

Catalytic Production of Branched Small Alkanes from Biohydrocarbons

Shin-ichi Oya,^[a] Daisuke Kanno,^[a] Hideo Watanabe,^[b] Masazumi Tamura,^[a] Yoshinao Nakagawa,^{*[a]} and Keiichi Tomishige^{*[a]}

Squalane, C30 algae-derived branched hydrocarbon, was successfully converted to smaller hydrocarbons without skeletal isomerization and aromatization over ruthenium on ceria (Ru/CeO₂). The internal CH₂–CH₂ bonds located between branches are preferably dissociated to give branched alkanes with very simple distribution as compared with conventional methods using metal-acid bifunctional catalysts.

Liquid alkanes, which are important components of fuels and chemicals, are supplied by petroleum refining. Considering the diminishing reserves of crude oil, biomass, as renewable organic carbon resources, is expected to be a promising substitute.^[1] The production of liquid alkanes has been attempted from lignocellulose-derived substrates such as levulinic acid, furanic compounds, and cellulose.^[2-8] Some plants or microorganisms produce pure (bio)hydrocarbons, such as terpenes.^[9, 10] One example is squalene (2,6,10,14,18,22-hexaen-2,6,10,15,19,23-hexamethyltetracosane), high amounts of which have been reported to accumulate in Aurantiochytrium microalgae strains.[11, 12] Typically, biohydrocarbons, in particular algae-derived ones, are large molecules with many branches. While some amount of squalene (derived from sharks) has been used in cosmetics,^[11] biohydrocarbons need to be refined into smaller molecules for most other uses such as biofuel. Conventional methods for refining large hydrocarbons typically use solid acids in combination with noble-metal catalysts, and many side reactions can occur such as isomerization or coke formation.^[13, 14] Although isomerization is beneficial for fuel production from linearalkane-based feedstock such as petroleum, isomerization is undesirable in the case of branched algal hydrocarbons and only complicates the reaction mixture.

Herein, we show that a Ru/CeO_2 catalyst can produce small alkanes from biohydrocarbons by regioselective C–C hydrogenolysis, without isomerization and coke formation. By using this catalyst and molecular hydrogen, internal CH_2 – CH_2 bonds

[a]	I Si. Oya, D. Kanno, Dr. M. Tamura, Dr. Y. Nakagawa, Prof. Dr. K. Tomishig Department of Applied Chemistry, School of Engineering						
	Tohoku University						
	6-6-07 Aoba, Aramaki, Aoba-ku, Sendai, 980-8579 (Japan)						
	E-mail: yoshinao@erec.che.tohoku.ac.jp						
	tomi@erec.che.tohoku.ac.jp						
[b]	Dr. H. Watanabe						
	Faculty of Life and Environmental Sciences						
	University of Tsukuba						
	1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572 (Japan)						
	Supporting Information for this article is available on the WWW under http://dx.doi.org/10.1002/cssc.201500375.						

located between branches are preferably dissociated to give branched alkanes with very simple distributions of isomers.

First, we used *n*-hexadecane as a model substrate, to identify promising catalysts (Figure 1). Among carbon-supported catalysts (Figure 1 a–d), Ru/C showed the highest activity. The ac-

Figure 1. *n*-Hexadecane hydrogenolysis over various catalysts. Conditions: *n*-hexadecane, 2.26 g; catalyst, 10–100 mg (5 wt % metal except Ir); H_{2r} 6 MPa; 513 K. Gray and white bars represent linear and branched alkanes, respectively. *S*: Selectivity based on carbon, C. N.: carbon number.

tivity of Ru/C was higher than that of Ir/SiO₂ (Figure 1e), which has been reported to be selective in hydrogenolysis of internal C–C bonds. $^{\left[15-18\right] }$ Ruthenium catalysts on other supports (Ru/ CeO₂, Ru/SiO₂; Figure 1 f and g) were also tested, and the reaction times and catalyst amounts were adjusted to similar low levels of conversion, in order to compare selectivity. The order of activity was Ru/SiO₂ (TOF $1.8 \times 10^2 \text{ h}^{-1}$) > Ru/C (79 h⁻¹) > Ru/ CeO₂ (39 h⁻¹) > Ir/SiO₂ (12 h⁻¹) > Rh/C (2.8 h⁻¹) \ge Pd/C, Pt/C $(<0.01 h^{-1})$. The products were mainly *n*-alkanes for all of the tested active catalysts, and branched alkanes were hardly observed. This result is in contrast to those achieved over solidacid catalysts, where branched alkanes are the main products through isomerization.^[14,19-25] In the cases of Rh/C, Ru/SiO₂, and Ru/C, more methane and n-pentadecane were formed than C2-C14 alkanes, suggesting that these catalysts preferably cleave terminal C-C bonds before internal ones. In the literature, similar selectivity trends to Rh/C, Ru/SiO₂, and Ru/C catalysts have been reported for most metal-catalyzed C--C hydrogenolysis.^[15,26,27] However, these trends are not desirable because the branches of algal hydrocarbons are methyl groups,

