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ABSTRACT: An environmentally-benign and highly versatile catalytic protocol has been 

successfully applied in the intermolecular bromoesterification between various olefins and 

carboxylic acids. The use of a highly lipophilic indole catalyst and 1,3-dibromo-5,5-

dimethylhydantoin (DBDMH) as the bromine source allows the reaction to proceed in heptane 

via a solid-liquid phase transfer mechanism, affording the corresponding bromoester products in 

good-to-excellent yields.
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1. INTRODUCTION

Electrophilic halofunctionalization of alkenes is a powerful organic transformation, permitting 

the simultaneous introduction of a halogen and an additional functional group across the olefinic 

substrates. The resultant 1,2-halofunctionalized compounds are valuable building blocks that can 

easily be manipulated by nucleophilic substitution of the halogen.1–4 Olefinic 

halofunctionalizations such as haloetherifications,5–11 haloamidations,12–15 halo-

dearomatization16 and haloesterifications2–4,17–20 are well-documented. Amongst these reactions, 

intermolecular haloesterification is challenging with a low efficiency partly due to the weak 

nucleophilicity of the carboxylate group. Practically, super-stoichiometric amounts of carboxylic 

acid is often required to compensate the low reaction efficiency.3,4 In addition, these reactions are 

typically run in environmentally unfriendly solvents such as methylene chloride and chloroform. 

A seminal work on the asymmetric bromoesterification of unactivated olefins was reported by 

Shi in which the reactions proceeded smoothly with catalyst (DHQD)2PHAL in ethyl acetate 

(Scheme 1, eq 1).2b. Recently, Borhan19a and Christmann19b independently reported elegant 

examples of intermolecular asymmetric haloesterifications of assisting group-containing olefins 

and the assisting groups were found to be crucial in facilitating the introduction of ester groups.

In our previous research efforts regarding the bromolactonization of olefinic acids 2,20 we have 

demonstrated that indole-based catalyst 1a allowed the reaction to proceed efficiently in green 

lipophilic solvents such as heptane21 via a solid-liquid phase transfer mechanism (Scheme 1, eq 

2).22,23 Very recently, we re-engineered indole 1a to the more lipophilic catalyst 1b, which was 

found to be very potent in promoting the aromatic bromination of various anisole, thioanisole 

and aniline-type substrates 4 (Scheme 1, eq 3).24 Herein, we are pleased to disclose our recent 

success in the application of the indole catalytic protocol to the intermolecular 

Page 2 of 28

ACS Paragon Plus Environment

The Journal of Organic Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



3

bromoesterification of olefinic substrates 6 in nonpolar media with equimolar amount of the 

carboxylic acids 7 as the nucleophilic partners (Scheme 1, eq 4).

Scheme 1. Lipophilic Indole-based Catalysis in Bromination  
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2. RESULTS AND DISCUSSION

The investigation began with the intermolecular bromoesterification of styrene (6a) in heptane. 

1,3-Dibromo-5,5-hydantoin (DBDMH) and benzoic acid (7a) were used as the halogen source 

and the nucleophilic partner, respectively. A series of lipophilic indole-based catalysts 1a-d were 

examined and the results are summarized in Table 1. The reaction was sluggish when no catalyst 

was applied (Table 1, entry 1). Some common catalysts for electrophilic halogenations25–28 

including Lewis base (Ph3PS), Lewis acid (FeCl3), Brønsted acid (HCl), and Brønsted base 

(Na2CO3) catalysts were examined and these reactions gave inferior yields of the desired 

bromoester product 8aa as compared to the lipophilic indole catalysts 1 (entries 2–5). For the 
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case with HCl as the catalyst, significant amounts of vicinal dibrominated side product was 

detected. Indole 1a (5 mol%), which was found to be effective in promoting the 

bromolactonization of olefinic acids,20 could catalyze the intermolecular bromoesterification of 

6a and 7a to give bromoester 8aa with moderate yield, attributable to the moderate solubility of 

1a (entry 6). To our delight, dramatic improvement of the efficiency was observed when indole 

1c was used, giving the desired product 8aa in 85% yield (entry 8). This increase in activity 

could be congruent with an increase in lipophilicity and hence catalyst solubility conferred upon 

by the length of the alkyl chain attached at the C(2) position of the indole system. The reaction 

was found to be sensitive to the lipophilicity of the catalyst; indole catalyst 1b that has a 

relatively shorter hydrocarbon side-chain returned a considerable drop in yield (entry 7). 

