Date: 18-09-14 17:48:34

DOI: 10.1002/ejoc.201402837

Diversity-Oriented Synthesis of Calothrixins and Ellipticines

Pages: 11

Dattatrava H. Dethe*^[a] and Ganesh M. Murhade^[b]

Keywords: Natural products / Nitrogen heterocycles / Quinones / Rearrangement / Oxidation

The divergent synthesis of calothrixins and ellipticines has been accomplished by utilising the one-pot formation of odiacylarenes as a key intermediate through rearrangement of o-hydroxy ketone monoacyl hydrazones by lead tetraacetate mediated oxidation.

Introduction

In 1959, Goodwin and colleagues reported the isolation and structure determination of ellipticine (1) and 9-methoxyellipticine (2) 6H-pyrido[4,3-b]carbazole alkaloids from the leaves of Ochrosia elliptica Labill (family Apocynaceae) (Figure 1).^[1] The promising antitumor activity of ellipticines prompted several groups to explore the synthesis and pharmacological properties of such compounds.^[2] Several ellipticine derivatives (e.g., 2) have been used in clinical trials.^[3] Calothrixin A (4) and B (5) are two naturally occurring pentacyclic isoquinoline alkaloids that were isolated from cvanobacterium of the genus *Calothrix* in 1999.^[4] The discovery of their antimalarial and antiproliferative properties against several cancer cell lines as well as human DNA topoisomerase I poisoning activity has led to an explosion of synthetic,^[5] biological, and pharmacological studies.^[4,6]

Reactions mediated by lead tetraacetate (LTA) and other metallic acetates with nitrogen-containing derivatives of carbonyl compounds have been the subject of extensive research.^[7,8] Kotali et al. have discovered an interesting rearrangement of o-hydroxy ketone monoacyl hydrazones by LTA-mediated oxidation, resulting in an unusual replacement of the phenolic hydroxyl group with an acyl substituent to give *o*-diacylbenzene.^[7a] The mechanistic studies performed by Kotali and Katritzky showed that this rearrangement occurs through 1,3,4-oxadiazoline and 1,3-dioxane intermediates.^[7b] Einhorn et al.^[8a] and Dong et al.^[8b] also utilised this method for the synthesis of a range of o-diacylbenzenes. Although there are various reports on the formation of o-diacylbenzenes by LTA-mediated oxidation, as

[a] Department of Chemistry, Indian Institute of Technology Kanpur.

1 /			
T7	200016	T 1'	
Kannur	208016	India	
Nannun	200010.	muna	
	,		

- E-mail: ddethe@iitk.ac.in
- http://home.iitk.ac.in/~ddethe/ [b] Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
 - E-mail: gmurhade@iitk.ac.in
- Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/ejoc.201402837.

Figure 1. Structures of the natural products.

mentioned above,^[7] so far this reaction has not been explored with heterocyclic aromatic compounds such as indoles, quinoline, and pyridines. In this article, we report a concise five-step total synthesis of calothrixins B (5) and a range of analogues by using LTA-mediated rearrangement of suitable o-hydroxy aryl ketone monoacylhydrazone directly into the corresponding quinone as the key step.

Results and Discussion

It was envisioned that both ellipticines quinone (3) and calothrixin (5) could be obtained from key intermediate 6/7 by Lewis-acid mediated intramolecular nucleophilic attack of C-3 indole onto aldehyde followed by oxidation (Scheme 1). Compounds 8 (hydrazone derivatives of pyridine) and 9 (hydrazone derivatives of quinoline) could be synthesised by coupling hydrazide derivatives of ethyl 1Hindole-2-carboxylate 10 with either pyridine derivative 11 or quinoline derivative 12, followed by LTA-mediated rearrangement. The latter pyridine and quinoline derivatives 11 and 12 were prepared in two steps by reported procedures.^[9] Compound 10, on treatment with hydrazine

FULL PAPER

Scheme 1. Retrosynthetic analysis of calothrixin and ellipticine quinone.

Scheme 2. Formal synthesis of ellipticine and its analogue.

Scheme 3. Synthesis of isocalothrixins and its analogues.

Diversity-Oriented Synthesis of Calothrixins and Ellipticines

hydrate in ethanol, generated indolyl-hydrazide 13 (Scheme 2), which was used in next step without further purification. Condensation of 13 with 11 afforded hydrazone 8. To our surprise, LTA-mediated oxidative rearrangement of acyl-hydrazone 8 afforded the keto alcohol 15a directly. Contrary to our expectation, LTA-mediated rearrangement of compound 8 produced the aldehyde in situ, which, on intramolecular nucleophilic attack of indole nitrogen on aldehyde instead of C-3 of indole, afforded the keto alcohol 15a. Oxidation of the secondary alcohol by using 2-iodoxybenzoic acid (IBX) afforded isoellipticine quinone 16a in 87% yield. Conversion of the latter quinone **16a** into ellipticines **1** has already been described,^[10] thus this approach constitutes a formal synthesis of ellipticine 1. The benzene analogue 16b of isoellipticine quinone was also synthesised by using salicylaldehyde 14 (Scheme 2). Similarly, condensation of various indolyl-hydrazides (13 and 13a-c) with quinoline derivative 12 followed by LTA-mediated oxidative rearrangement and IBX-mediated oxidation afforded isocalothrixin analogues 18a-d in very good overall yield (Scheme 3).

Considering the observed attack of the indole nitrogen on the aldehyde formed in situ, we decided to protect the indole nitrogen of ethyl 1*H*-indole-2-carboxylate. To this end, reaction of indole 10 with benzyl bromide in the presence of NaH generated the *N*-benzyl protected indole 19. Compound 19, on treatment with hydrazine hydrate and heating to reflux with ethanol, generated N-protected indolyl-hydrazide 20, which was used in next step without further purification. Condensation of 20 with pyridine derivative 11 afforded acyl-hydrazone 21a. To our delight, LTA-mediated oxidative rearrangement of **21a** afforded key intermediate keto-aldehyde **22a** (Scheme 4). BF₃·OEt₂ catalysed cyclisation by intramolecular nucleophilic attack of C-3 of indole on aldehyde followed by concomitant oxidation of the alcohol thus directly afforded quinone **23a** in 74% yield. Ellipticines quinone **23a** has previously been transformed into ellipticines 1,^[4,10] thus this reaction completes the second formal total synthesis of ellipticine 1. It was surprising that in the presence of BF₃·OEt₂, **22a** generated quinone **23a** directly instead of the corresponding keto alcohol as in the synthesis of isoellipticine quinone **16a** (Scheme 2) by further oxidation of alcohol to ketone. The

Scheme 4. Synthesis of ellipticine quinone and its analogue.

Scheme 5. Total synthesis of calothrixin B and its analogues.

FULL PAPER

same strategy was used for the synthesis of benz-ellipticine quinone **23b** from salicylaldehyde **14**. Similarly, condensation of *N*-PMB protected indole derivative **19a** (obtained by reaction of ethyl 1*H*-indole-2-carboxylate **10** with PMB-Cl in the presence of NaH) with quinoline derivative **12**, followed by LTA-mediated oxidative rearrangement, $BF_3 \cdot OEt_2$ -mediated cyclisation, and deprotection of the PMB group, afforded calothrixin B (**5**) in 39.1% overall yield from **10** (Scheme 5 and Scheme 6). A range of analogues of calothrixin (**26a–e**) were made by using same strategy, as shown in Scheme 5.

Scheme 6. Synthesis of calothrixin B.

Conclusions

We have demonstrated a novel approach for the synthesis of calothrixin B, ellipticine, and their various analogues in excellent overall yield by using the rearrangement of *o*-hydroxy ketone monoacyl hydrazones induced by lead tetraacetate as a key step.

Experimental Section

General: All reactions were carried out under either a nitrogen or argon atmosphere with anhydrous solvents under anhydrous conditions, unless otherwise mentioned. Anhydrous THF and diethyl ether were distilled from sodium benzophenone, and dichloromethane was distilled from calcium hydride, yields refer to chromatographically pure material, unless otherwise stated.

Reactions were monitored by thin-layer chromatography (TLC) carried out on 0.25 mm Merck silica gel plates ($60F_{254}$) using UV light as a visualising agent and an *p*-anisaldehyde or ninhydrine stain, and heat as developing agents. Merck silica gel (particle size 100–200 and 230–400 mesh) was used for flash column chromatography.

Reagents were purchased at the highest commercial quality and used without further purification, unless otherwise stated. NMR spectra were recorded with either a Bruker Avance 200 (¹H: 200 MHz, ¹³C: 50 MHz), Bruker Avance 400 (¹H: 400 MHz, ¹³C: 100 MHz), Bruker Avance 500 (¹H: 500 MHz, ¹³C: 125 MHz), or JEOL ECX 500 (¹H: 500 MHz, ¹³C: 125 MHz). The following abbreviations were used to explain the multiplicities in the NMR spectra: s = singlet, d = doublet, t = triplet, q = quartet, dd = doublet of doublet, ddd = doublet of a doublet of a doublet, dm = doublet of a multiplet, m = multiplet, br = broad. Mass spectrometric data were obtained with a WATERS-Q-Tof Premier-ESI-MS.

Preparation of Acylhydrazones 8 and 9. General Procedure A: Indole-2-carbohydrazide was added at room temperature to a solution of the desired aldehyde in ethanol. The reaction mixture was heated to reflux for 30 min, poured on ice, and the resulting solid was filtered and washed with water. The solid was taken into a roundbottomed flask, methanol was added and the mixture was heated to reflux for another 15 min. The solid was filtered again, washed with methanol and dried under vacuum.

(*E*)-*N*'-[(4-Hydroxypyridin-3-yl)methylene]-1*H*-indole-2-carbohydrazide (8): According to General Procedure A, 1*H*-indole-2-carbohydrazide (13; 1.1 g, 6.20 mmol) and aldehyde 11 (773 mg, 6.20 mmol) in ethanol (25 mL) were used to furnish product 8 (1.66 mg, 96%) as a light-yellow solid; m.p. 250–255 °C. IR (neat): $\tilde{v}_{max} = 3444$, 2922, 1626, 1542, 1455, 1321, 1270 cm⁻¹. ¹H NMR (500 MHz, [D₆]DMSO): $\delta = 4.64$ (br. s, 1 H), 7.06–7.23 (m, 3 H), 7.44 (s, 1 H), 7.66 (s, 1 H), 8.31 (s, 1 H), 8.76 (s, 2 H), 11.90 (s, 1 H), 12.40 (br. s, 1 H) ppm. ¹³C NMR (100 MHz, [D₆]DMSO): $\delta =$ 104.5, 112.5, 115.2, 120.1, 120.7, 122.0, 124.2, 127.0, 129.6, 137.0, 138.5, 140.3, 140.8, 157.7, 171.3 ppm. HRMS: *m/z* calcd. for C₁₅H₁₃N₄O₂ [M + H]⁺ 281.1039; found 281.1039.