Wiley Online Library

and cleavage of the terminal C–C bond removes the branch. On the other hand, on Ru/CeO_2 as well as Ir/SiO_2 the dissociation of terminal C–C bonds was not more preferable than those of other C–C bonds.

We applied Ru/CeO_2 to the hydrogenolysis of squalane (2,6,10,15,19,23-hexamethyltetracosane), which can be easily obtained by hydrogenation of squalene. Figure 2 shows GC

Figure 2. GC charts of liquid samples (diluted with mesitylene) of squalane hydrogenolysis. Conditions: squalane 4.23 g (10 mmol); catalyst, (a) 5.5 wt % Pt/H-USY 20 mg, (b) 5 wt % Ru/CeO₂ 100 mg; H₂, 6 MPa; 513 K; (a) 3 h, (b) 6 h. *I* and i.s. represent intensity and internal standard material (*n*-octacosane), respectively.

charts of liquid samples from the reaction of squalane over Pt/ H-USY and Ru/CeO₂. Pt/H-USY is a metal-acid bifunctional catalyst and was used as an example of a petroleum hydrocracking catalyst. The reaction over Pt/H-USY gave a very complex mixture of products, with > 200 kinds of molecules (Figure 2 a). In literature studies of squalane hydrocracking, we noted that products are also very complex and usually analyzed roughly by boiling point.^[24,28,29] On the other hand, the number of GC peaks on Ru/CeO₂ was much smaller than Pt/H-USY (Figure 2 b).

Figure 3 shows the product distribution over Ru/CeO₂. The main products have carbon numbers of 9, 10, 14, 15, 16, 20, 21, 25, and 26. In particular, each structure with carbon number of 4, 5, 6, 9, 10, and 15 was verified by GC-MS analysis using standard samples (Supporting Information, Figure S1). All the structures of these products were substructures of squalane. The amounts of products whose formations involve isomerization was always very small. The absence of unsaturated or cyclic products was confirmed by ¹H NMR (Supporting Information, Figure S2) and GC-MS(CI). The structures of the main products indicate that the CH_2 -CH₂ bonds located between

CHEMSUSCHEM Communications

Figure 3. Squalane hydrogenolysis over Ru/CeO₂. (a) Selectivity patterns. Conditions: squalane, 4.23 g (10 mmol); Ru/CeO₂, 50 mg; H₂, 6 MPa; 513 K; 6 h. Gray bars represent the dominating isomer of products with each carbon number, and white bars represent other isomers. S.: Selectivity based on carbon, C.N.: carbon number. (b) Proposed C–C dissociation positions.

the branches were selectively dissociated. The six branches in the squalane were maintained in the main products. On the other hand, Ru/SiO₂ gave products with carbon numbers below C30 (Supporting Information, Figure S3 a). The reactions at tertiary carbon, such as those giving C6–C8, C11–C13, and C17-19 products, decrease the number of branches. Hydrogenolysis of squalane over Ir/SiO₂ was also tested (Figure S3 b). The selectivity trend was intermediate between Ru/SiO₂ and Ru/CeO₂. However, the activity (TOF 2.7 h⁻¹) was much lower than those of ruthenium catalysts (Ru/CeO₂: 19 h⁻¹; Ru/SiO₂: 1.0×10^2 h⁻¹). This result agrees with literature data, reporting that iridium catalysts show very low activity towards the hydrogenolysis of branched alkanes.^[18]

Figure 4 shows the time course of the hydrogenolysis of squalane over Ru/CeO_2 . The product molecules became smaller at longer reaction times. The ratio of branched alkanes to *n*-al-

Figure 4. Reaction progress of squalane hydrogenolysis over Ru/CeO₂. Conditions: squalane, 4.23 g (10 mmol); Ru/CeO₂, 50 or 100 mg; H₂, 6 MPa; 513 K; 3–48 h. *S*: Selectivity based on carbon; *C*: conversion. W_{cat} : weight of catalyst.