Diminishment of the reaction efficiency was observed when the sterically hindered indole 1d 

was applied instead of 1c (entry 9). The performance of DBDMH was found to be superior to N-

bromosuccinimide (NBS) (entry 10), which can be ascribed to the higher reactivity of DBDMH.

Table 1. Reaction Optimizationa 

catalyst (5 mol%)

Br source,

heptane, 23 oC, 24 h

O

O

Br

HO O

+

6a 7a

8aa

N
H

N
H

N
H

N
H

1a 1b 1c 1d

4 8

COOMe COOMe COOMe COOMe

entry Br source catalyst yield (%)

1 DBDMH - 11

2 DBDMH Ph3PS 31

3 DBDMH FeCl3 24
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4b DBDMH HCl 12

5 DBDMH Na2CO3 22

6 DBDMH 1a 35

7 DBDMH 1b 61

8 DBDMH 1c 85

9 DBDMH 1d 40

10 NBS 1c trace

a Reactions were carried out with styrene (6a) (0.36 mmol), benzoic acid (7a) (0.3 mmol), 
catalyst (5 mol%), and Br source (0.315 mmol) in n-heptane (1.0 mL) at 23 oC in the absence of 
light for 24 h. b Olefinic dibromination of styrene (6a) was observed. 

With the optimized reaction conditions in hand, the substrate scope of the intermolecular 

bromoesterification reaction catalyzed by indole catalyst 1c was investigated (Table 2). Benzoic 

acid derivatives 7 carrying electron donating or withdrawing substituents with styrene (6a) as the 

reacting partner gave the corresponding bromoesters 8aa-8ad with excellent yields. In all cases, 

the reactions were regioselective for the Markovnikov product and no aromatic bromination side 

products were observed. The sterically demanding 2,6-disubstituted benzoic acid 7b was well 

tolerated, giving 8ab in 97% yield. 3,5-dibromo-2-hydroxybenzoic acid (7d) underwent 

preferential nucleophilic attack from the carboxylate group to yield bromoester 8ad, attributed to 

the intramolecular hydrogen-bonding which could favor the nucleophilic attack of the 

carboxylate.29 Other aliphatic acids such as 7e, 7f and heterocyclic acid such as 2-

thiophenecarboxylic acid (7j) were also found to react smoothly under these conditions to give 

8ae, 8af and 8aj, respectively. However, 4-nitrobenzoic acid and 4-methylcinnamic acid gave 

sluggish reactions with very low conversions (<5%).

Page 5 of 28

ACS Paragon Plus Environment

The Journal of Organic Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



6

Table 2. Substrate Scopea
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O
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a Reactions were carried out with 6 (0.36 mmol), 7 (0.3 mmol), catalyst 1c (0.015 mmol), and 

DBDMH (0.315 mmol) in n-heptane (1 mL) for 24 h at 23 oC in the absence of light.

Styrene derivatives carrying electron rich substituents on the aromatic ring such as 4-

methylstyrene (6b) and 2-methylstyrene (6c) reacted with benzoic derivatives to give the 

Page 6 of 28

ACS Paragon Plus Environment

The Journal of Organic Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



7

corresponding bromoesters 8ba, 8bb, 8bg, and 8cb in good-to-excellent yields. Olefins with 

electron-deficient substituents such as 4-bromo, 4-chloro, and 3-chlorostyrene (6d, 6e, and 6f, 

respectively) also worked well under the mild and pH neutral conditions, furnishing bromoesters 

8da, 8db, 8dh, 8ea, 8eb and 8fb in excellent yields. β-Substituted styrene derivatives such as 

trans-1-phenyl-1-propene (6g) and trans-1-nitro-2-phenylethylene (6h) reacted with benzoic acid 