(*E*)-*N*'-(2-Hydroxybenzylidene)-1*H*-indole-2-carbohydrazide (8a): According to General Procedure A, 1*H*-indole-2-carbohydrazide (13; 300 mg, 1.71 mmol) and aldehyde 14 (0.2 mL, 1.71 mmol) in ethanol (10 mL) were used to furnish product 8a (443 mg, 93%) as a light-yellow solid; m.p. 266 °C; IR (neat): $\tilde{v}_{max} = 3295$, 1653, 1616, 1576, 1537, 1486, 1443, 1346, 1308, 1268, 1239 cm^{-1.} ¹H NMR (400 MHz, [D₆]DMSO): $\delta = 6.94$ (m, 2 H), 7.08 (t, *J* = 7.3 Hz, 1 H), 7.23 (t, *J* = 7.3 Hz, 1 H), 7.28–7.33 (m, 2 H), 7.48 (d, *J* = 7.8 Hz, 1 H), 7.59 (d, *J* = 7.3 Hz, 1 H), 7.69 (d, *J* = 7.8 Hz, 1 H), 8.66 (s, 1 H), 11.19 (s, 1 H), 11.85 (s, 1 H), 12.15 (s, 1 H) ppm. ¹³C NMR (125 MHz, [D₆]DMSO): $\delta = 103.8$, 112.5, 116.4, 118.9, 119.4, 120.1, 121.9, 124.0, 127.0, 129.2, 129.7, 131.4, 136.9, 147.2, 157.3, 157.4 ppm. HRMS: *m/z* calcd. for C₁₆H₁₄N₃O₂ [M + H]⁺ 280.1086; found 280.1082.

(*E*)-*N'*-[(4-Hydroxyquinolin-3-yl)methylene]-1*H*-indole-2-carbohydrazide (9): According to General Procedure A, 1*H*-indole-2carbohydrazide (13; 500 mg, 2.85 mmol) and aldehyde 12 (494 mg, 2.85 mmol) in ethanol (15 mL) were used to furnish product 9 (893 mg, 95%) as a light-yellow solid; m.p. 296–298 °C. IR (neat): $\tilde{v}_{max} = 3230$, 3055, 1620, 1575, 1520, 1557, 1475, 1359, 1316, 1214 cm^{-1.} ¹H NMR (500 MHz, [D₆]DMSO): $\delta = 7.06$ (m, 1 H), 7.21 (m, 1 H), 7.35 (s, 1 H), 7.40–7.47 (m, 2 H), 7.66–7.71 (m, 3 H), 8.21 (d, *J* = 7.9 Hz, 1 H), 8.54 (s, 1 H), 8.82 (s, 1 H), 11.76 (s, 1 H), 11.82 (s, 1 H), 12.39 (br. s, 1 H) ppm. ¹³C NMR (125 MHz, [D₆]DMSO): $\delta = 103.3$, 112.7, 113.8, 119.0, 119.9, 121.7, 123.7, 124.3, 125.2, 125.7, 127.1, 130.2, 132.2, 136.8, 137.0, 139.3, 143.2, 157.3, 175.0 ppm. HRMS: *m*/z calcd. for C₁₉H₁₅N₄O₂ [M + H]⁺ 331.1195; found 331.1198.

(*E*)-*N*'-**[(4-Hydroxyquinolin-3-yl)methylene]-5-methoxy-1***H***-indole-2-carbohydrazide (9a):** According to General Procedure A, 5-methoxy-1*H*-indole-2-carbohydrazide (**13a**; 270 mg, 1.31 mmol) and aldehyde **12** (173 mg, 1.31 mmol) in ethanol (10 mL) were used to furnish product **9a** (448 mg, 95%) as a light-yellow solid; m.p. 288– 292 °C. IR (neat): $\tilde{v}_{max} = 3334$, 1626, 1558, 1518, 1476, 1446, 1386, 1249 cm^{-1.} ¹H NMR (500 MHz, [D₆]DMSO): $\delta = 3.78$ (s, 3 H), 6.87 (d, J = 7.9 Hz, 1 H), 7.13 (s, 1 H), 7.26 (s, 1 H), 7.35 (d, J =8.5 Hz, 1 H), 7.41 (m, 1 H), 7.66–7.71 (m, 2 H), 8.20 (d, J = 7.3 Hz, 1 H), 8.53 (s, 1 H), 8.81 (s, 1 H), 11.60 (s, 1 H), 11.17 (s, 1 H), 12.36 (s, 1 H) ppm. ¹³C NMR (125 MHz, [D₆]DMSO): $\delta = 55.3$, 102.1, 103.0, 113.1, 113.9, 115.0, 119.0, 124.3, 125.2, 125.7, 127.4, 130.5, 132.1, 136.9, 139.2, 143.1, 153.8, 157.2, 175.0 ppm. HRMS: *m*/*z* calcd. for C₂₀H₁₇N₄O₃ [M + H]⁺ 361.1301; found 361.1299.

(*E*)-5-(Benzyloxy)-*N*'-[(4-hydroxyquinolin-3-yl)methylene]-1*H*-indole-2-carbohydrazide (9b): According to General Procedure A, 5-(benzyloxy)-1*H*-indole-2-carbohydrazide (13b; 354 mg, 1.25 mmol) and aldehyde 12 (217 mg, 1.25 mmol) in ethanol (15 mL) were used

Diversity-Oriented Synthesis of Calothrixins and Ellipticines

to furnish product **9b** (523 mg, 96%) as a light-yellow solid; m.p. 254 °C. IR (neat): $\tilde{v}_{max} = 1643$, 1569, 1475, 1451, 1261, 1218 cm⁻¹. ¹H NMR (500 MHz, [D₆]DMSO): $\delta = 5.11$ (s, 2 H), 6.96 (s, 1 H), 7.24–7.48 (m, 9 H), 7.67 (m, 1 H), 8.20 (s, 1 H), 8.54 (s, 1 H), 8.81 (s, 1 H), 11.62 (s, 1 H), 11.76 (s, 1 H), 12.37 (br. s, 1 H) ppm. ¹³C NMR (125 MHz, [D₆]DMSO): $\delta = 69.6$, 103.1, 103.7, 113.2, 113.9, 115.5, 119.0, 124.3, 125.2, 125.7, 127.3, 127.7, 128.4, 130.6, 132.2, 136.9, 137.6, 139.3, 143.1, 152.9, 157.2, 175.0 ppm. HRMS: *m/z* calcd. for C₂₆H₂₁N₄O₃ [M + H]⁺ 437.1614; found 437.1614.

(*E*)-5-Chloro-*N'*-[(4-hydroxyquinolin-3-yl)methylene]-1*H*-indole-2carbohydrazide (9c): According to General Procedure A, 5-chloro-1*H*-indole-2-carbohydrazide (13c; 310 mg, 1.48 mmol) and aldehyde 12 (256 mg, 1.48 mmol) in ethanol (15 mL) were used to furnish product 9c (511 mg, 95%) as a light-yellow solid; m.p. 294– 296 °C. IR (neat): \tilde{v}_{max} = 3384, 3268, 1624, 1578, 1473, 1272 cm⁻¹. ¹H NMR (500 MHz, [D₆]DMSO): δ = 7.21 (m, 1 H), 7.32 (s, 1 H), 7.40–7.47 (m, 2 H), 7.65–7.75 (m, 3 H), 8.20 (m, 1 H), 8.57 (s, 1 H), 8.80 (s, 1 H), 11.92 (s, 1 H), 11.98 (s, 1 H), 12.44 (br. s, 1 H) ppm. ¹³C NMR (125 MHz, [D₆]DMSO): δ = 103.1, 113.9, 114.1, 119.1, 120.9, 123.9, 124.5, 124.6, 125.4, 125.8, 128.2, 131.8, 132.3, 135.3, 137.3, 139.4, 143.8, 157.2, 175.2 ppm. HRMS: *m/z* calcd. for C₁₉H₁₄ClN₄O₂ [M + H]⁺ 365.0805; found 365.0800.

Preparation of Keto Alcohol 15 and 17. General Procedure B: At room temperature, the appropriate hydrazone was dissolved in THF (analytical grade). At 0 °C, lead tetraacetate was gradually added to the solution. The resulting mixture was stirred for 3–4 h at room temp., and the progress of the reaction was monitored by the evolution of nitrogen. The solvent was removed under reduce pressure. Ethyl acetate was added to the residue and the suspension was filtered through Celite. The organic layer was washed with a saturated solution of NaHCO₃ then brine, and dried with Na₂SO₄. The solvent was removed under vacuo and the residue was purified on a silica gel column using EtOAc/hexane as eluent to furnish the product.

12-Hydroxyindolo[1,2-*b*][2,7]naphthyridin-5(12*H*)-one (15a): According to General Procedure B, compound **8** (300 mg, 1.07 mmol) and Pb(OAc)₄ (474 mg, 1.07 mmol) in THF (15 mL) were used to furnish product **15a** (208 mg, 78%) as a yellow solid; m.p. 180 °C; $R_{\rm f} = 0.40$ (EtOAc/hexane, 50:50). IR (neat): $\tilde{v}_{\rm max} = 3413$, 1660, 1532, 1440, 1466, 1290, 1250 cm⁻¹. ¹H NMR (500 MHz, [D₆]-DMSO): $\delta = 7.14$ (d, J = 9.7 Hz, 1 H), 7.25 (t, J = 7.2 Hz, 1 H), 7.37 (d, J = 10.0 Hz, 1 H), 7.50 (t, J = 8.0 Hz, 1 H), 7.54 (s, 1 H), 7.84 (m, 2 H), 7.98 (d, J = 4.9 Hz, 1 H), 8.89 (d, J = 4.9 Hz, 1 H), 9.10 (s, 1 H) ppm. ¹³C NMR (125 MHz, [D₆]DMSO): $\delta = 72.3$, 108.2, 112.7, 118.0, 122.0, 123.2, 126.5, 127.2, 131.7, 134.6, 135.3, 137.9, 150.5, 151.1, 175.8 ppm. HRMS: m/z calcd. for C₁₅H₁₀N₂O₂ [M + H]⁺ 251.0821; found 251.0820.

