ar"asCl/Ar"asCl.

Table 3

Electronegativities and van der Waals Radii for elements E [59].

E	Electronegativity	van der Waals Radius (Å)	Sum of van der Waals Radii (Å)
Р	2.20	1.95	3.42
As	2.28	2.05	3.52
Sb	1.97	2.25	3.72
Bi	1.93	2.35	3.82

Results for Ar^{'''} are only available for phosphorus, where replacement of Ar^{''} by Ar^{'''} leads to an even lower frequency shift for both RPCl₂ and R₂PCl. For Sb, while Ar^{''} gives rise to the highest frequency shift again, there is a discrepancy in the sequence for Ar and Ar^{''} substituents between RSbCl₂, where the reported shift for Ar^{''}SbCl₂ is at higher frequency than that for ArSbCl₂, and R₂SbCl, where the compounds follow the same shift sequence as in the P and As compounds. This variation with substituent is particularly evident in mixed species R₁R₂ECl, where R₁ has two o-CF₃ groups and R₂ only has one. The results for ArAr^{''}PCl (-55.5 and -58.6 ppm), Ar[']Ar^{<math>''}PCl (-55.0 and -58.9 ppm), Ar[']Ar^{<math>''}AsCl (-54.8 and -58.8 ppm) and Ar[']Ar^{<math>''}SbCl (-55.5 and -58.4 ppm) fall into this category, with the higher frequency shift in each compound for the substituent with two o-CF₃ groups. This property can, of course, be used diagnostically in the analysis of mixtures of products in solution (see Fig. 3).</sup></sup></sup></sup>

The electronegativities of the elements E are listed in Table 3, together with their van der Waals radii, and, on the assumption of a van der Waals radius for fluorine of 1.47 Å, the sum of these radii for E and fluorine [59]. For most types of compound studied, including ArECl₂, Ar'ECl₂ (no Bi data) and Ar₂ECl, the ¹⁹F NMR shifts of the *ortho*-CF₃ groups follow the frequency sequence As > P > Sb > Bi, which parallels the order of electronegativities of E. There tends to be only a small difference between the values for As and P in corresponding compounds, but a larger change from P to Sb, again in accordance with electronegativity values (Table 3). This behaviour is parallel to that observed in Group 14 derivatives [54]. The exception appears to be for Ar"ECl₂, where the frequency order is Sb > P > As (there are again no data for Bi). There is no obvious explanation for this apparent discrepancy.

Some of the species in this work have been previously characterised by single-crystal X-ray diffraction; these comprise compounds (5), [37] (6), [57] (7), [37] (8), [52] (11), [46] (15), [33] (17), [37] (21) [33] and (26).[9] In all instances, careful examination of the molecular structures in the Cambridge Structural Database [55,56] confirms that there is at least one E–F contact at a distance less than 3.2 Å for the fluorines in every *ortho*-CF₃ group. (Some of these have been mentioned in the relevant papers, but in other compounds they were not discussed.) As shown in Table 3, these distances are appreciably shorter than the sum of the van der Waals radii for the elements concerned. The shortest E–F contact distance in each of these compounds is listed in Table 4. Although

Table 4
Shortest E-F distances in compounds of known structure.

Compound	Number	Shortest E–F distance (Å)	Temperature (K)	Reference	
Ar ₂ PCI Ar' ₂ PCI Ar'' ₂ PCI Ar''Ar''PCI Ar'Ar''PCI Ar ₂ AsCI Ar'Ar''AsCI Ar ₅ SbCI	(5) (6) (7) (8) (11) (15) (17) (21)	2.843 2.800 2.874 2.709 2.890 2.991 2.935 2.701 2.821	2.817 ^{a,*}	130(2) 296(1)	[37] [57] [37] [52] [46] [33] [37] [33]
Ar ₂ BiCl	(26)	2.885			[9]

^a Two molecules in the unit cell.

* Calculated from the Cambridge Structural Database.

RLi

the remaining species in Tables 1 and 2 have not been characterised crystallographically, it seems a reasonable assumption that similar short E–F interactions will be found in each case. Such interactions have been considered to contribute to the stabilities of both main group and transition metal derivatives in the solid state. As pointed out above, in mixed derivatives R_1R_2ECI with one aromatic group having two *ortho*-CF₃ groups and the other having only one, the shift is invariably at higher frequency for the fluorines in the R group which has two *ortho*-CF₃ substituents. Hence the number of E–F interactions is likely to be higher, and may make a significant contribution to the observed shifts.