(7a) to give bromoesters 8ga (dr 12:1) and 8ha in 87% and 64% yields, respectively. The 

decrease in yield was consistent with the strong electron-withdrawing nature of the nitro 

substituent in 6h, which could deactivate the olefin towards bromination. Other olefinic partners 

such as cyclohexene (6i), indene (6j), 2,3-dimethyl-2-butene (6k) and cis-3-hexene (6l) were 

also subjected to the reaction, producing bromoesters 8ii, 8ja, 8ka, and 8la, respectively, in 

appreciable conversions. The reaction with the bulkier trisubstituted olefin 1-methyl-1-

cyclohexene (6m) gave bromoester 8ma in 50% yield. The use of a highly electron-deficient 

olefin 6n still gave the desired product 8na in 50% yield. However, reactions using methyl 

cinnamate/acrylate or 2-vinylpyridine were sluggish. 1-Hexene was also examined but low 

reaction yield (c.a. 10%) and regioselectivity (3:2) were observed.

The indole-catalyzed bromoesterification could also be scaled up while retaining 

regioselectivity and yield. For example, the scaled-up reaction using styrene (6a) (3.6 mmol) and 

benzoic acid (7a) (3 mmol), produced 8aa in 87% yield (Scheme 2).
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Scheme 2. Scale-up Reaction

DBDMH (1.05 equiv), 1c (5 mol %)

heptane, 23 oC, 24 h
O

O

Br

HO O

+

6a (3.6 mmol) 7a (3 mmol)

8aa
87% yield

Based on our previous experience on the indole-catalyzed bromination reactions,20,24,30 we 

believe that indole 1c might react with DBDMH to give the 3-bromoindole16 active species 1c-

Br through a solid-liquid phase transfer mechanism (Scheme 3). The existence of 1c-Br was 

evidenced by NMR and HRMS analysis. Unlike other intermolecular bromoesterification 

reaction, the indole catalytic protocol does not require excess amount of carboxylic acid.3,4 We 

speculate that the active species 1c-Br might interact with the carboxylic acid which could 

facilitate the reaction. Thus, an 13C NMR experiment on a 1:1 mixture of 1c-Br and benzoic acid 

(7a) was conducted and a measurable  downfield-shift of the C(2) signal was observed (Figure 

1). A possible explanation is that the Schiff base in 1c-Br might interact with the acidic proton of 

benzoic acid (7a) to give species A, which would lead to the deshielding of the C(2) in 1c-Br. 

Subsequently, the olefinic substrate 6 might then be brominated to give the corresponding 

bromiranium species B, which could be attacked by the carboxylate group in a Markovnikov-

fashion to yield product 8. The high reaction efficiency by just employing an equal molar of 

olefinic substrates 6 and carboxylic acids 7 could be attributed to the close proximity of the 

bromiranium ion and the carboxylate group in the putative species B. However, a more detailed 

study is needed in order to elucidate a clearer mechanistic picture.
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Scheme 3. A Plausible Reaction Mechanism
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Figure 1. 13C NMR study on a 1:1 mixture of 1c-Br and benzoic acid (7a) [the C(2) signal of 

1c-Br]

3. CONCLUSIONS

In summary, we have developed an efficient electrophilic intermolecular bromoesterification 

between various olefins and carboxylic acids, using a lipophilic indole as a solid-liquid phase 
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transfer catalyst, DBDMH as the bromine source, and the lipophilic green solvent, heptane, as 

the reaction media. This process is highly regioselective, producing the corresponding 1,2-

bromoester products with good to excellent yields. Mechanistic studies suggest that a 3-

bromoindole intermediate may act as the active electrophilic brominating species with a 

mechanism analogous to that previously reported by our group. Thus far, we have successfully 

applied the indole-catalyzed electrophilic bromination protocol to bromolactonization, aromatic 

bromination and intermolecular bromoesterification reactions. As such, this bromination protocol 

may represent a highly general method for various bromination reactions, and applications in 

other reactions and their asymmetric variants are currently being investigated.

EXPERIMENTAL SECTION

General Information. 

All reactions requiring anhydrous conditions were conducted by standard procedures under 

nitrogen atmosphere. Commercially available reagents were used as received. The solvents were 

dried over a solvent purification system from Innovative Technology. Melting points were 

determined on a BÜCHI B-540b melting point apparatus. 1H NMR, 13C{1H} NMR spectra were 

recorded on a Bruker AMX500 (500 MHz) spectrometer or a Bruker AMX400 (400 MHz) 

spectrometer. Proton and carbon chemical shifts are reported in parts per million (ppm) values 

downfield from TMS (δ 0.00) and referenced to residual protons in NMR solvents (CDCl3 at  

7.26, CD2Cl2 at  5.36) or carbon signals in NMR solvent (CDCl3 at  77.16, CD2Cl2 at  55.42). 

