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Synthesis of 1,3-benzothiazines by intramolecular dehydrogenative
C–S cross-coupling in a flow electrolysis cell
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Dehydrogenative cyclization of thioamides is an attractive approach for the synthesis of S-heterocycles. Reported herein is an
electrochemical dehydrogenative cyclization reaction of N-benzyl thioamides in a flow electrolysis cell. The continuous-flow
electrosynthesis has addressed the limitations associated with previously reported methods for the cyclization of alkylthioamides
and provide a transition metal- and oxidizing reagent-free access to various functionalized 1,3-benzothiazines in good yields.
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Dehydrogenative C–S cross-coupling is an attractive ap-
proach for the construction of S-containing organic mole-
cules because of its step and atom economic features [1–6].
Ideally, these reactions should proceed through H2 evolution
and avoid the use of stoichiometric chemical oxidants [7].
Organic electrochemistry has been demonstrated to be an
enabling tool to achieve dehydrogenative cross-coupling
through H2 evolution [8–17]. In this context, inter- and intra-
molecular dehydrogenative C–S cross-coupling has been
reported using batch reactors [18–24]. We have been inter-
ested in the synthesis of heterocycles through electro-
chemical dehydrogenative cyclization and annulation
reactions [25–31] and recently shown that dehydrogenative
cyclization of thioamides proceeds more efficiently in a
microflow electrochemical reactor than that in a batch re-
actor (Scheme 1(a)) [32]. We wonder if the continuous-flow
electrosynthesis can be applied to the preparation of 1,3-
benzothiazines through dehydrogenative cyclization of N-
benzyl thioamides. Such cyclization reactions have been

previously achieved chemically by employing hypervalent
iodine as the chemical oxidant (Scheme 1(b)) [33] and
electrochemically using a batch reactor (Scheme 1(c)) [34].
Under these established conditions, alkylthioamides remain
to be difficult substrates probably because of competitive
desulfurization, a common side reaction for the oxidation of
thioamides. Herein, we report a continuous-flow electro-
synthesis of 1,3-benzothiazines that is applicable to aryl- and
alkyl-thioamides (Scheme 1(d)).
The dehydrogenative cyclization of thioamide 1 was

chosen as a model reaction to search for optimal reaction
conditions (Table 1). The electrolysis was conducted at
r.t. using a flow cell equipped with a Pt cathode and a
carbon filled with polyvinylidene fluoride (C/PVDF) anode
[32]. After a screening of reaction parameters such as flow
rate, solvent, additives and current, the optimal conditions
were found to be passing a solution of 1 (0.03 M) and tri-
fluoromethanesulfonic acid (TfOH, 0.06 M) in MeCN
through the cell with a flow rate of 0.3 mL min−1 and a
constant current of 42 mA. No supporting salt was needed
because the addition of TfOH increased the conductivity of
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the reaction solution. Under these conditions, the reaction of
1 afforded the desired product 2 in 83% yield and only trace
amount of desulfurized compound 3 (entry 1, Table 1). The

presence of TfOH also prevented desulfurization. In the
absence of TfOH, the yield of 2 was reduced to 50% with
concomitant formation of amide 3 in 40% (entry 2). The
reduction of TfOH to 1 equiv. (entry 3) or the use of other
acidic additives such as trifluoroacetic acid (TFA) (entry 4)
or AcOH (entry 5) all led to a decrease in the yield of 2.
Other cathode materials such as Ni (entry 6) and stainless
steel (entry 7) and anode materials such as graphite (entry 8)
were less efficient in promoting the formation of 2.
The scope of the dehydrogenative cyclization reaction was

investigated by varying the substituents of the N-benzyl
thioamide substrate (Table 2). The R1 substituent tolerated
primary (4 and 5), secondary (6) and tertiary (7) alkyl groups
as well as a phenyl (8) group. Thioamides bearing at the
benzylic position one (9) or two (10) methyl groups were
also suitable substrates. The N-benzyl group tolerated sub-
stituents at various positions such as Me (11), Br (12) and
CF3 (13) at the para position, Me at the meta or ortho posi-
tions (14, 15). Meta-, para-dichloro-substituted thioamide
cyclized to give a mixture of regioisomers (16). The elec-
trochemical dehydrogenative cyclization reaction was also
applicable to seven-membered ring formation (17).
In continuous-flow electrosynthesis, reaction scale up can

be achieved by passing more material through the very same
reactor [35–38]. To increase the productivity, the substrate
concentration and electric current was increased to 0.05 M
and 75 mA, respectively. Under these conditions, the passing

Scheme 1 Dehydrogenative cyclization of thioamides (color online).

Table 1 Optimization of reaction conditions a)

Entry
Deviation from
standard condi-

tions

Yield (%) b)

2 3

1 None 83 c) Trace

2 No TfOH 50(3) 40

3 1.0 equiv. TfOH 71 4

4 TFA instead of
TfOH 26(10) 55

5 AcOH instead of
TfOH 25(31) 23

6 Ni cathode 77 12

7 Stainless steel
cathode 65 25

8 Graphite anode 74 14

a) Electrolysis conditions: C/PVDF anode, Pt cathode, electrode area=
10 cm2, I=42 mA, flow rate=0.3 mL min−1, r.t., 1 (0.03 M, 0.3 mmol),
TfOH (2.0 equiv.), MeCN, 2.9 F mol−1. b) Determined by 1H NMR analysis
using 1,3,5-trimethoxybenzene as internal standard. Recovered 1 is given in
brackets. c) Isolated yield. Cy, cyclohexyl.

Table 2 Substrate scope a)

a) Reaction condition: flow rate=0.3 mL min−1, r.t., TfOH (2.0 equiv.),
MeCN, thioamide (0.3 mmol, 0.03 M); b) r.r.=regioisomeric ratio.
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of 10.1 g of 1 through the flow electrolysis cell afforded
6.5 g of 2 (65% yield) in 48 h (Reaction (1)).

A possible mechanism was proposed based on the results
of this work and our previous report (Scheme 2) [32]. The
thioamide I is oxidized through single electron transfer
(SET) at the anode to afford radical cation II, which un-
dergoes cyclization and oxidative aromatization to afford the
final heterocycle V. The intermediate II can lose a proton to
give III, which is less reactive than II to undergo cyclization.
The radical III can dimerize to give VI [39], which then
undergo hydrolysis to furnish desulfurized material such as
3. The added TfOH ensures a more favorable equilibrium to
the side of II to reduce desulfurization.
In summary, we have developed a continuous-flow elec-

trosynthesis of 1,3-benzothiazines through dehydrogenative
cyclization of easily available thioamides. A variety of alkyl
and arylthioamides undergo efficient intramolecular dehy-
drogenative C–S cross-coupling without the need for che-
mical oxidants and transition metal catalysts, providing clean
access to S-heterocycles. The electrochemical protocol can
be expanded to 7-membered ring formation.
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