3. Conclusions

Detailed investigation of the ¹⁹F NMR solution-state shifts of a large number of Group 15 chloro-derivatives R₁ECl₂ or R₁R₂ECl (R₁ and R_2 are aromatic substituents with at least one *o*-CF₃ group; E = P, As, Sb or Bi) has shown that the shifts for p-CF₃ fluorines are very little affected by variation in E, R₁ or R₂. The shifts of the o-CF₃fluorines are much more sensitive, and may be correlated with the nature of the substituents R_1 and R_2 , the electronegativity of the element E (apart from one apparent exception), and the occurrence of short E-F contacts. In compounds which have been previously characterised crystallographically, for every o-CF₃ group there is at least one such contact at a distance of 3.2 Å or less, appreciably shorter than the sum of the van der Waals radii. In mixed species $(R_1 \neq R_2)$, the fluorines for R groups with two o-CF₃ substituents resonate at higher frequency than those with only one o-CF₃ group, irrespective of E. This may be correlated with the increased number of E-F interactions in the former case, and may be useful diagnostically in the analysis of mixtures of products, as in the reaction of the Ar'Li/Ar"Li mixture with ECl₃.

4. Experimental

4.1. General

All manipulations, including NMR sample preparation, were carried out either under dry N₂ or *in vacuo*, by means of standard Schlenk procedures or a glovebox. Chemicals of the best available commercial grades were used, in general without further purification. ¹⁹F solution-state NMR spectra were usually recorded on a Varian Mercury 200 spectrometer at 188.18 MHz, and chemical shifts are expressed in ppm relative to external CFCl₃. Occasionally ¹⁹F spectra were recorded on a Bruker AC 250 (235.36 MHz), Varian VXR 400 (376.35 MHz) or Varian Inova 500 (470.26 MHz) instrument. ³¹P NMR spectra were similarly recorded at the apposite frequencies, and chemical shifts are given relative to external 85% H₃PO₄.

4.2. Lithiations

ArH and Ar"'H were treated separately with 2.5 M BuLi in Et₂O at -78° C (acetone/dry ice bath) to produce ArLi or Ar"'Li, respectively, according to the methods of Goodwin and Roden [12,46]. Ar'H reacted with BuLi under the same conditions to yield a mixture of Ar'Li and Ar"Li, in a *ca.* 1: 1 ratio as shown by NMR spectroscopy. **WARNING** It is important in these reactions to maintain a slight excess of the hydrocarbon with respect to BuLi at all times, to avoid any attack on a CF₃ group and the possible explosive formation of LiF. The reactions for formation of Group 15 chloro-derivatives from ArLi and Ar"Li are shown in Scheme 1. The more complicated reactions of ECl₃ with a mixture of Ar'Li and Ar"Li are depicted in Scheme 2.

Scheme 1. Reactions for formation of Group 15 chloro-derivatives from ArLi and Ar^{//}Li.

Ar'Li +
$$ECl_3$$

Ar''Li + ECl_3
Ar''Li + $Ar''ECl_2 + Ar''ECl_2 + Ar'''ECl_2 + Ar''ECl_2 + Ar'''ECl_2 + Ar''ECl_2 + Ar'''ECl_2 + Ar'''ECl_2 + Ar''$

Scheme 2. Reactions of ECl₃ with a mixture of Ar'Li and Ar"Li.

4.3. Synthesis of $Ar''PCl_2$ (3)

Ar"PCl₂ (**3**) was prepared in a mixture with Ar'PCl₂ (**4**), which could not be separated by distillation *in vacuo*. A solution of Ar'Li/ Ar"Li (96 mmol) was added dropwise over 20 min to a solution of PCl₃ (25.2 g, 16 ml, 183 mmol) in diethyl ether (100 ml) at -78 °C. The mixture was allowed to warm to room temperature and stirred for 4 h. The white solid (LiCl) which appeared was removed by filtration, and solvent and any excess PCl₃ removed *in vacuo*, giving a brown oil. The product was purified by distillation under vacuum (Bp 86 °C, 0.01 Torr). The components were identified by ¹⁹F and ³¹P solution-state NMR spectroscopy (Table 1).