High resolution mass spectra were obtained on a Thermo Finnigan MAT95XL Magnetic Sector 

Mass Spectrometer (ionization mode: EI) or a Thermo Q Exactive Hybrid Quadrupole-Orbitrap 

Mass Spectrometer (ESI ). Analytical thin layer chromatography (TLC) was performed with 
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11

Merck pre-coated TLC plates, silica gel 60F-254, layer thickness 0.25 mm. Flash 

chromatography separations were performed on Merck 60 (0.040-0.063 mm) mesh silica gel.

Representative procedure for the synthesis of indole catalyst 1c. A mixture of methyl 3-

oxododecanoate (1 mmol), aniline (1.5 mmol) and acetic acid (0.1 mmol) in a 5 mL eggplant-

shaped flask was placed in an ultrasound bath under sonication at 22 oC for ~3 h and the reaction 

was monitored by TLC. Upon completion of the reaction, the product mixture was diluted with 

EtOH (5 mL), dried over anhydrous MgSO4, filtered, and concentrated under reduced pressure. 

The residue was briefly purified by column chromatography through silica gel (hexanes/ethyl 

acetate 20:1) to give the corresponding enamine, methyl 3-(phenylamino)dodec-2-enoate, which 

was used immediately in the next step.

A solution of the methyl 3-(phenylamino)dodec-2-enoate (1.0 mmol) in DMF (3 mL) was 

transferred with a syringe into a 50 mL resealable tube containing Pd(OAc)2 (22.5 mg, 0.1 mmol, 

10 mol%), Cu(OAc)2 (0.54 g, 3.0 mmol, 3.0 equiv), K2CO3 (0.41 g, 3.0 mmol, 3.0 equiv), DMF 

(7 mL) and a magnetic stir bar (Teflon-coated) under a nitrogen atmosphere. The resealable tube 

was degassed by evacuation under high vacuum and refilled with nitrogen gas. The step was 

repeated three times before closing the screw cap tightly. The resealable tube was then placed in 

a preheated oil bath at 140 oC and allowed to stir for 1 h (no more enamine substrate detectable 

by TLC). The product mixture was allowed to cool to room temperature then filtered through a 

thin plug of celite eluted with EtOAc (3 x 10 mL). The filtrate was washed with saturated 

aqueous NH4Cl (5 mL) and brine (5 mL), dried over anhydrous MgSO4, filtered, and 

concentrated under reduced pressure. The residue was purified by flash column chromatography 

through silica gel (hexanes/ethyl acetate 10:1) to give indole 1c. 1a, 1b, and 1d were prepared 

according to above procedure starting from the corresponding -ketoesters.
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Methyl 2-pentyl-indole-3-carboxylate (1b). Yield: 87%, 214 mg; Yellow oil. 1H NMR (400 

MHz, CDCl3):  8.97 (s, 1H), 8.15 (d, J = 7.5 Hz, 1H), 7.32 (d, J = 7.5 Hz, 1H), 7.18−7.24 (m, 

2H), 3.95 (s, 3H), 3.14 (t, J = 7.8 Hz, 2H), 1.68−1.73 (m, 2H), 1.29−1.34 (m, 4H), 0.86 (t, J = 

6.7 Hz, 3H). 13C{1H} NMR (100 MHz, CDCl3):  166.7, 149.1, 134.7, 127.2, 122.3, 121.7, 

121.3, 110.8, 103.5, 50.8, 31.6, 29.0, 28.0, 22.4, 14.0. HRMS (EI) m/z: [M]+ calcd for 

C15H19NO2 245.1410, found 245.1414.