ChemPubSoc

We re-used the Ru/CeO₂ catalyst in squalane hydrogenolysis, and almost the same result was obtained as for the fresh catalyst even after 4 runs (conversion: $72\% \rightarrow 78\% \rightarrow 72\% \rightarrow 75\%$; selectivities: Supporting Information, Figure S5). Thermal gravimetric (TG) analysis of the used catalyst showed that the amount of coke formed was small (3 wt% loss from the catalyst after 5 uses; 0.02%-C of used squalane). The amount of ruthenium leaching, measured with ICP–OES, was below the detection limit (<0.5% of total ruthenium).

The Ru/CeO₂ catalyst was characterized by various techniques. The profile of temperature-programmed reduction with H₂ had a signal at 323-493 K and the area corresponded to the reduction of RuO₂ to ruthenium metal (Supporting Information, Figure S6 and Table S1). The ruthenium species in Ru/ CeO₂ was reduced to Ru⁰ during the reaction. The X-ray diffraction (XRD) pattern of Ru/CeO₂ did not show peaks for ruthenium metal (Supporting Information, Figure S7). The amount of H₂ adsorped onto Ru/CeO₂ was 0.9H atoms per total ruthenium atoms (Supporting Information, Table S2). The ruthenium K-edge EXAFS spectrum (Supporting Information, Figure S8) could be fitted by one Ru-Ru shell with a coordination number of ~5, which is much smaller than that of the ideal hcp structure of ruthenium metal (12) and that of Ru/SiO₂ (10.5) (Table 1). These results indicate the very small size (< 1.5 nm) of the ruthenium metal particles on Ru/CeO₂. In the literature, several reduced Ru/CeO₂ catalysts have been prepared for other reactions than C-C hydrogenolysis, such as CO conversions^[33-35] and ammonia synthesis.^[36] According to the reported characterization results, similar highly dispersed ruthenium particles (\leq 2 nm) were formed by reduction of ruthenium precursors supported on CeO_2 . On the other hand, larger ruthenium particles were formed on other supports (< 1/5 dispersion relative to Ru/CeO₂; Supporting Information, Table S2).

The unique selectivity of the Ru/CeO₂ catalyst might be due to the high dispersion of ruthenium metal. In fact, when Ru/ CeO₂ was heated at 773 K before catalytic use to increase the particle size (ca. 2.5 nm from XRD; coordination number of Ru– Ru = 10.0 according to Ru *K*-edge EXAFS), the activity and selectivity became similar to Ru/SiO₂ (Supporting Information, Figure S9). Clarifying the mechanism that induces the selectivity requires further investigation. Preparing further small ruthenium particles might give even higher regioselectivity, which is also one target of our further studies.

Experimental Section

Carbon-supported noble-metal catalysts (Pt/C, Pd/C, Rh/C and Ru/ C; 5 wt%) were purchased from Wako Pure Chemical Industries. Ru/SiO₂ and Ru/CeO₂ (Ru: 5 wt%) were prepared by impregnating SiO_2 (BET 535 m²g⁻¹) and CeO₂ (calcined at 873 K; 86 m²g⁻¹) with $Ru(NO)(NO_3)_{3-x}(OH)_x$ in HNO_3aq . Pt/H-USY (Pt: 5.5 wt%) was prepared by impregnating H-USY (Si/Al=6.3) with H₂PtCl₆aq. Ir/SiO₂ (Ir: 4 wt%) was prepared by impregnating SiO₂ with H₂IrCl₆ ag. All the prepared catalysts were dried at 383 K for 12 h. After drying, Ru/SiO₂, Ru/CeO₂, and Pt/H-USY were heated in flowing N₂ at 573 K for 1 h. Ir/SiO_2 was calcined at 773 K for 3 h. Catalytic reaction was carried out in a 190 mL autoclave. 3.5 MPa H₂ was filled at r.t., and the pressure became 6 MPa after ~60 min heating to 513 K. The reaction time was counted after the heating. After appropriate reaction time, the reactor was rapidly cooled. Products in both gas and liquid phases were quantified with FID-GC, and qualified with GC-MS in EI and CI modes. TOF (turnover frequency; $[h^{-1}]$) was calculated by (increase of the total number of hydrocarbon molecules [mol])/(total number of noble metal atom [mol])/(reaction time [h]).