4.4. Synthesis of Ar'AsCl₂ (**13**)/Ar"AsCl₂ (**14**)/Ar'Ar"AsCl (**17**)/Ar"₂AsCl (**16**)

A solution of Ar'Li/Ar"Li (100 ml, 94 mmol) in diethyl ether was added dropwise to a solution of AsCl₃ (13.5 ml, 160 mmol) in hexanes (100 ml) over a period of 20 min at -78 °C. The mixture was allowed to warm to room temperature and stirred for 4 h. A precipitate of LiCl formed. This was filtered off and the solvents and excess AsCl₃ removed in vacuo, leaving a brown oil. This was distilled under reduced pressure (0.01 Torr), and fractions were collected at 115 °C (a mixture of all four products) and 145 °C (mainly Ar'Ar"AsCl (17)). Some solid appeared in the first fraction. This was separated, redissolved in CH₂Cl₂ and left in the freezer, producing a white microcrystalline product unsuitable for X-ray diffraction. ¹⁹F solution-state NMR spectroscopy showed that this product was Ar"₂AsCl (16). The solid isolated from the higherboiling fraction was successfully recrystallized from hexane, and has been fully characterised as Ar'Ar"AsCl (17) by single-crystal Xray diffraction [37].

4.5. Synthesis of ArSbCl₂ (18)

ArLi (100 ml, 45 mmol, 0.45 M solution in Et₂O) was added dropwise over 10 min to a stirred solution of SbCl₃ (10.8 g, 47.3 mmol) in Et₂O (50 ml) at -78 °C. An orange-brown solution was formed, with no visible precipitation of LiCl. The reaction mixture was stirred for 2 h at room temperature. Pentane (150 ml) was added, and the mixture was shaken vigorously. Two layers formed. The lower dense brown oil gave no ¹⁹F NMR signal, so was thought to be excess SbCl₃ and LiCl. The pentane was removed *in vacuo* from the upper layer, yielding a yellow powdery solid which was recrystallized from CH₂Cl₂ (25 ml). The isolated solid was extremely unstable, even in a glovebox, and rapidly turned into a red oil. Nevertheless the ¹⁹F solution-state NMR spectrum was successfully recorded (Table 2).

Acknowledgements

We thank the EPSRC for the award of a studentship (to SMMC), the Committee of Vice Chancellors and Principals of the Universities of the United Kingdom (CVCP) for an ORS award (to BYX), Dr. P. K. Coffer for assistance with the diagrams, Dr. A. M. Kenwright for assistance with recording some of the NMR spectra and preparation of the stackplot, and Dr. D. S. Yufit for additional calculations from the Cambridge Structural Database.