Methyl 2-decyl-indole-3-carboxylate (1c). Yield: 85%, 257 mg; Orange oil. 1H NMR (400 

MHz, CDCl3):  9.18 (s, 1H), 8.16 (d, J = 7.7 Hz, 1H), 7.31 (d, J = 7.7 Hz, 1H), 7.17−7.24 (m, 

2H), 3.95 (s, 3H), 3.14 (t, J = 7.6 Hz, 2H), 1.67−1.74 (m, 2H), 1.22−1.33 (m, 12H), 0.89 (t, J = 

6.7 Hz, 3H). 13C{1H} NMR (100 MHz, CDCl3):  166.8, 149.3, 134.7, 127.2, 122.3, 121.6, 

121.3, 110.9, 103.4, 50.8, 31.9, 29.6, 29.6, 29.5, 29.4, 29.3, 28.0, 22.7, 14.4. HRMS (EI) m/z: 

[M]+ calcd for C19H27NO2 301.2036, found 301.2033.

 Methyl 2-ethylpropyl-indole-3-carboxylate (1d). Yield: 85%, 209 mg; Pale yellow oil. 1H 

NMR (400 MHz, CDCl3):  9.31 (s, 1H), 8.24 (d, J = 5.3 Hz, 1H), 7.41 (s, 1H), 7.28 (s, 2H), 

4.01 (s, 4H), 1.76−1.87 (m, 4H), 0.92 (s, 6H). 13C{1H} NMR (100 MHz, CDCl3):  167.1, 151.8, 

135.0, 127.0, 122.3, 121.5, 110.9, 105.0, 50.8, 40.0, 29.7, 27.8, 11.9. HRMS (EI) m/z: [M]+ 

calcd for C15H19NO2 245.1410, found 245.1412.

General Procedure for the intermolecular bromoesterification reactions.

1,3-dibromo-5,5-dimethydantoin (90 mg, 0.315 mmol) was added to a mixture of alkene 6 

(0.36 mmol), carboxylic acid 7 (0.3 mmol) and indole catalyst 1c (4.52 mg, 0.015 mmol) in 

heptane (1.0 mL) at 23 oC in the absence of light. The resultant mixture was allowed to stir at 23 

oC and the reaction was monitored by TLC. The product mixture was concentrated under 
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13

reduced pressure and the residue was purified by flash column chromatography through silica gel 

(hexanes/ethyl acetate 10:1) to give the corresponding product 8.

2-bromo-1-phenylethyl benzoate (8aa). Yield: 85%, 78 mg; Colorless oil. 1H NMR (400 MHz, 

CDCl3):  8.18 (d, J = 7.3 Hz, 2H), 7.63 (t, J = 7.4 Hz, 1H), 7.49−7.53 (m, 4H), 7.37−7.45 (m, 

3H), 6.26−6.29 (m, 1H), 3.84−3.88 (m, 1H), 3.76−3.80 (m, 1H). 13C{1H} NMR (100 MHz, 

CDCl3):  165.5, 137.8, 133.4, 130.0, 129.8, 129.0, 128.9, 128.6, 126.6, 75.4, 34.6. HRMS (ESI-

Q-orbitrap) m/z: [M+Na]+ calcd for C15H13BrO2Na 326.9991, found 326.9995.

2-bromo-1-phenylethyl 2,6-dimethylbenzoate (8ab). Yield: 97%, 97 mg; Colorless oil. 1H 

NMR (400 MHz, CDCl3):  7.39−7.48 (m, 5H), 7.21 (t, J = 7.6 Hz, 1H), 7.05 (d, J = 7.6 Hz, 

2H), 6.27−6.31 (m, 1H), 3.67−3.71 (m, 1H), 3.78−3.83 (m, 1H), 2.28 (s, 6H). 13C{1H} NMR 

(100 MHz, CDCl3):  169.1, 137.6, 135.0, 133.5, 129.5, 129.2, 128.9, 127.6, 127.0, 76.2, 33.9, 

19.9. HRMS (ESI-Q-orbitrap) m/z: [M+Na]+ calcd for C17H17BrO2Na 355.0304, found 

355.0304.