Acknowledgements

This work was supported by the project of Next-generation Energies for Tohoku Recovery. We thank Prof. M. M. Watanabe and Dr. M. Yoshida for providing the photos of Aurantiochytrium species for table of content. We also thank Shimadzu Corporation for GC-MS analysis.

Keywords: biomass · hydrogenolysis · metal oxides · microalgae · ruthenium

 a) G. W. Huber, S. Iborra, A. Corma, *Chem. Rev.* 2006, 106, 4044–4098; b) J. N. Chheda, G. W. Huber, J. A. Dumesic, *Angew. Chem. Int. Ed.* 2007, 46, 7164–7183; *Angew. Chem.* 2007, 119, 7298–7318; c) R. Rinaldi, F. Schüth, *Energy Environ. Sci.* 2009, 2, 610–626; d) A.-L. Marshall, P. J. Alaimo, *Chem. Eur. J.* 2010, 16, 4970–4980; e) H. Kobayashi, H. Ohta, A. Fukuoka, *Catal. Sci. Technol.* 2012, 2, 869–883; f) M. Besson, P. Gallezot, C. Pinel, *Chem. Rev.* 2014, 114, 1827–1870.

Table 1. Curve fitting results of Ru K-edge EXAFS after reduction.								
Catalyst	Shells	CN ^[a]	<i>R</i> /0.1 nm ^[b]	σ/0.1 nm ^[c]	$\Delta E_0 [\mathrm{eV}]^{\mathrm{[d]}}$	R _f [%] ^[e]		
Ru/CeO ₂	Ru–Ru	4.7 (±0.6)	2.61 (±0.01)	0.097 (±0.01)	-1.10 (±1.65)	1.4		
Ru/CeO ₂ after reaction	Ru–Ru	5.2 (±0.6)	2.60 (±0.01)	$0.083~(\pm0.01)$	$-8.35~(\pm 1.61)$	1.3		
Ru/SiO ₂	Ru–Ru	10.5 (±0.5)	$2.66 (\pm 0.00)$	$0.080~(\pm0.03)$	$-0.05~(\pm 0.74)$	0.21		
Ru powder	Ru–Ru	12	2.68	0.06	0	-		
[a] Coordination number. [b] Bond distance. [c] Debye–Waller factor. [d] Difference in the origin of photoelec- tron energy between the reference and the sample. [e] Residual factor. Fourier filtering range: 0.169–0.288 nm.								

ChemSusChem 2015, 8, 2472 – 2475

www.chemsuschem.org

- [2] a) R. Palkovits, Angew. Chem. Int. Ed. 2010, 49, 4336–4338; Angew. Chem. 2010, 122, 4434–4436; b) M. J. Climent, A. Corma, S. Iborra, Green Chem. 2014, 16, 516–547; c) Y. Nakagawa, S. Liu, M. Tamura, K. Tomishige, ChemSusChem 2015, 8, 1114–1132.
- [3] G. W. Huber, J. N. Chheda, C. J. Barrett, J. A. Dumesic, Science 2005, 308, 1446–1450.
- [4] R. Xing, A. V. Subrahmanyam, H. Olcay, W. Qi, G. P. van Walsum, H. Pendse, G. W. Huber, *Green Chem.* 2010, *12*, 1933–1946.
- [5] A. D. Sutton, F. D. Waldie, R. Wu, M. Schlaf, L. A. Silks, J. C. Gordon, Nat. Chem. 2013, 5, 428–432.
- [6] S. Liu, M. Tamura, Y. Nakagawa, K. Tomishige, ACS Sustainable Chem. Eng. 2014, 2, 1819–1827.
- [7] J. J. Bozell, G. R. Petersen, Green Chem. 2010, 12, 539-554.
- [8] B. Op de Beeck, M. Dusselier, J. Geboers, J. Holsbeek, E. Morré, S. Oswald, L. Giebeler, B. F. Sels, *Energy Environ. Sci.* 2015, 8, 230–240.
- [9] P. Metzger, C. Largeau, Appl. Microbiol. Biotechnol. 2005, 66, 486-496.
- [10] T. M. Mata, A. A. Martins, N. S. Caetano, Renewable Sustainable Energy Rev. 2010, 14, 217–232.
- [11] E. Naziri, F. Mantzouridou, M. Z. Tsimidou, *Lipid Technol.* **2011**, *23*, 270–273.
- [12] K. Kaya, A. Nakazawa, H. Matsuura, D. Honda, I. Inouye, M. M. Watanabe, Biosci. Biotechnol. Biochem. 2011, 75, 2246–2248.
- [13] M. S. Rana, V. Sámano, J. Ancheyta, J. A. I. Diaz, Fuel 2007, 86, 1216– 1231.
- [14] J. Weitkamp, ChemCatChem 2012, 4, 292-306.
- [15] A. Majesté, S. Balcon, M. Guérin, C. Kappenstein, Z. Paál, J. Catal. 1999, 187, 486–492.
- [16] a) P. T. Do, W. E. Alvarez, D. E. Resasco, J. Catal. 2006, 238, 477–488;
 b) M. Santikunaporn, W. E. Alvarez, D. E. Resasco, Appl. Catal. A 2007, 325, 175–187.
- [17] A. Haas, S. Rabl, M. Ferrari, V. Calemma, J. Weitkamp, Appl. Catal. A 2012, 425–426, 97–109.
- [18] a) D. W. Flaherty, E. Iglesia, J. Am. Chem. Soc. 2013, 135, 18586-18599;
 b) D. W. Flaherty, D. D. Hibbitts, E. Iglesia, J. Am. Chem. Soc. 2014, 136, 9664-9676.
- [19] I. E. Maxwell, Catal. Today 1987, 1, 385-413.