6-Hydroxyindolo[1,2-*b*]isoquinolin-11(6*H*)-one (15b): According to General Procedure B, compound **8a** (260 mg, 0.98 mmol) and Pb(OAc)₄ (434 mg, 0.98 mmol) in THF (10 mL) were used to furnish product **15b** (190 mg, 78%) as a yellow solid; m.p. 132–136 °C; $R_{\rm f} = 0.40$ (EtOAc/hexane, 50:50). IR (neat): $\tilde{v}_{\rm max} = 3275$, 1632, 1598, 1530, 1354, 1275, 1197 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): $\delta = 3.36$ (br. s, 1 H), 6.86 (d, J = 8.5 Hz, 1 H), 7.25 (m, 1 H), 7.39 (s, 1 H), 7.48 (t, J = 7.0 Hz, 1 H), 7.55 (t, J = 7.0 Hz, 1 H), 7.70–7.75 (m, 2 H), 7.81 (t, J = 8.5 Hz, 2 H), 8.19 (d, J = 7.0 Hz, 1 H) ppm. ¹³C NMR (125 MHz, [D₆]DMSO): $\delta = 73.9$, 107.2, 112.8, 121.8, 123.1, 125.9, 127.3, 129.1, 129.3, 129.8, 132.2, 134.0, 137.8, 141.3, 176.7 ppm. HRMS: *m/z* calcd. for C₁₆H₁₁NNaO₂ [M + Na]⁺ 272.0687; found 272.0680.

7-Hydroxybenzo[f]indolo[1,2-*b*][**2,7]naphthyridin-14(7***H***)-one (17a):** According to General Procedure B, compound **9** (330 mg, 1.00 mmol) and Pb(OAc)₄ (443 mg, 1.00 mmol) in THF (15 mL) were used to furnish product **17a** (240 mg, 80%) as a yellow solid; m.p. 172 °C; $R_{\rm f} = 0.30$ (EtOAc/hexane, 50:50). IR (neat): $\tilde{v}_{\rm max} = 3127, 1658, 1570, 1523, 1320, 1241 {\rm cm}^{-1}$. ¹H NMR (400 MHz, [D₆]-DMSO): $\delta = 7.19$ (d, $J = 10.1 {\rm Hz}$, 1 H), 7.25 (t, $J = 7.8 {\rm Hz}$, 1 H), 7.43–7.49 (m, 2 H), 7.51 (s, 1 H), 7.81–7.91 (m, 4 H), 8.17 (d, $J = 7.8 {\rm Hz}$, 1 H), 9.32 (s, 1 H), 9.62 (d, $J = 8.3 {\rm Hz}$, 1 H) ppm. ¹³C NMR (125 MHz, [D₆]DMSO): $\delta = 72.5, 108.1, 112.5, 121.9, 122.9, 123.2, 126.3, 126.4, 127.3, 129.1, 129.7, 130.2, 132.9, 134.9, 137.4, 148.2, 151.5, 178.8 ppm. HRMS:$ *m/z*calcd. for C₁₉H₁₃N₂O₂ [M + H]⁺ 301.0977; found 301.0973.

7-Hydroxy-11-methoxybenzo[/[indolo]1,2-*b***][2,7]naphthyridin-14(7***H***)-one (17b): According to General Procedure B, compound 9a (200 mg, 0.55 mmol) and Pb(OAc)₄ (246 mg, 0.55 mmol) in THF (10 mL) were used to furnish product 17b (135 mg, 75%) as a yellow solid; m.p. 170–175 °C; R_{\rm f} = 0.33 (EtOAc/hexane, 40:60). IR (neat): \tilde{v}_{\rm max} = 3169, 2925, 1659, 1537, 1456 cm⁻¹. ¹H NMR (500 MHz, [D₆]DMSO): \delta = 3.82 (s, 3 H), 7.16 (m, 2 H), 7.28 (m, 1 H), 7.42 (m, 1 H), 7.76 (d,** *J* **= 9.2 Hz, 1 H), 7.85 (m, 1 H), 7.91 (m, 1 H), 8.15 (m, 1 H), 9.32 (s, 1 H), 9.65 (d,** *J* **= 9.8 Hz, 1 H) ppm. ¹³C NMR (125 MHz, [D₆]DMSO): \delta = 55.3, 72.5, 102.7, 107.54, 113.5, 118.1, 122.9, 126.5, 127.9, 129.1, 129.7, 129.7, 130.2, 132.8, 133.2, 135.0, 148.2, 151.4, 155.1, 178.5 ppm. HRMS:** *m/z* **calcd. for C₂₀H₁₃N₂O₃ [M + H]⁺ 329.0926; found 329.0922.**

11-(Benzyloxy)-7-hydroxybenzo[/]indolo[1,2-*b***][2,7]naphthyridin-14(7***H***)-one (17c): According to General Procedure B, compound 9b (200 mg, 0.458 mmol) and Pb(OAc)₄ (202 mg, 0.458 mmol) in THF (10 mL) were used to furnish product 17c (150 mg, 81%) as a yellow solid; m.p. 178 °C; R_f = 0.30 (EtOAc/hexane, 20:80). IR (neat): \tilde{v}_{max} = 3429, 2923, 1653, 1450, 1354, 1205, 1025 cm⁻¹. ¹H NMR (400 MHz, [D₆]DMSO): \delta = 5.16 (s, 2 H), 7.15 (d, J = 10 Hz, 1 H), 7.24 (dd, J = 2.5, 9.1 Hz, 1 H), 7.32–7.45 (m, 6 H), 7.50 (m, 2 H), 7.77 (d, J = 9.1 Hz, 1 H), 7.83–7.92 (m, 2 H), 8.18 (dd, J = 1.4, 8.4 Hz, 1 H), 9.31 (s, 1 H), 9.64 (dd, J = 1.2, 8.4 Hz, 1 H) ppm. ¹³C NMR (125 MHz, [D₆]DMSO): \delta = 69.6, 72.5, 104.3, 107.5, 113.6, 118.5, 122.9, 126.5, 127.7, 127.8, 127.9, 128.5, 129.1, 129.7, 129.7, 130.2, 133.0, 133.3, 135.0, 137.2, 148.2, 151.4, 154.1, 178.5 ppm. HRMS:** *m/z* **calcd. for C₂₆H₁₉N₂O₃ [M + H]⁺ 407.1396; found 407.1393.**

11-Chloro-7-hydroxybenzo[/]indolo[1,2-*b***][2,7]naphthyridin-14(7***H***)one (17d): According to General Procedure B, compound 9c (300 mg, 0.824 mmol) and Pb(OAc)₄ (365 mg, 0.824 mmol) in THF (15 mL) were used to furnish product 17d** (212 mg, 77%) as a yellow solid; m.p. 185 °C; R_f = 0.30 (EtOAc/hexane, 20:80). IR (neat): \bar{v}_{max} = 3113, 2848, 1660, 1524, 1524, 1444, 1427, 1355, 1316, 1273, 1175 cm^{-1.} ¹H NMR (500 MHz, [D₆]DMSO): δ = 7.18 (m, 1 H), 7.45–7.52 (m, 3 H), 7.82–7.91 (m, 4 H), 8.17 (d, *J* = 7.9 Hz, 1 H), 9.30 (s, 1 H), 9.58 (d, *J* = 8.5 Hz, 1 H) ppm. ¹³C NMR (125 MHz, [D₆]DMSO): δ = 72.6, 107.2, 114.2, 122.1, 122.7, 126.3, 126.3, 126.4, 128.2, 128.8, 129.7, 129.8, 130.2, 133.9, 134.8, 135.6, 148.1, 151.3, 178.7 ppm. HRMS: *m/z* calcd. for C₁₉H₁₂ClN₂O₂ [M + H]⁺ 335.0587; found 335.0580.

Oxidation of Alcohol 16 and 18. General Procedure C: Compound was dissolved in a mixture of ethyl acetate and DMSO (2:1) and IBX was added. The reaction mixture was heated to reflux for 8 h. After completion of reaction, aq. NaHCO₃ was added and the mixture was extracted with ethyl acetate (3×15 mL). The organic extract was washed with brine and dried with Na₂SO₄. Evaporation of the solvent and purification of the residue on a silica gel column using EtOAc/hexane as eluent furnished the product.

Indolo[1,2-b][2,7]naphthyridine-5,12-dione (16a): According to General Procedure C, compound 15a (25 mg, 0.10 mmol), IBX

FULL PAPER

(74 mg, 0.30 mmol) and a mixture of EtOAc (4 mL) and DMSO (2 mL) were used to furnish product **16a** (21 mg, 87%) as a yellow solid; m.p. 190 °C; $R_{\rm f}$ = 0.34 (EtOAc/hexane, 20:80). IR (neat): $\tilde{v}_{\rm max}$ = 1651, 1477, 1050, 1004 cm⁻¹. ¹H NMR (500 MHz, [D₆]DMSO): δ = 7.44 (t, *J* = 7.9 Hz, 1 H), 7.67 (d, *J* = 7.9 Hz, 1 H), 7.83 (s, 1 H), 7.90 (d, *J* = 7.9 Hz, 1 H), 8.02 (d, *J* = 4.9 Hz, 1 H), 8.51 (d, *J* = 8.2 Hz, 1 H), 9.14 (d, *J* = 4.9 Hz, 1 H), 9.48 (s, 1 H) ppm. ¹³C NMR (125 MHz, [D₆]DMSO): δ = 116.4, 116.4, 118.3, 124.2, 124.8, 125.4, 128.3, 130.1, 133.7, 136.4, 138.9, 150.1, 155.3, 158.5, 174.8 ppm. HRMS: *m/z* calcd. for C₁₅H₉N₂O₂ [M + H]⁺ 249.0664; found 249.0666.

Indolo[1,2-*b*]isoquinoline-6,11-dione (16b): According to General Procedure C, compound 15b (40 mg, 0.16 mmol), IBX (119 mg, 0.48 mmol) and a mixture of EtOAc (4 mL) and DMSO (2 mL) were used to furnish product 16b (34 mg, 87%) as a yellow solid; m.p. 140–144 °C; $R_{\rm f}$ = 0.34 (EtOAc/hexane, 20:80). IR (neat): $\tilde{v}_{\rm max}$ = 1688, 1662, 1552, 1444, 1372, 1247 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ = 7.38 (t, J = 7.2 Hz, 1 H), 7.59 (t, J = 7.2 Hz, 1 H), 7.66 (s, 1 H), 7.75 (d, J = 7.9 Hz, 1 H), 7.80–7.86 (m, 2 H), 8.30 (m, 1 H), 8.44 (m, 1 H), 8.63 (d, J = 8.3 Hz, 1 H) ppm. ¹³C NMR (125 MHz, CDCl₃): δ = 116.5, 117.2, 123.7, 125.3, 126.9, 128.6, 129.3, 129.8, 131.2, 133.5, 134.1, 134.4, 137.2, 159.2, 175.6 ppm. HRMS: *m/z* calcd. for C₁₆H₁₀NO₂ [M + H]⁺ 248.0712; found 248.0719.