References

- [1] G.E. Carr, R.D. Chambers, T.F. Holmes, D.G. Parker, J. Organomet. Chem. 325 (1987) 13-23.
- [2] K.B. Dillon, H.P. Goodwin, T.A. Straw, R.D. Chambers, Proc. Euchem. PSIBLOCS Conf., Paris-Palaiseau (1988) 7.
- [3] M. Scholz, H.W. Roesky, D. Stalke, K. Keller, F.T. Edelmann, J. Organomet. Chem. 366 (1989) 73–85.
- [4] D. Stalke, H. Whitmire, J. Chem. Soc., Chem. Commun. (1990) 833-834.
- [5] L. Weber, H. Schumann, R. Boese, Chem. Ber. 123 (1990) 1779–1785.
 [6] H. Grützmacher, H. Pritzkow, F.T. Edelmann, Organometallics 10 (1991)
- 23-25.
- [7] S. Brooker, J.-K. Buijink, F.T. Edelmann, Organometallics 10 (1991) 25–26.
 [8] K.H. Whitmire, H.W. Roesky, S. Brooker, G.M. Sheldrick, J. Organomet. Chem.
- 402 (1991) C4-C7. [9] K.H. Whitmire, D. Labahn, H.W. Roesky, M. Noltemeyer, G.M. Sheldrick, J.
- [9] K.H. Whithine, D. Labani, H.V. Roesky, M. Nortemeyer, G.M. Sheldrick, J. Organomet. Chem. 402 (1991) 55–66.
- [10] M. Abe, K. Toyota, M. Yoshifuji, Chem. Lett. (1992) 2349–2352.
- [11] F.T. Edelmann, Comments Inorg. Chem. 12 (1992) 259–284.
- [12] K.B. Dillon, H.P. Goodwin, J. Organomet. Chem. 429 (1992) 169–171.
 [13] F. Castan, A. Baceiredo, F. Dahan, N. Auner, G. Bertrand, Chem. Commun. (1992) 1274–1276.
- [14] J.-K. Buijink, M. Noltemeyer, F.T. Edelmann, J. Fluorine Chem. 61 (1993) 51-56.
- [15] R.D. Schluter, A.H. Cowley, D.A. Atwood, R.A. Jones, M.R. Bond, C.J. Carrans, J. Am. Chem. Soc. 115 (1993) 2070–2071.
- [16] M. Yoshifuji, M. Abe, K. Toyota, I. Miyahara, K. Hirotsu, Bull. Chem. Soc. Jpn. 66 (1993) 3831–3833.
- [17] R.D. Schluter, H.S. Isom, A.H. Cowley, D.A. Atwood, R.A. Jones, F. Olbrick, S. Corbelin, R.J. Lagow, Organometallics 13 (1994) 4058–4063.
- [18] F.T. Edelmann, Main Group Met, Chem. 17 (1994) 67–79.
- [19] F.T. Edelmann, ACS Symp. Ser. (Inorg. Fluorine Chem.) 555 (1994) 309-324.
- [20] K.B. Dillon, H.P. Goodwin, J. Organomet. Chem. 469 (1994) 125–128.
- [21] H. Voelker, U. Pieper, H.W. Roesky, G.M. Sheldrick, Z. Naturforsch 49b (1994) 255-257.
- [22] M. Belay, F.T. Edelmann, J. Organomet. Chem. 479 (1994) C21-C24.
- [23] T. Lubben, H.W. Roesky, H. Gornitzka, A. Steiner, D. Stalke, Eur. J. Solid State Inorg. Chem. 32 (1995) 121–130.
- [24] C. Bartolomé, P. Espinet, J. Villafañe, S. Giesa, A. Martin, A.G. Orpen,
- Organometallics 15 (1996) 2019–2028. [25] J.-T. Ahlemann, A. Künzel, H.W. Roesky, M. Noltemeyer, L. Markovskii, H.-G.
- Schmidt, Inorg. Chem. 35 (1996) 6644–6645.
- [26] K.B. Dillon, V.C. Gibson, J.A.K. Howard, L.J. Sequeira, J.W. Yao, Polyhedron 15 (1996) 4173–4177.
- [27] V.C. Gibson, C. Redshaw, LJ. Sequeira, K.B. Dillon, W. Clegg, M.R. Elsegood, Chem. Commun. (1996) 2151–2152.