- [20] M. Roussel, J.-L. Lemberton, M. Guisnet, T. Cseri, E. Benazzi, J. Catal. 2003, 218, 427–437.
- [21] A. Ishihara, K. Inui, T. Hashimoto, H. Nasu, J. Catal. 2012, 295, 81-90.
- [22] A. Corma, A. Martinez, S. Pergher, S. Peratello, C. Perego, G. Bellusi, *Appl. Catal. A* **1997**, *152*, 107–125.
- [23] M. Busto, J. M. Grau, C. R. Vera, Appl. Catal. A 2010, 387, 35-44.
- [24] M. Mitsios, D. Guillaume, P. Galtier, D. Schweich, Ind. Eng. Chem. Res. 2009, 48, 3284-3292.
- [25] R. de Haan, G. Joorst, E. Mokoena, C. P. Nicolaides, Appl. Catal. A 2007, 327, 247-254.
- [26] F. Regali, L. F. Liotta, A. M. Venezia, M. Boutonnet, S. Järås, Appl. Catal. A 2014, 469, 328–339.
- [27] C. J. Machiels, R. B. Anderson, J. Catal. 1979, 58, 268-275.
- [28] K. P. de Jong, J. Zečević, H. Friedrich, P. E. de Jongh, M. Bulut, S. van Donk, R. Kenmogne, A. Finiels, V. Hulea, F. Fajula, *Angew. Chem. Int. Ed.* **2010**, *49*, 10074–10078; *Angew. Chem.* **2010**, *122*, 10272–10276.
- [29] J. Francis, E. Guillon, N. Bats, C. Pichon, A. Corma, L. J. Simon, Appl. Catal. A 2011, 409-410, 140-147.
- [30] T. G. Smagala, E. Christensen, K. M. Christison, R. E. Mohler, E. Gjersing, R. L. McCormick, *Energy Fuels* 2013, 27, 237–246.
- [31] T. C. R. Brennan, C. D. Turner, J. O. Krömer, L. K. Nielsen, Biotechnol. Bioeng. 2012, 109, 2513–2522.
- [32] Diesel Fuels Technical Reviews, Chevron Corporation. Available from http://www.chevron.com/productsservices/fuels/. (Accessed May 2015).
- [33] L. A. Bruce, M. Hoang, A. E. Hughes, T. W. Turney, J. Catal. 1998, 178, 84–93.
- [34] A. Satsuma, M. Yanagihara, J. Ohyama, K. Shimizu, Catal. Today 2013, 201, 62–67.
- [35] X. Chen, J. J. Delgado, J. M. Gatica, S. Zerrad, J. M. Cies, S. Bernal, J. Catal. 2013, 299, 272–283.
- [36] Y. Izumi, Y. Iwata, K. Aika, J. Phys. Chem. 1996, 100, 9421-9428.

Received: March 13, 2015 Published online on June 11, 2015 CHEMSUSCHEM Communications