Benzo[*f*]indolo[1,2-*b*][2,7]naphthyridine-7,14-dione (18a): According to General Procedure C, compound 17a (74 mg, 0.24 mmol), IBX (183 mg, 0.73 mmol) and a mixture of EtOAc (9 mL) and DMSO (3 mL) were used to furnish product 18a (60 mg, 85%) as a yellow solid; m.p. 249 °C; $R_{\rm f}$ = 0.30 (EtOAc/hexane, 20:80). IR (neat): $\tilde{v}_{\rm max}$ = 1698, 1656, 1573, 1419, 1382, 1235 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ = 7.37 (t, *J* = 7.1 Hz, 1 H), 7.60 (t, *J* = 7.1 Hz, 1 H), 7.67 (s, 1 H), 7.73 (d, *J* = 7.8 Hz, 1 H), 7.81 (t, *J* = 8.5 Hz, 1 H), 7.91 (t, *J* = 8.5 Hz, 1 H), 8.23 (d, *J* = 8.5 Hz, 1 H), 8.56 (d, *J* = 8.5 Hz, 1 H), 9.70 (d, *J* = 8.7 Hz, 1 H), 9.91 (s, 1 H) ppm. ¹³C NMR (125 MHz, CDCl₃): δ = 117.1, 117.9, 122.6, 123.3, 123.9, 125.7, 127.8, 128.6, 130.3, 130.5, 130.7, 132.4, 133.8, 134.0, 136.7, 149.5, 151.7, 158.3, 177.6 ppm. HRMS: *m/z* calcd. for C₁₉H₁₁N₂O₂ [M + H]⁺ 299.0821; found 299.0825.

11-Methoxybenzo[/findolo[1,2-*b***][2,7]naphthyridine-7,14-dione (18b):** According to General Procedure C, compound **17b** (98 mg, 0.29 mmol), IBX (220 mg, 0.89 mmol) and a mixture of EtOAc (8 mL) and DMSO (2 mL) were used to furnish product **18b** (77 mg, 81%) as a red solid; m.p. 206 °C; $R_{\rm f}$ = 0.30 (EtOAc/hexane, 20:80). IR (neat): $\tilde{v}_{\rm max}$ = 1689, 1650, 1570, 1477, 1240 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ = 3.90 (s, 3 H), 7.16 (m, 1 H), 7.23 (m, 1 H), 7.63 (s, 1 H), 7.83 (m, 1 H), 7.93 (m, 1 H), 8.25 (d, *J* = 8.5 Hz, 1 H), 8.47 (d, *J* = 9.2 Hz, 1 H), 9.73 (d, *J* = 8.5 Hz, 1 H), 9.92 (s, 1 H) ppm. ¹³C NMR (125 MHz, CDCl₃): δ = 55.7, 105.1, 117.6, 118.0, 120.2, 122.7, 123.4, 127.8, 129.7, 130.3, 130.7, 131.6, 132.4, 134.0, 149.4, 151.8, 157.8 ppm. HRMS: *m/z* calcd. for C₂₀H₁₃N₂O₃ [M + H]⁺ 329.0926; found 329.0928.

11-(Benzyloxy)benzo[/[indolo[1,2-b][2,7]naphthyridine-7,14-dione (**18c**): According to General Procedure C, compound **17c** (190 mg, 0.46 mmol), IBX (348 mg, 1.40 mmol) and a mixture of EtOAc (10 mL) and DMSO (5 mL) were used to furnish product **18c** (145 mg, 78%) as a red solid; m.p. 230–235 °C; $R_{\rm f} = 0.30$ (EtOAc/ hexane, 30:70). IR (neat): $\tilde{v}_{\rm max} = 1686$, 1654, 1573, 1539, 1442, 1460, 1392, 1255 cm⁻¹. ¹H NMR [500 MHz, CDCl₃ + TFA (10:1)]: $\delta = 4.94$ (dd, J = 11.5, 25.8 Hz, 2 H), 6.87 (s, 1 H), 7.21–7.31 (m, 6 H), 8.00 (t, J = 8.0 Hz, 1 H), 8.25 (t, J = 8.0 Hz, 1 H), 8.54 (d, J = 8.6 Hz, 1 H), 8.69 (d, J = 9.2 Hz, 1 H), 9.71 (d, J = 8.6 Hz, 1 H), 10.16 (s, 1 H) ppm. ¹³C NMR [125 MHz, CDCl₃ + TFA (10:1)]:
$$\begin{split} &\delta=70.7,\ 105.4,\ 111.0,\ 113.3,\ 115.6,\ 117.8,\ 119.0,\ 122.6,\ 123.5,\\ &125.3,\ 127.3,\ 128.4,\ 128.6,\ 129.1,\ 129.8,\ 130.2,\ 131.0,\ 134.0,\ 135.7,\\ &137.5,\ 139.9,\ 141.2,\ 145.1,\ 154.8,\ 158.1,\ 173.9\ ppm.\ HRMS:\ \emph{m/z}\\ &calcd.\ for\ C_{26}H_{17}N_2O_3\ [M+H]^+\ 405.1239;\ found\ 405.1238. \end{split}$$

11-Chlorobenzo[/]indolo[1,2-*b***][2,7]naphthyridine-7,14-dione (18d):** According to General Procedure C, compound **17d** (100 mg, 0.29 mmol), IBX (222 mg, 0.89 mmol) and a mixture of EtOAc (8 mL) and DMSO (2 mL) were used to furnish product **18d** (77 mg, 80%) as a light-orange solid; m.p. 249 °C; $R_{\rm f}$ = 0.33 (EtOAc/hexane, 20:80). IR (neat): $\tilde{v}_{\rm max}$ = 2923, 1691, 1654, 1541, 1419, 1385, 1322, 1280, 1177 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ = 7.56 (dd, J = 2.3, 9.2 Hz, 1 H), 7.62 (s, 1 H), 7.73 (d, J = 1.7 Hz, 1 H), 7.82–7.86 (m, 1 H), 7.92–7.96 (m, 1 H), 8.25 (d, J = 7.4 Hz, 1 H), 8.52 (d, J = 9.2 Hz, 1 H), 9.69 (d, J = 9.7 Hz, 1 H), 9.91 (s, 1 H) ppm. ¹³C NMR (125 MHz, [D₆]DMSO): δ = 116.4, 118.2, 122.6, 123.0, 123.3, 127.8, 129.8, 130.3, 130.6, 130.9, 131.4, 132.0, 132.7, 133.9, 134.9, 149.4, 151.8, 158.3, 177.6 ppm. HRMS: *m*/*z* calcd. for C₁₉H₁₀ClN₂O₃ [M + H]⁺ 333.0431; found 333.0432.

Preparation of Acylhydrazone 21 and 24. General Procedure D: The N-alkylated indole-2-carbohydrazide was added at room temperature to a solution of the desired aldehyde in ethanol. The reaction mixture was heated to reflux for 30 min, poured on ice, and the resulting solid was filtered and washed with water. The solid was taken into a round-bottomed flask, methanol was added, and the mixture was heated to reflux for another 15 min. The solid was filtered again, washed with methanol, and dried under vacuum.

(*E*)-1-Benzyl-*N'*-[(4-hydroxypyridin-3-yl)methylene]-1*H*-indole-2carbohydrazide (21a): According to General Procedure D, 1-benzyl-1*H*-indole-2-carbohydrazide (20; 500 mg, 1.88 mmol) and aldehyde 11 (232 mg, 1.88 mmol) in ethanol (20 mL) were used to furnish product 21a (660 mg, 95%) as a white solid; m.p. 254–256 °C. IR (neat): $\tilde{v}_{max} = 3190$, 1635, 1522, 1494, 1452, 1215 cm⁻¹. ¹H NMR (500 MHz, [D₆]DMSO): $\delta = 4.62$ (br. s, 1 H), 5.90 (s, 2 H), 7.07 (s, 2 H), 7.19–7.29 (m, 6 H), 7.50 (s, 1 H), 7.57 (s, 1 H), 7.74 (s 1 H), 8.42 (s, 1 H), 8.71 (s, 1 H), 8.83 (s, 1 H) ppm. ¹³C NMR (125 MHz, [D₆]DMSO): $\delta = 47.0$, 107.1, 111.3, 112.07, 116.2, 121.0, 122.3, 124.7, 125.9, 126.6, 127.2, 128.6, 129.7, 138.8, 140.1, 141.7, 149.3, 159.8, 173.0 ppm. HRMS: *m/z* calcd. for C₂₂H₁₉N₄O₂ [M + H]⁺ 371.1508; found 371.1501.

(*E*)-1-Benzyl-*N'*-(2-hydroxybenzylidene)-1*H*-indole-2-carbohydrazide (21b): According to General Procedure D, 1-benzyl-1*H*-indole-2-carbohydrazide (20; 500 mg, 1.9 mmol) and aldehyde 14 (0.2 mL, 1.9 mmol) in ethanol (15 mL) were used to furnish product 21b (666 mg, 95%) as a white solid; m.p. 180–182 °C. IR (neat): \tilde{v}_{max} = 3217, 1646, 1543, 1488, 1451, 1350, 1274, 1207 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ = 5.81 (s, 2 H), 6.90 (t, *J* = 7.3 Hz, 1 H), 7.00 (d, *J* = 8.2 Hz, 1 H), 7.09 (d, *J* = 7.4 Hz, 3 H), 7.15–7.27 (m, 5 H), 7.31 (t, *J* = 8.2 Hz, 1 H), 7.37 (d, *J* = 8.2 Hz, 1 H), 7.69 (d, *J* = 7.9 Hz, 1 H), 8.27 (br. s, 1 H), 9.25 (br. s, 1 H), 10.88 (s, 1 H) ppm. ¹³C NMR (125 MHz, CDCl₃): δ = 47.9, 111.0, 117.3, 119.3, 121.2, 122.2, 125.2, 126.1, 126.4, 127.3, 128.6, 130.9, 132.0, 137.9, 139.2, 147.8, 154.5, 158.2, 161.5 ppm. HRMS: *m/z* calcd. for C₂₃H₂₀N₃O₂ [M + H]⁺ 370.1556; found 370.1551.