- [28] J.-T. Ahlemann, H.W. Roesky, R. Murugavel, E. Parisini, M. Noltemeyer, H.-G. Schmidt, O. Muller, R. Herbst-Irmer, L.N. Markovskii, Y.G. Shermolevich, Chem. Ber. 130 (1997) 1113–1121.
- [29] K.B. Dillon, V.C. Gibson, J.A.K. Howard, C. Redshaw, L.J. Sequeira, J.W. Yao, J. Organomet. Chem. 528 (1997) 179–183.
- [30] J.-T. Ahlemann, H.W. Roesky, M. Noltemeyer, H.-G. Schmidt, L.N. Markovsky, Y.G. Shermolovich, J. Fluorine Chem. 87 (1998) 87–90.
- [31] M.G. Davidson, K.B. Dillon, J.A.K. Howard, S. Lamb, M.D. Roden, J. Organomet. Chem. 550 (1998) 481–484.
- [32] H. Voelker, D. Labahn, F.M. Bohnen, R. Herbst-Irmer, H.W. Roesky, D. Stalke, F.T. Edelmann, New J. Chem. 23 (1999) 905–909.
- [33] N. Burford, C.L.B. Macdonald, D.J. LeBlanc, T.S. Cameron, Organometallics 19 (2000) 152–155.
- [34] P. Espinet, S. Martin-Barrios, J. Villafañe, P.G. Jones, A.K. Fischer, Organometallics 19 (2000) 290–295.
- [35] A.S. Batsanov, K.B. Dillon, V.C. Gibson, J.A.K. Howard, L.J. Sequeira, J.W. Yao, J. Organomet. Chem. 631 (2001) 181–187.
- [36] G.M. Benedikt, B.L. Goodall, S. Iyer, L.H. McIntosh III, R. Mimna, L.F. Rhodes, Organometallics 20 (2001) 2565–2569.
- [37] A.S. Batsanov, S.M. Cornet, K.B. Dillon, A.E. Goeta, P. Hazendonk, A.L. Thompson, J. Chem. Soc., Dalton Trans. (2002) 4622–4628.
- [38] A.S. Batsanov, S.M. Cornet, K.B. Dillon, A.E. Goeta, A.L. Thompson, B.Y. Xue, Dalton Trans. (2003) 2496–2502.
- [39] S.M. Cornet, K.B. Dillon, C.D. Entwistle, M.A. Fox, A.E. Goeta, H.P. Goodwin, T.B. Marder, A.L. Thompson, Dalton Trans. (2003) 4395–4405.
- [40] M. Freytag, F.T. Edelmann, L. Ernst, P.G. Jones, R. Schmutzler, Z. Anorg, Allgem. Chem. 630 (2004) 377–383.
- [41] S.M. Cornet, K.B. Dillon, A.E. Goeta, J.A.K. Howard, M.D. Roden, A.L. Thompson, J. Organomet. Chem. 690 (2005) 3630–3637.
- [42] S.M. Cornet, K.B. Dillon, A.E. Goeta, J.A.K. Howard, M.D. Roden, A.L. Thompson, Acta Cryst. C 65 (2009) o195-o197.
- [43] J. Escudié, C. Couret, H. Ranaivonjatovo, M. Lazraq, J. Satgé, Phosphorus Sulfur Rel. Elem. 31 (1987) 27–31.
- [44] A. Dubourg, J.P. Declerq, H. Ranaivonjatovo, J. Escudié, C. Couret, M. Lazraq, Acta Cryst. C 44 (1988) 2004–2006.
- [45] L. Heuer, P.G. Jones, R. Schmutzler, J. Fluorine Chem. 46 (1990) 243–254.
 [46] A.S. Batsanov, S.M. Cornet, L.A. Crowe, K.B. Dillon, R.K. Harris, P. Hazendonk,
- M.D. Roden, Eur. J. Inorg. Chem. (2001) 1729–1737.
 [47] V.I. Rudzevich, H. Gornitzka, K. Miqueu, J.-M. Sotiropoulos, G. Pfister-Guillouzou, V.D. Romanenko, G. Bertrand, Angew. Chem. Int. Ed. 41 (2002) 1193–1195.
- [48] A. Dumitrescu, H. Gornitzka, W.W. Schoeller, D. Bourissou, G. Bertrand, Eur. J. Inorg. Chem. (2002) 1953–1956.
- [49] K. Miqueu, J.-M. Sotiropoulos, G. Pfister-Guillouzou, V.L. Rudzevich, H. Gornitzka, V. Lavallo, V.D. Romanenko, Eur. J. Inorg. Chem. (2004) 2289–2300.
- [50] S.M. Cornet, K.B. Dillon, A.E. Goeta, Inorg. Chim. Acta. 358 (2005) 844–848.
- [51] B. Hoge, B. Kurscheid, S. Peuker, W. Tyrra, H.T.M. Fischer, Z. Anorg, Allgem. Chem. 633 (2007) 1679–1685.
- [52] V.L. Capel, K.B. Dillon, A.E. Goeta, J.A.K. Howard, P.K. Monks, M.R. Probert, H.J. Shepherd, N.V. Zorina, Dalton Trans. 40 (2011) 1808–1816.
- [53] P.K. Coffer, K.B. Dillon, J.A.K. Howard, D.S. Yufit, N.V. Zorina, Dalton Trans. 41 (2012) 4460–4468.
- [54] B.Y. Xue, K.B. Dillon, Helv. Chim. Acta 96 (2013) 1078-1083.
- [55] F.H. Allen, Acta Cryst. A 54 (1998) 758-771.
- [56] CCDC, Conquest, v.1.17, 2014.
- [57] M. Nieger, E. Niecke, R. Serwas, Private Communication in Ref. [56].
- [58] J.C. Tebby (Ed.), Handbook of Phosphorus-31 Nuclear Magnetic Resonance Data. CRC Press, Boca Raton, FL, 1991.
- [59] S.S. Batsanov, Experimental Foundations of Structural Chemistry, Moscow University Press, 2008.