2-bromo-1-phenylethyl 2,6-difluorobenzoate (8ac). Yield: 88%, 90 mg; Pale yellow oil. 1H 

NMR (400 MHz, CDCl3):  7.37−7.48 (m, 6H), 6.97 (t, J = 8.3 Hz, 2H), 6.27 (dd, J = 8.0, 4.7 

Hz, 1H), 3.78 (dd, J = 11.0, 8.1 Hz, 1H), 3.70 (dd, J = 11.0, 4.7 Hz, 1H). 13C{1H} NMR (100 

MHz, CDCl3):  162.3, 161.0 (d, 1JC-F = 256 Hz), Hz, 160.4, 137.1, 133.3 (t, 3JC-F = 10.5 Hz), 

128.9 (d, 2JC-F = 25 Hz), 126.7, 112.2 (d, 2JC-F = 25 Hz), 112.1, 76.7, 33.8. HRMS (ESI-Q-

orbitrap) m/z: [M+Na]+ calcd for C15H11BrF2O2Na 362.9803, found 362.9808.

2-bromo-1-phenylethyl 3,5-dibromo-2-hydroxybenzoate (8ad). Yield: 87%, 125 mg; Yellow 

oil. 1H NMR (400 MHz, CDCl3):  11.16 (s, 1H), 8.06 (d, J = 2.4 Hz, 1H), 7.86 (d, J = 2.4 Hz, 

1H), 7.39−7.43 (m, 5H), 6.20−6.23 (m, 1H), 3.81−3.86 (m, 1H), 3.70−3.74 (m, 1H). 13C{1H} 
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NMR (100 MHz, CDCl3):  167.8, 157.8, 141.5, 136.6, 131.5, 129.6, 129.2, 126.6, 114.3, 112.6, 

111.1, 33.5. HRMS (EI) m/z: [M]+ calcd for C15H11Br3O3 477.8232, found 477.8231.

2-bromo-1-phenylethyl propionate (8ae). Yield: 57%, 44 mg; Yellow oil. 1H NMR (400 MHz, 

CDCl3):  7.34−7.40 (m, 5H), 5.99−6.01 (m, 1H), 3.59−3.68 (m, 2H), 2.38−2.50 (m, 2H), 1.18 

(t, J = 7.6 Hz, 3H). 13C{1H} NMR (100 MHz, CDCl3):  173.3, 137.9, 128.9, 128.8, 126.6, 74.7, 

34.5, 27.7, 9.2. HRMS (ESI-Q-orbitrap) m/z: [M+Na]+ calcd for C11H13BrO2Na 278.9991, found 

278.9994.

2-bromo-1-phenylethyl 4-phenylbutanoate (8af). Yield: 63%, 66 mg; Yellow oil. 1H NMR 

(500 MHz, CDCl3):  7.32−7.41 (m, 5H), 7.26−7.30 (m, 2H), 7.21 (d, J = 7.4 Hz, 1H), 7.17 (d, J 

= 7.4, 2H), 6.00−6.02 (m, 1H), 3.59−3.68 (m, 2H), 2.66 (t, J = 7.6 Hz, 2H), 2.37−2.49 (m, 2H), 

1.97−2.03 (m, 2H). 13C{1H} NMR (125 MHz, CDCl3):  172.4, 141.4, 137.9, 129.0, 128.9, 

128.6, 128.5, 126.7, 126.1, 74.9, 35.2, 34.5, 33.7, 26.6. HRMS (ESI-Q-orbitrap) m/z: [M+Na]+ 

calcd for C18H19BrO2Na 369.0461, found 369.0461.

2-bromo-1-phenylethyl thiophene-2-carboxylate (8aj). Yield: 69%, 64 mg; Yellow oil. 1H 

NMR (400 MHz, CDCl3):  7.89 (dd, J = 3.8, 1.2 Hz, 1H), 7.60 (dd, J = 5.0, 1.2 Hz, 2H), 

7.33−7.45(m, 5H), 7.13 (dd, J = 4.9, 3.9 Hz, 2H), 3.69−3.81 (m, 2H). 13C{1H} NMR (125 MHz, 

CDCl3):  161.0, 137.6, 134.1, 133.1, 133.0, 129.0, 128.8, 127.9, 126.6, 75.5, 34.3. HRMS (ESI-

Q-orbitrap) m/z: [M+Na]+ calcd for C13H11BrO2SNa 334.9535, found 334.9532.