(*E*)-*N*'-**[(4-Hydroxyquinolin-3-yl)methylene]-1-(4-methoxybenzyl)-**1*H*-indole-2-carbohydrazide (24a): According to General Procedure D, 1-(4-methoxybenzyl)-1*H*-indole-2-carbohydrazide (20a; 1 g, 3.38 mmol) and aldehyde 12 (586 mg, 3.38 mmol) in ethanol (25 mL) were used to furnish product 24a (1.39 g, 92%) as a lightyellow solid; m.p. 305–310 °C. IR (neat): $\tilde{v}_{max} = 3406$, 1614, 1554, 1473, 1313, 1248 cm⁻¹. ¹H NMR (500 MHz, [D₆]DMSO): $\delta = 3.63$ (s, 3 H), 5.78 (s, 2 H), 6.78 (d, J = 8.6 Hz, 2 H), 7.04–7.10 (m, 2 H), 7.22 (m, 1 H), 7.31 (s, 1 H), 7.37 (m, 1 H), 7.54–7.69 (m, 5 H),

Diversity-Oriented Synthesis of Calothrixins and Ellipticines

8.15 (d, J = 8.02 Hz, 1 H), 8.47 (s, 1 H), 8.74 (s, 1 H), 11.86 (s, 1 H), 12.36 (br. s, 1 H) ppm. ¹³C NMR (125 MHz, [D₆]DMSO): $\delta = 46.2$, 55.0, 106.1, 111.1, 113.8, 118.9, 120.4, 121.8, 124.0, 124.2, 125.2, 125.6, 125.8, 128.0, 130.2, 130.6, 132.1, 132.2, 136.9, 138.3, 139.2, 143.5, 155.7, 158.0, 158.3, 174.9 ppm. HRMS: m/z calcd. for C₂₇H₂₃N₄O₃ [M + Na]⁺ 451.1770; found 451.1778.

(*E*)-1-Benzyl-*N'*-[(4-hydroxyquinolin-3-yl)methylene]-1*H*-indole-2carbohydrazide (24b): According to General Procedure D, 1-benzyl-1*H*-indole-2-carbohydrazide (20; 150 mg, 0.86 mmol) and aldehyde 12 (230 mg, 0.86 mmol) in ethanol (10 mL) were used to furnish product 24b (335 mg, 93%) as a light-yellow solid; m.p. 288 °C. IR (neat): $\tilde{v}_{max} = 3406, 2922, 1630, 1517, 1477, 1451, 1222, 1106 cm^{-1}$. ¹H NMR (500 MHz, [D₆]DMSO): $\delta = 5.90$ (s, 2 H), 7.08–7.15 (m, 4 H), 7.19–7.27 (m, 4 H), 7.40 (s, 2 H), 7.56 (m, 1 H), 7.65 (m, 1 H), 7.71 (m, 2 H), 8.19 (d, *J* = 7.9 Hz, 1 H), 8.50 (s, 1 H), 8.77 (s, 1 H), 11.92 (s, 1 H), 12.37 (br. s, 1 H) ppm. ¹³C NMR (125 MHz, [D₆]DMSO): $\delta = 46.9, 106.3, 111.1, 113.9, 119.0, 120.6, 122.0, 124.2, 124.4, 125.3, 125.7, 125.9, 126.5, 127.0, 128.5, 130.3, 132.2, 137.0, 138.4, 138.8, 139.3, 143.6, 158.0, 175.0 ppm. HRMS:$ *m/z* calcd. for C₂₆H₂₀N₄NaO₂ [M + Na]⁺ 443.1484; found 443.1483.

(*E*)-1-Benzyl-*N'*-[(4-hydroxyquinolin-3-yl)methylene]-5-methoxy-1*H*-indole-2-carbohydrazide (24c): According to General Procedure D, 1-benzyl-5-methoxy-1*H*-indole-2-carbohydrazide (20b; 285 mg, 0.96 mmol) and aldehyde 12 (167 mg, 0.96 mmol) in ethanol (15 mL) were used to furnish product 24c (401 mg, 93%) as a white solid; m.p. 285 °C. IR (neat): \tilde{v}_{max} = 3450, 1641, 1552, 1474, 1451, 1230, 1165 cm^{-1.} ¹H NMR (500 MHz, [D₆]DMSO): δ = 3.78 (s, 3 H), 5.86 (s, 2 H), 6.91 (t, *J* = 7.9 Hz, 1 H), 7.06 (m, 2 H), 7.23 (m, 5 H), 7.44 (m, 2 H), 7.66 (m, 2 H), 8.20 (d, *J* = 7.49 Hz, 1 H), 8.49 (s, 1 H), 8.77 (s, 1 H), 11.85 (s, 1 H), 12.34 (br. s, 1 H) ppm. ¹³C NMR (125 MHz, [D₆]DMSO): δ = 46.9, 55.4, 102.5, 105.8, 112.0, 113.9, 115.1, 119.0, 124.3, 125.2, 125.7, 126.2, 126.4, 127.0, 128.4, 130.4, 132.1, 133.1, 133.7, 136.9, 138.9, 139.2, 143.4, 154.3, 157.9, 174.9 ppm. HRMS: *m/z* calcd. for C₂₇H₂₃N₄O₃ [M + H]⁺ 451.1770; found 451.1778.

(E)-1-Benzyl-5-(benzyloxy)-N'-[(4-hydroxyquinolin-3-yl)methylene]-1H-indole-2-carbohydrazide (24d): According to General Procedure D, 1-benzyl-5-(benzyloxy)-1*H*-indole-2-carbohydrazide (**20c**; 200 mg, 0.53 mmol) and aldehyde 12 (93 mg, 0.53 mmol) in ethanol (15 mL) were used to furnish product 24d (251 mg, 90%) as a white solid; m.p. 286–290 °C. IR (neat): \tilde{v}_{max} = 3227, 1643, 1569, 1475, 1451, 1278 cm⁻¹. ¹H NMR (500 MHz, [D₆]DMSO): δ = 5.12 (s, 2 H), 5.86 (s, 2 H), 7.00 (d, J = 8.6 Hz, 1 H), 7.00 (d, J = 7.4 Hz, 2 H), 7.19 (m, 1 H), 7.25 (m, 5 H), 7.32 (t, J = 6.87 Hz, 1 H), 7.39 (m, 3 H), 7.47 (m, 3 H), 7.65 (d, J = 8.0 Hz, 1 H), 7.71 (t, J =6.87 Hz, 1 H), 8.19 (d, J = 7.45 Hz, 1 H), 8.49 (s, 1 H), 8.76 (s, 1 H), 11.87 (s, 1 H), 12.4 (br. s, 1 H) ppm. ¹³C NMR (125 MHz, [D₆]-DMSO): δ = 46.9, 69.8, 104.0, 105.8, 112.0, 113.8, 115.6, 119.0, 124.3, 125.2, 125.7, 126.1, 126.4, 126.9, 127.6, 128.4, 130.5, 132.1, 133.8, 136.9, 137.5, 138.8, 139.2, 143.4, 153.3, 174.9 ppm. HRMS: m/z calcd. for C₃₃H₂₇N₄O₃ [M + H]⁺ 527.2083; found 527.2082.

(*E*)-1-Benzyl-5-chloro-*N'*-[(4-hydroxyquinolin-3-yl)methylene]-1*H*indole-2-carbohydrazide (24e): According to General Procedure D, 1-benzyl-5-chloro-1*H*-indole-2-carbohydrazide (20d; 250 mg, 0.83 mmol) and aldehyde 12 (143 mg, 0.83 mmol) in ethanol (12 mL) were used to furnish product 24e (342 mg, 91%) as a white solid; m.p. 284–285 °C. IR (neat): $\tilde{v}_{max} = 3139$, 3040, 1644, 1557, 1475, 1458, 1258 cm⁻¹. ¹H NMR (500 MHz, [D₆]DMSO): $\delta = 5.90$ (s, 2 H), 7.70 (d, *J* = 7.3 Hz, 2 H), 7.18–7.28 (m, 4 H), 7.35 (s, 1 H), 7.41 (t, *J* = 6.9 Hz, 1 H), 7.60–7.72 (m, 3 H), 7.82 (s, 1 H), 8.18 (d, *J* = 6.87 Hz, 1 H), 8.49 (s, 1 H), 8.77 (s, 1 H), 11.97 (s, 1 H), 12.36 (br. s, 1 H) ppm. ¹³C NMR (125 MHz, [D₆]DMSO): $\delta = 47.0$, 105.6, 112.8, 113.7, 119.0, 121.0, 124.2, 124.3, 125.1, 125.2, 125.7, 126.4, 126.9, 127.1, 128.5, 131.7, 132.2, 136.7, 137.0, 138.4, 139.2, 143.9, 157.5, 174.9 ppm. HRMS: $m/z C_{26}H_{19}ClN_4NaO_2$ [M + Na]⁺ 477.1094; found 477.1098.

Preparation of Keto-aldehyde 22 and 25. General Procedure E: At room temperature, the appropriate hydrazone was dissolved in THF (analytical grade). At 0 °C, lead tetraacetate was gradually added to the solution. The resulting mixture was stirred for 3–4 h at room temp. and the progress of the reaction was monitored by the evolution of nitrogen. The solvent was removed under reduce pressure. Ethyl acetate was added to the residue and the suspension was filtered through Celite. The organic layer was washed with a saturated solution of NaHCO₃ then brine, and dried with Na₂SO₄. The solvent was removed under vacuo and the residue was purified on a silica gel column using EtOAc/hexane as eluent to furnish the product.

4-(1-Benzyl-1*H***-indole-2-carbonyl)nicotinaldehyde (22a):** According to General Procedure E, compound **21a** (400 mg, 1.08 mmol) and Pb(OAc)₄ (478 mg, 1.08 mmol) in THF (15 mL) were used to furnish **22a** (268 mg, 73%) as a light-orange solid; m.p. 225–230 °C; $R_{\rm f} = 0.40$ (EtOAc/hexane, 50:50). IR (neat): $\tilde{v}_{\rm max} = 1701$, 1647, 1510, 1496, 1456, 1403, 1259 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): $\delta = 5.96$ (s, 2 H), 6.78 (s, 1 H), 7.14–7.30 (m, 7 H), 7.36–7.47 (m, 3 H), 7.61 (d, J = 8.3 Hz, 1 H), 8.91 (d, J = 4.9 Hz, 1 H), 9.18 (s, 1 H), 9.97 (s, 1 H) ppm. ¹³C NMR (125 MHz, CDCl₃): $\delta = 48.4$, 111.1, 117.7, 121.7, 122.3, 123.5, 126.0, 126.5, 127.4, 127.7, 128.7, 128.8, 133.6, 137.7, 141.0, 148.4, 151.4, 154.0, 185.6, 189.2 ppm. HRMS: m/z calcd. for C₂₂H₁₇N₂O₂ [M + H]⁺ 341.1290; found 341.1291.

2-(1-Benzyl-1*H***-indole-2-carbonyl)benzaldehyde (22b):** According to General Procedure E, compound **21b** (490 mg, 1.32 mmol) and Pb(OAc)₄ (584 mg, 1.32 mmol) in THF (15 mL) were used to furnish **22b** (313 mg, 70%) as a yellow solid; m.p. 134 °C; $R_f = 0.25$ (EtOAc/hexane, 10:90). IR (neat): $\tilde{v}_{max} = 1698$, 1650, 1512, 1453, 1204 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): $\delta = 6.01$ (s, 2 H), 6.85 (s, 1 H), 7.16–7.25 (m, 4 H), 7.31 (m, 2 H), 7.39 (m, 1 H), 7.45 (m, 1 H), 7.64 (m, 2 H), 7.67 (m, 2 H), 8.03 (m, 1 H), 9.97 (s, 1 H) ppm. ¹³C NMR (125 MHz, CDCl₃): $\delta = 48.2$, 111.0, 117.3, 121.3, 123.3, 126.0, 126.5, 127.0, 127.3, 128.6, 129.0, 129.1, 130.5, 133.0, 135.0, 135.2, 138.0, 140.6, 142.4, 188.1, 190.4 ppm. HRMS: *m/z* calcd. for C₂₃H₁₇NNaO₂ [M + Na]⁺ 362.1157; found 362.1150.

4-[1-(4-Methoxybenzyl)-1*H***-indole-2-carbonyl]quinoline-3-carbaldehyde (25a):** According to General Procedure E, compound **24a** (1 g, 2.20 mmol) and Pb(OAc)₄ (974 mg, 2.20 mmol) in THF (25 mL) were used to furnish **25a** (683 mg, 74%) as a red solid; m.p. 190–192 °C; $R_{\rm f} = 0.33$ (EtOAc/hexane, 20:80). IR (neat): $\tilde{v}_{\rm max} = 1697$, 1647, 1512, 1477, 1456, 1403, 1248 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): $\delta = 3.80$ (s, 3 H), 6.02 (s, 2 H), 6.86 (s, 1 H), 6.88 (d, J = 8.5 Hz, 2 H), 7.14 (t, J = 7.3 Hz, 1 H), 7.19 (d, J = 8.9 Hz, 2 H), 7.42–7.49 (m, 2 H), 7.53 (t, J = 8.5 Hz, 3 H), 7.85 (m, 1 H), 8.23 (d, J = 8.2 Hz, 1 H), 9.45 (s, 1 H), 10.06 (s, 1 H) ppm. ¹³C NMR (125 MHz, CDCl₃): $\delta = 48.0$, 55.3, 111.1, 114.1, 118.4, 121.7, 123.6, 124.5, 126.2, 126.8, 127.9, 128.2, 128.4, 130.0, 132.7, 134.7, 141.1, 149.0, 149.1, 150.3, 159.1, 186.3, 189.1 ppm. HRMS: *m/z* calcd. for C₂₇H₂₁N₂O₃ [M + H]⁺ 421.1552; found 421.1556.

4-(1-Benzyl-1*H***-indole-2-carbonyl)quinoline-3-carbaldehyde (25b):** According to General Procedure E, compound **24b** (180 mg, 0.43 mmol) and Pb(OAc)₄ (190 mg, 0.43 mmol) in THF (10 mL) were used to furnish **25b** (124 mg, 74%) as a red solid; m.p. 142 °C; $R_{\rm f} = 0.40$ (EtOAc/hexane, 40:60). IR (neat): $\tilde{v}_{\rm max} = 1695$, 1643, 1562, 1511, 1452, 1247 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): $\delta = 6.11$ (s, 2 H), 6.69 (s, 1 H), 7.15 (t, J = 7.7 Hz, 1 H), 7.23 (m, 2 H),

FULL PAPER

7.29–7.37 (m, 3 H), 7.41–7.57 (m, 5 H), 7.85 (t, J = 7.7 Hz, 1 H), 8.23 (d, J = 8.3 Hz, 1 H), 9.45 (s, 1 H), 10.06 (s, 1 H) ppm. ¹³C NMR (125 MHz, CDCl₃): $\delta = 48.5$, 111.0, 118.3, 121.7, 123.5, 124.5, 124.5, 126.1, 126.6, 126.7, 127.5, 127.9, 128.4, 128.7, 129.8, 132.7, 134.6, 137.8, 141.1, 148.9, 149.0, 150.2, 186.2, 188.9 ppm. HRMS: m/z calcd. for C₂₆H₁₉N₂O₂ [M + H]⁺ 391.1447; found 391.1457.

4-(1-Benzyl-5-methoxy-1*H***-indole-2-carbonyl)quinoline-3-carbalde-hyde (25c):** According to General Procedure E, compound **24c** (170 mg, 0.37 mmol) and Pb(OAc)₄ (167 mg, 0.37 mmol) in THF (10 mL) were used to furnish **25c** (105 mg, 68%) as a dark-red so-lid; m.p. 200–202 °C; $R_f = 0.2$ (EtOAc/hexane, 20:80). IR (neat): $\tilde{v}_{max} = 1697$, 1643, 1572, 1517, 1454, 1244, 1211 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): $\delta = 3.76$ (s, 3 H), 6.06 (s, 2 H), 6.57 (s, 1 H), 6.87 (d, J = 2.2 Hz, 1 H), 7.11 (dd, J = 2.2, 9.3 Hz, 1 H), 7.19 (d, J = 6.8 Hz, 2 H), 7.30–7.41 (m, 4 H), 7.48 (t, J = 7.3 Hz, 1 H), 7.56 (d, J = 7.8 Hz, 1 H), 7.85 (t, J = 7.1 Hz, 1 H), 8.22 (d, J = 8.5 Hz, 1 H), 9.44 (s, 1 H), 10.05 (s, 1 H) ppm. ¹³C NMR (500 MHz, CDCl₃): $\delta = 48.7$, 55.6, 102.4, 112.2, 117.6, 120.4, 124.5, 124.5, 126.4, 126.6, 126.8, 127.6, 128.4, 128.8, 129.9, 132.7, 134.8, 136.9, 137.9, 148.8, 149.3, 150.3, 155.2, 185.8, 189.0 ppm. HRMS: *m*/*z* calcd. for C₂₇H₂₁N₂O₃ [M + H]⁺ 421.1552; found 421.1559.

4-[1-Benzyl-5-(benzyloxy)-1*H***-indole-2-carbonyl]quinoline-3-carbaldehyde (25d):** According to General Procedure E, compound 24d (180 mg, 0.34 mmol) and Pb(OAc)₄ (150 mg, 0.34 mmol) in THF (10 mL) were used to furnish product 25d (119 mg, 71%) as a red solid; m.p. 140–142 °C; $R_{\rm f}$ = 0.33 (EtOAc/hexane, 20:80). IR (neat): $\tilde{v}_{\rm max}$ = 1698, 1628, 1573, 1495, 1453, 1242 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ = 5.01 (s, 2 H), 6.06 (s, 2 H), 6.55 (s, 1 H), 6.93 (m, 1 H), 7.19 (m, 3 H), 7.29–7.42 (m, 9 H), 7.48 (m, 1 H), 7.55 (m, 1 H), 7.85 (m, 1 H), 8.22 (d, *J* = 8.0 Hz, 1 H), 9.43 (s, 1 H), 10.05 (s, 1 H) ppm. ¹³C NMR (400 MHz, CDCl₃): δ = 48.6, 70.4, 104.0, 112.1, 117.6, 120.8, 124.5, 124.5, 126.4, 126.6, 127.3, 127.6, 127.9, 128.4, 128.5, 128.7, 129.8, 132.7, 134.8, 136.8, 137.9, 148.8, 149.2, 150.2, 154.3, 185.8, 189.0 ppm. HRMS: *m*/*z* calcd. for C₃₃H₂₅N₂O₃ [M + H]⁺ 497.1865; found 497.1866.

4-(1-Benzyl-5-chloro-1*H***-indole-2-carbonyl)quinoline-3-carbaldehyde** (25e): According to General Procedure E, compound 24e (230 mg, 0.50 mmol) and Pb(OAc)₄ (221 mg, 0.50 mmol) in THF (10 mL) were used to furnish 25e (150 mg, 71%) as a red solid; m.p. 136–140 °C; $R_{\rm f} = 0.25$ (EtOAc/hexane, 20:80). IR (neat): $\tilde{v}_{\rm max} = 1697$, 1648, 1562, 1508, 1452, 1403, 1246 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): $\delta = 6.08$ (s, 2 H), 6.56 (s, 1 H), 7.20 (d, J = 6.9 Hz, 2 H), 7.31–7.38 (m, 5 H),7.47–7.54 (m, 3 H), 7.86 (m, 1 H), 8.24 (d, J = 8.7 Hz, 1 H), 9.44 (s, 1 H), 10.07 (s, 1 H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 48.7$, 112.3, 116.6, 122.5, 124.5, 126.6, 126.8, 127.3, 127.7, 128.3, 128.6, 128.8, 130.0, 132.9, 135.4, 137.4, 139.2, 148.4, 149.4, 150.3, 188.6, 189.0 ppm. HRMS: *m/z* calcd. for C₂₆H₁₈ClN₂O₂ [M + H]⁺ 425.1057; found 425.1051.

Cyclisation Reaction for the Preparation of 23 and 26. General Procedure F: Under an inert atmosphere of argon, to a stirred solution of keto-aldehyde in CH_2Cl_2 , BF_3 · OEt_2 (1 equiv.) was added at 0 °C and the mixture was stirred for 1 h at room temp. The progress of the reaction was monitored by TLC and, upon completion, the reaction was quenched by the addition of sodium bisulfate. The mixture was extracted with CH_2Cl_2 and the combined organic layers were washed with brine and dried with anhydrous Na₂SO₄. The solvent was removed under reduced pressure and the crude product was purified on silica gel column chromatography using EtOAc/ hexane as eluent to furnish the product.

6-Benzyl-5*H***-pyrido**[**4**,**3**-*b*]**carbazole-5**,**11**(*6H*)**-dione (23a):** According to General Procedure F, compound **22a** (45 mg, 0.132 mmol)

and BF₃·OEt₂ (0.032 mL, 0.264 mmol) in CH₂Cl₂ (7 mL) were used to furnish **23a** (33 mg, 74%) as a light-orange solid; m.p. 252 °C; $R_f = 0.33$ (EtOAc/hexane, 20:80). IR (neat): $\tilde{v}_{max} = 1654$, 1511, 1260, 1207 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): $\delta = 5.99$ (s, 2 H), 7.19 (d, J = 6.7 Hz, 2 H), 7.26–7.31 (m, 3 H), 7.42–7.47 (m, 1 H), 7.49 (m, 2 H), 7.93 (d, J = 4.8 Hz, 1 H), 8.51 (d, J = 7.9 Hz, 1 H), 9.03 (d, J = 4.6 Hz, 1 H), 9.46 (s, 1 H) ppm. ¹³C NMR (125 MHz, CDCl₃): $\delta = 48.6$, 111.7, 118.7, 119.6, 123.9, 124.3, 125.3, 126.7, 128.0, 128.5, 129.0, 136.2, 139.1, 140.3, 148.5, 155.0, 177.8, 180.8 ppm. HRMS: *m/z* calcd. for C₂₂H₁₅N₂O₂ [M + H]⁺ 339.1134; found 339.1130.