2-bromo-1-(p-tolyl)ethyl benzoate (8ba). Yield: 87%, 83 mg; Colorless oil. 1H NMR (400 

MHz, CDCl3):  8.15 (d, J = 7.3 Hz, 2H), 7.60 (t, J = 7.3 Hz, 1H), 7.48 (t, J = 7.7 Hz, 2H), 7.37 

(d, J = 8.0 Hz, 2H), 7.22 (d, J = 8.0 Hz, 2H), 6.21−6.24 (m, 1H), 3.81−3.86 (m, 1H), 3.72−3.76 
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(m, 1H), 2.37 (s, 3H). 13C{1H} NMR (100 MHz, CDCl3):  165.5, 138.8, 134.9, 133.3, 129.9, 

129.5, 128.5, 126.6, 75.4, 34.6, 21.3. HRMS (ESI-Q-orbitrap) m/z: [M+Na]+ calcd for 

C16H15BrO2Na 341.0147, found 341.0148.

2-bromo-1-(p-tolyl)ethyl 2,6-dimethylbenzoate (8bb). Yield: 93%, 97 mg; Colorless oil. 1H 

NMR (400 MHz, CDCl3):  7.33 (d, J = 8.0 Hz, 2H), 7.20 (t, J = 8.0 Hz, 3H), 7.03 (d, J = 7.6 

Hz, 2H), 6.22−6.26 (m, 1H), 3.75−3.80 (m, 1H), 3.64−3.67 (m, 1H), 2.38 (s, 3H), 2.26 (s, 6H). 

13C{1H} NMR (100 MHz, CDCl3):  169.1, 139.1, 135.1, 134.7, 133.6, 129.6, 129.5, 127.6, 

127.0, 76.1, 34.0, 21.4, 19.9. HRMS (ESI-Q-orbitrap) m/z: [M+Na]+ calcd for C18H19BrO2Na 

369.0461, found 369.0454.

2-bromo-1-(p-tolyl)ethyl methyl terephthalate (8bg). Yield: 74%, 84 mg; Colorless oil. 1H 

NMR (400 MHz, CDCl3):  8.10−8.17 (m, 4H), 7.33 (d, J = 7.9 Hz, 2H), 7.20 (d, J = 7.9 Hz, 

2H), 6.17-6.20 (m, 1H), 3.95 (s, 3H), 3.79−3.84 (m, 1H), 3.69−3.73 (m, 1H), 2.35 (s, 3H). 

13C{1H} NMR (100 MHz, CDCl3):  166.3, 164.8, 139.1, 134.6, 134.3, 133.7, 129.9, 129.7, 

129.6, 126.6, 76.0, 52.6, 34.4, 21.4. HRMS (EI) m/z: [M]+ calcd for C18H17BrO4 376.0305, 

found 376.0305.

2-bromo-1-(o-tolyl)ethyl 2,6-dimethylbenzoate (8cb). Yield: 90%, 94 mg; Colorless oil. 1H 

NMR (400 MHz, CDCl3):  7.42 (d, J = 7.2 Hz, 1H), 7.21−7.29 (m, 4H), 7.06 (d, J = 7.6 Hz, 

2H), 6.50−6.53 (m, 1H), 3.74−3.80 (m, 1H), 3.61−3.64 (m, 1H), 2.57 (s, 3H), 2.30 (s, 6H). 

13C{1H} NMR (100 MHz, CDCl3):  169.1, 136.2, 135.7, 135.0, 133.6, 130.9, 129.5, 128.9, 

127.6, 126.4, 126.0, 73.1, 33.3, 19.9, 19.4. HRMS (ESI-Q-orbitrap) m/z: [M+Na]+ calcd for 

C18H19BrO2Na 369.0461, found 369.0459.
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2-bromo-1-(4-bromophenyl)ethyl benzoate (8da). Yield: 86%, 99 mg; Colorless oil. 1H NMR 

(400 MHz, CDCl3):  8.11 (d, J = 7.2 Hz, 2H), 7.60 (t, J = 7.4 Hz, 1H), 7.46−7.54 (m, 4H), 7.33 

(d, J = 8.4 Hz, 2H), 6.15−6.18 (m, 1H), 3.69−3.81 (m, 2H). 13C{1H} NMR (100 MHz, CDCl3):  

165.4, 136.8, 133.6, 132.0, 129.9, 129.8, 129.5, 128.6, 128.4, 123.0, 74.7, 34.2. HRMS (ESI-Q-

orbitrap) m/z: [M+Na]+ calcd for C15H12Br2O2Na 406.9076, found 406.9075.