5-Benzyl-5*H***-benzo[***b***]carbazole-6,11-dione (23b):** According to General Procedure F, compound **22b** (40 mg, 0.117 mmol) and BF₃·OEt₂ (0.029 mL, 0.235 mmol) in CH₂Cl₂ (7 mL) were used to furnish **23b** (31 mg, 74%) as a yellow solid; m.p. 130–132 °C; $R_f = 0.33$ (EtOAc/hexane, 20:80). IR (neat): $\tilde{v}_{max} = 1652$, 1596, 1516, 1466, 1340, 1303 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): $\delta = 5.98$ (s, 2 H), 7.17–7.30 (m, 5 H), 7.37–7.45 (m, 3 H), 7.66 (t, *J* = 7.3 Hz, 1 H), 7.71 (t, *J* = 7.3 Hz, 1 H), 8.13 (d, *J* = 7.3 Hz, 1 H), 8.21 (d, *J* = 7.8 Hz, 1 H), 8.48 (d, *J* = 7.8 Hz, 1 H) ppm. ¹³C NMR (125 MHz, CDCl₃): $\delta = 48.4$, 111.4, 119.3, 123.9, 124.0, 124.6, 126.2, 126.5, 126.6, 127.6, 127.7, 128.8, 132.8, 133.5, 133.8, 134.0, 134.7, 136.5, 139.7, 178.9, 181.2 ppm. HRMS: *m/z* calcd. for C₂₃H₁₆NO₂ [M + H]⁺ 362.1157; found 362.1150.

12-(4-Methoxybenzyl)-7*H***-indolo[3,2-***j***]phenanthridine-7,13(12***H***)-dione (26a): According to General Procedure F, compound 25a (200 mg, 0.476 mmol) and BF₃·OEt₂ (0.116 mL, 0.952 mmol) in CH₂Cl₂ (15 mL) were used to furnish 26a (159 mg, 80%) as a red solid; m.p. 243 °C; R_{\rm f} = 0.33 (EtOAc/hexane, 20:80). IR (neat): \tilde{v}_{\rm max} = 1650, 1609, 1512, 1497, 1512, 1238 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): \delta = 3.74 (s, 3 H), 5.91 (s, 2 H), 6.82 (d,** *J* **= 8.2 Hz, 2 H), 7.19 (d,** *J* **= 8.2 Hz, 2 H), 7.38–7.49 (m, 3 H), 7.73 (t,** *J* **= 7.3 Hz, 1 H), 7.81 (t,** *J* **= 7.3 Hz, 1 H), 8.17 (d,** *J* **= 8.2 Hz, 1 H), 8.43 (d,** *J* **= 8.2 Hz, 1 H), 9.55 (d,** *J* **= 8.5 Hz, 1 H), 9.77 (s, 1 H) ppm. ¹³C NMR (125 MHz, CDCl₃): \delta = 48.0, 55.2, 111.6, 114.2, 117.6, 123.1, 123.3, 123.9, 124.5, 125.1, 127.7, 127.9, 128.1, 128.3, 130.1, 130.3, 131.4, 133.3, 135.1, 140.0, 147.9, 152.1, 159.2, 181.0, 182.0 ppm. HRMS:** *m/z* **calcd. for C₂₇H₁₉N₂O₃ [M + H]⁺ 419.1396; found 419.1396.**

12-Benzyl-7*H***-indolo[3,2-***j***]phenanthridine-7,13(12***H***)-dione (26b): According to General Procedure F, compound 25b** (107 mg, 0.278 mmol) and BF₃·OEt₂ (0.068 mL, 0.556 mmol) in CH₂Cl₂ (10 mL) were used to furnish **26b** (85 mg, 79%) as a red solid; m.p. 230 °C; $R_{\rm f}$ = 0.25 (EtOAc/hexane, 20:80). IR (neat): $\tilde{v}_{\rm max}$ = 1653, 1525, 1495, 1454, 1241 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ = 6.00 (s, 2 H), 7.22 (m, 2 H), 7.27–7.32 (m, 3 H), 7.40–7.47 (m, 3 H), 7.72 (m, 1 H), 7.82 (m, 1 H), 8.18 (d, *J* = 8.3 Hz, 1 H), 8.45 (d, *J* = 8.3 Hz, 1 H), 9.53 (d, *J* = 8.3 Hz, 1 H), 9.78 (s, 1 H) ppm. ¹³C NMR (125 MHz, CDCl₃): δ = 48.5, 111.6, 117.7, 123.1, 123.3, 131.4, 133.3, 135.1, 136.2, 140.1, 147.9, 152.2, 181.0, 182.0 ppm. HRMS: *m/z* calcd. for C₂₆H₁₇N₂O₂ [M + H]⁺ 389.1290; found 389.1290.

12-Benzyl-9-methoxy-*TH***-indolo[3,2-***j***]phenanthridine-7,13(12***H***)-dione (26c):** According to General Procedure F, compound **25c** (53 mg, 0.126 mmol) and BF₃·OEt₂ (0.031 mL, 0.25 mmol) in CH₂Cl₂ (7 mL) were used to furnish **26c** (42 mg, 80%) as a red solid; m.p. 218–220 °C; $R_f = 0.30$ (EtOAc/hexane, 20:80). IR (neat): $\tilde{v}_{max} = 1648$, 1614, 1496, 1517, 1474, 1237 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): $\delta = 3.92$ (s, 3 H), 5.96 (s, 2 H), 7.05 (d, J = 8.5 Hz, 1 H), 7.20 (m, 2 H), 7.24–7.31 (m, 4 H), 7.24–7.31 (m, 4 H), 7.71 (m, 1 H), 7.80 (m, 2 H), 8.17 (d, J = 8.5 Hz, 1 H), 9.55

(d, J = 8.5 Hz, 1 H), 9.76 (s, 1 H) ppm. ¹³C NMR (400 MHz, CDCl₃): $\delta = 48.7$, 55.8, 102.8, 112.7, 117.1, 120.3, 123.3, 124.3, 124.7, 126.6, 127.9, 127.9, 128.9, 130.0, 130.1, 131.5, 133.7, 134.8, 135.5, 136.1, 147.5, 158.3, 168.4, 180.7, 181.3 ppm. HRMS: m/z calcd. for C₂₇H₁₉N₂O₃ [M + H]⁺ 419.1396; found 419.1392.

12-Benzyl-9-(benzyloxy)-7*H***-indolo[3,2-***j***]phenanthridine-7,13(12***H***)dione (26d): According to General Procedure F, compound 25d (48 mg, 0.096 mmol) and BF₃·OEt₂ (0.023 mL, 0.193 mmol) in CH₂Cl₂ (10 mL) were used to furnish 26d (36 mg, 77%) as a red solid; m.p. 226 °C; R_{\rm f} = 0.30 (EtOAc/hexane, 20:80). IR (neat): \tilde{v}_{\rm max} = 1654, 1524, 1496, 1461, 1240 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): \delta = 5.19 (s, 2 H), 5.98 (s, 2 H), 7.16–7.22 (m, 3 H), 7.28–7.34 (m, 3 H), 7.36 (d,** *J* **= 9.2 Hz, 2 H), 7.43 (t,** *J* **= 7.4 Hz, 2 H), 7.52 (d,** *J* **= 7.4 Hz, 2 H), 7.73 (m, 1 H), 7.82 (m, 1 H), 7.94 (d,** *J* **= 2.2 Hz, 1 H), 8.19 (d,** *J* **= 8.5 Hz, 1 H), 9.57 (d,** *J* **= 9.2 Hz, 1 H), 9.79 (s, 1 H) ppm. ¹³C NMR (400 MHz, CDCl₃): \delta = 48.8, 70.6, 104.2, 112.9, 120.7, 123.3, 124.4, 124.7, 126.7, 127.8, 128.0, 128.2, 128.7, 129.0, 130.1, 130.4, 131.5, 133.6, 134.6, 135.7, 136.3, 136.7, 148.0, 152.2, 153.2, 157.5, 166.4, 168.7, 180.7, 181.7 ppm. HRMS:** *m/z* **calcd. for C₃₃H₂₃N₂O₃ [M + H]⁺ 495.1709; found 495.1704.**

12-Benzyl-9-chloro-7*H***-indolo[3,2-***j***]phenanthridine-7,13(12***H***)-dione (26e): According to General Procedure F, compound 25e (50 mg, 0.118 mmol) and BF₃·OEt₂ (0.029 mL, 0.236 mmol) in CH₂Cl₂ (10 mL) were used to furnish 26e (37 mg, 75%) as an orange solid; m.p. 243 °C; R_{\rm f} = 0.40 (EtOAc/hexane, 20:80). IR (neat): \tilde{v}_{\rm max} = 2921, 1742, 1656, 1523, 1455, 1343, 1236 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): \delta = 5.97 (s, 2 H), 7.18 (m, 2 H), 7.27–7.33 (m, 4 H), 7.37 (m, 2 H), 7.72 (m, 1 H), 7.82 (m, 1 H), 8.41 (s, 1 H), 9.50 (d,** *J* **= 8.5 Hz, 1 H), 9.76 (s, 1 H) ppm. ¹³C NMR (100 MHz, CDCl₃): \delta = 48.7, 112.8, 116.9, 123.0, 123.1, 124.0, 124.2, 126.5, 127.6, 128.1, 128.6, 129.0, 130.3, 131.2, 131.6, 133.2, 135.7, 135.8, 138.3, 147.7, 152.1, 180.6, 181.8 ppm. HRMS:** *m/z* **calcd. for C₂₆H₁₆ClN₂O₂ [M + H]⁺ 423.0900; found 423.0902.**

7H-Indolo[3,2-j]phenanthridine-7,13(12H)-dione (5): A solution of 26a (72 mg, 0.172 mmol) in anhydrous anisole (3 mL) was added dropwise to a stirred suspension of AlCl₃ (114 mg, 0.861 mmol) in anhydrous anisole (2 mL) at 0 °C, and the resulting reaction mixture was stirred at room temp. for 6 h. After the addition of water, the mixture was extracted with ethyl acetate and the combined organic layers were washed with 5% aqueous NaHCO3 and brine successively, then dried with anhydrous Na₂SO₄. The solvent was removed under reduced pressure to give an oil, which was purified by a silica gel column using EtOAc/hexane as eluent to furnished the product 5 (34 mg, 78%) as a red solid; m.p. 170–175 °C; $R_{\rm f}$ = 0.30 (EtOAc/hexane, 20:80). IR (neat): $\tilde{v}_{max} = 3428$, 1651, 1050, 1026 cm⁻¹. ¹H NMR (500 MHz, [D₆]DMSO): δ = 7.40 (t, J = 7.4 Hz, 1 H), 7.48 (t, J = 7.4 Hz, 1 H), 7.61 (t, J = 8.0 Hz, 1 H), 7.89 (t, J = 8.0 Hz, 1 H), 7.96 (t, J = 8.0 Hz, 1 H), 8.17 (d, J =8.0 Hz, 2 H), 9.57 (d, J = 8.6 Hz, 1 H), 9.61 (s, 1 H) ppm. ¹³C NMR (125 MHz, [D₆]DMSO): δ = 114.1, 115.7, 122.5, 122.8, 123.5, 124.5, 125.0, 127.3, 130.0, 130.4, 131.7, 132.7, 138.1, 138.6, 147.7, 151.4, 180.5, 181.0 ppm. HRMS: m/z calcd. for C₁₉H₁₁N₂O₂ [M + H]⁺ 299.0821; found 299.0824.

Supporting Information (see footnote on the first page of this article): Experimental details as well as ¹H and ¹³C NMR spectra of all the compounds reported in this article.

Acknowledgments

G. M. thanks the Council of Scientific and Industrial Research (CSIR), New Delhi, for the award of a research fellowship. Finan-

cial support from the Indian Institute of Technology Kanpur is gratefully acknowledged.

- S. Goodwin, A. F. Smith, E. C. Horning, J. Am. Chem. Soc. 1959, 81, 1903.
- a) A. W. Schmidt, K. R. Reddy, H.-J. Knölker, Chem. Rev. [2] 2012, 112, 3193; b) C. M. Miller, F. O. McCarthy, RSC Adv. 2012, 2, 8883; c) Mal, B. K. Senapati, P. Pahari, Synlett 2005, 994; d) H.-J. Knölker, K. R. Reddy, Chem. Rev. 2002, 102, 4303; e) H.-J. Knölker, K. R. Reddy, Chem. Rev. 2002, 102, 4303; f) M. Álvarez, J. A. Joule, in: The Alkaloids (Ed.: G. A. Cordell), Academic Press, New York, 2001, vol. 57, p. 235; g) Y. Miki, H. Hachiken, N. Yanase, Org. Biomol. Chem. 2001, 2213; h) M. Ishikura, A. Hino, T. Yaginuma, I. Agata, N. Katagiri, Tetrahedron 2000, 56, 193; a valuable review of references to earlier syntheses is included. Recent references include: i) M. Alvarez, J. A. Joule, in: The Chemistry of Heterocyclic Compounds (Ed.: J. E. Saxton), Wiley, Chichester, UK, 1994, p. 261; j) G. W. Gribble, Advances in Heterocyclic Natural Product Synthesis (Ed.: W. H. Pearson), JAI Press, Greenwich, CT, 1990, vol. 1, p. 43; k) G. W. Gribble, in: The Alkaloids (Ed.: A. Brossi), Academic Press, San Diego, CA, 1990, p. 239; l) V. K. Kansal, P. Potier, Tetrahedron 1986, 42, 2389; m) M. J. E. Hewlins, M. A. Oliveira-Campos, P. V. R. Shannon, Synthesis 1984, 289; n) M. Sainsbury, Synthesis 1977, 437.
- [3] a) M. Ohashi, T. Oki, *Expert Opin. Ther. Pat.* **1996**, *6*, 1285; b) J. G. Rouesse, C. T. Le, P. Caille, J. M. Mondesir, H. Sancho-Garnier, F. May-Levin, M. Spielmann, J. R. De, J. L. Amiel, *Cancer Treat. Rep.* **1985**, *69*, 707; c) C. N. Paoletti, P. Le, P. D.-X. Juret, H. H. Garnier, J. L. Amiel, J. Rouesse, *Recent Results Cancer Res.* **1980**, *74*, 107.
- [4] R. W. Rickards, J. M. Rothschild, A. C. Willis, N. M. de Chazal, J. Kirk, K. Kirk, K. J. Saliba, G. D. Smith, *Tetrahedron* 1999, 55, 13513.
- [5] a) B. M. Ramalingam, V. Saravanan, A. K. Mohanakrishanan, Org. Lett. 2013, 15, 3726; b) N. Ramkumar, R. J. Nagarajan, Org. Chem. 2013, 78, 2802; c) S. M. Bhosale, R. L. Gawade, V. G. Puranik, R. S. Kusurkar, Tetrahedron Lett. 2012, 53, 2894; d) K. Matsumoto, T. Choshi, M. Hourai, Y. Zamami, K. Sasaki, T. Abe, M. Ishikura, N. Hatae, N. Iwamura, S. Tohyama, J. Nobuhiro, S. Hibino, Bioorg. Med. Chem. Lett. 2012, 22, 4762; e) T. Abe, T. Ikeda, T. Choshi, S. Hibino, N. Hatae, E. Toyata, R. Yanada, M. Ishikura, Eur. J. Org. Chem. 2012, 5018; f) C. S. McEelean, J. Sperry, A. Makke, C. J. Moody, Tetrahedron Lett. 2012, 53, 2894; g) T. Abe, T. Ikeda, R. Yanada, M. Ishikura, Org. Lett. 2011, 13, 3356; h) S. Tohyama, T. Choshi, K. Matsumoto, A. Yamabuki, Y. Hieda, J. Nobuhiro, S. Hibino, Heterocycles 2010, 82, 397; i) T. Choshi, S. Hibino, Heterocycles 2009, 77, 85; j) P. H. Bernardo, C. L. L. Cahi, M. L. Guen, G. D. Smith, P. Waring, Bioorg. Med. Chem. Lett. 2007, 17, 82; k) C. S. P. McErlean, J. Sperry, A. J. Blake, C. J. Moody, Tetrahedron 2007, 63, 10963; 1) D. Sissouma, L. Maingot, S. Collet, A. Guingant, J. Org. Chem. 2006, 71, 8434; m) M.-L. Bennasar, T. Roca, F. Ferrando, Org. Lett. 2006, 8, 561; n) A. Yamabuki, H. Fujinawa, T. Choshi, S. Tohyama, K. Matsumoto, K. Ohmura, J. Nobuhiro, S. Hibino, Tetrahedron Lett. 2006, 47, 5859; o) S. Tohyama, T. Choshi, K. Matsumoto, A. Yamabuki, K. Ikegata, J. Nobuhiro, S. Hibino, Tetrahedron Lett. 2005, 46, 5263; p) D. Sissouma, S. Collet, A. Guingant, Synlett 2004, 2612; q) P. H. Bernardo, C. L. L. Chai, J. Org. Chem. 2003, 68, 8906; r) P. H. Bernardo, C. L. L. Chai, J. A. Elix, Tetrahedron Lett. 2002, 43, 2939; s) Kelly, Y. Zhao, M. Cavero, M. Torneiro, Org. Lett. 2000, 2, 3735.
- [6] a) K. Matsumoto, T. Choshi, M. Hourai, Y. Zamami, K. Sasaki, T. Abe, M. Ishikura, N. Hatae, N. Iwamura, S. Tohyama, J. Nobuhiro, S. Hibino, *Bioorg. Med. Chem. Lett.* 2012, 22, 4762; b) Q. A. Khan, J. Lu, S. M. Hecht, *J. Nat. Prod.* 2009, 72, 438; c) P. H. Bernardo, C. L. L. Chai, M. Le Guen, G. D. Smith, P. Waring, *Bioorg. Med. Chem. Lett.* 2007, 17, 82; d) P. H. Bernardo, C. L. L. Chai, G. A. Heath, P. J. Mahon, G. D.

FULL PAPER

Smith, P. Waring, B. A. Wilkes, J. Med. Chem. 2004, 47, 4958.

- [7] a) A. Kotali, P. G. Tsoungas, Tetrahedron Lett. 1987, 28, 4321;
 b) A. R. Katritzky, P. A. Harris, A. J. Kotali, J. Org. Chem. 1991, 56, 5049; c) A. R. Katritzky, A. Kotali, Tetrahedron Lett. 1990, 31, 6790; d) A. Kotali, I. S. Lafazanis, P. A. Harris, Tetrahedron Lett. 2007, 48, 7181; e) A. Kotali, P. A. Harris, Org. Prep. Proced. Int. 2003, 35, 583; f) A. Kotali, Curr. Org. Chem. 2002, 6, 965; g) A. Kotali, M. Papapetrou, V. Dimos, Org. Prep. Proced. Int. 1998, 30, 159; h) A. Kotali, Tetrahedron Lett. 1994, 35, 6753; i) A. Kotali, U. Glaveri, E. Pavlidou, P. G. Tsoungas, Synthesis 1990, 1172; for similar reactions using phenyliodoso-diacetate, see: j) A. Kotali, A. Koulidis, H.-M. Wang, L.-C. Chen, Org. Prep. Proced. Int. 1996, 28, 622; k) R. M. Moriarty, B. A. Berglund, M. S. C. Rao, Synthesis 1992, 318.
- [8] a) H. T. P. Diem, K. Byoungmoo, V. M. Dong, J. Am. Chem. Soc. 2009, 131, 15608; b) J. Jacq, C. Einhorn, J. Einhorn, Org. Lett. 2008, 10, 3757.

- [9] a) S. G. Raquel, R. Seixas, A. M. S. Silva, I. Alkorta, J. Elguero, *Monatsh. Chem.* 2011, 142, 731; b) F. Marsais, F. Trécourt, P. Bréant, G. Quéguiner, J. Heterocycl. Chem. 1988, 25, 81.
- [10] a) M.-L. Bennasar, T. Roca, F. Ferrando, J. Org. Chem. 2005, 70, 9077; b) H.-J. Knölker, K. R. Reddy, Chem. Rev. 2002, 102, 4303, and references cited therein; c) Y. Miki, Y. Tada, K. Matsushita, Heterocycles 1998, 48, 1593; d) Y. Yokoyama, N. Okuyama, S. Iwadate, T. Momoi, Y. Murakami, J. Chem. Soc. Perkin Trans. 1 1990, 1319; e) D. M. Kecha, G. W. Gribble, J. Org. Chem. 1985, 50, 5451; f) G. W. Gribble, M. G. Saulnier, M. P. Sibi, J. A. Obaza-Nutaitis, J. Org. Chem. 1980, 102, 1457.
 Watanabe, V. Snieckus, J. Am. Chem. Soc. 1980, 102, 1457.

Published Online:

Natural Products

Diversity-Oriented Synthesis of Calothrixins and Ellipticines

Ellipticine quinone

The divergent synthesis of calothrixins and ellipticines has been accomplished by utilising the one-pot formation of *o*-diacylarenes as a key intermediate through rearrange-

ment of *o*-hydroxy ketone monoacyl hydrazones by lead tetraacetate mediated oxidation.

D. H. Dethe,* G. M. Murhade 1-11

Diversity-Oriented Synthesis of Calothrixins and Ellipticines

Keywords: Natural products / Nitrogen heterocycles / Quinones / Rearrangement / Oxidation