2-bromo-1-(4-bromophenyl)ethyl 2,6-dimethylbenzoate (8db). Yield: 91%, 113 mg; Colorless 

oil. 1H NMR (400 MHz, CDCl3):  7.55 (d, J = 8.3 Hz, 2H), 7.33 (d, J = 8.3 Hz, 2H), 7.22 (t, J = 

7.6 Hz, 1H), 7.05 (d, J = 7.6 Hz, 2H), 6.22−6.25 (m, 1H), 3.73−3.78 (m, 1H), 3.63−3.67 (m, 1H), 

2.28 (s, 6H). 13C{1H} NMR (100 MHz, CDCl3):  168.9, 136.6, 135.0, 132.2, 132.0, 129.6, 

128.7, 127.7, 123.2, 75.3, 33.5, 19.9. HRMS (EI) m/z: [M]+ calcd for C17H16Br2O2 411.9491, 

found 411.9495.

2-bromo-1-(4-bromophenyl)ethyl 2-bromobenzoate (8dh). Yield: 87%, 121 mg; Pale yellow 

oil. 1H NMR (400 MHz, CDCl3):  7.89−7.91 (m, 1H), 7.67 (d, J = 6.9 Hz, 1H), 7.53 (d, J = 8.3 

Hz, 2H), 7.33-7.41 (m, 4H), 6.15−6.18 (m, 1H), 3.75−3.80 (m, 1H), 3.68−3.71 (m, 1H). 13C{1H} 

NMR (100 MHz, CDCl3):  164.8, 136.3, 134.7, 133.2, 132.1, 131.8, 131.3, 128.6, 127.4, 123.2, 

122.1, 75.6, 33.8. HRMS (EI) m/z: [M]+ calcd for C15H11Br3O2 461.8283, found 461.8286.

2-bromo-1-(4-chlorophenyl)ethyl benzoate (8ea). Yield: 89%, 91 mg; Colorless oil. 1H NMR 

(400 MHz, CDCl3):  8.21 (d, J = 7.5 Hz, 2H), 7.60 (t, J = 7.5 Hz, 1H), 7.48 (t, J = 7.5 Hz, 2H), 

7.36−7.41 (m, 4H), 6.17−6.20 (m, 1H), 3.77−3.81 (m, 1H), 3.70−3.74 (m, 1H). 13C{1H} NMR 

(100 MHz, CDCl3):  165.4, 136.3, 134.8, 133.6, 129.9, 129.6, 129.1, 128.6, 128.1, 74.7, 34.2. 

HRMS (ESI-Q-orbitrap) m/z: [M+Na]+ calcd for C15H12BrClO2Na 362.9580, found 362.9591.
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2-bromo-1-(4-chlorophenyl) ethyl 2,6-dimethylbenzoate (8eb). Yield: 92%, 102 mg; Colorless 

oil. 1H NMR (400 MHz, CDCl3):  7.40 (m, 4H), 7.22 (t, J = 7.6 Hz, 1H), 7.04 (d, J = 7.6 Hz, 

2H), 6.22−6.26 (m, 1H), 3.73−3.79 (m, 1H), 3.63−3.67 (m, 1H), 2.27 (s, 6H). 13C{1H} NMR 

(100 MHz, CDCl3):  168.9, 136.1, 135.0, 133.2, 129.7, 129.1, 128.4, 127.7, 75.3, 33.5, 19.9. 

HRMS (ESI-Q-orbitrap) m/z: [M+Na]+ calcd for C17H16BrClO2Na 390.9893, found 390.9896.

2-bromo-1-(3-chlorophenyl)ethyl 2,6-dimethylbenzoate (8fb). Yield: 90%, 99 mg; Colorless 

oil. 1H NMR (400 MHz, CDCl3):  7.46 (s, 1H), 7.34−7.37 (m, 3H), 7.22 (t, J = 7.6 Hz, 1H), 

7.05 (d, J = 7.6 Hz, 2H), 6.21−6.24 (m, 1H), 3.73−3.78 (m, 1H), 3.64−3.68 (m, 1H), 2.28 (s, 

6H). 13C{1H} NMR (100 MHz, CDCl3):  168.9, 139.6, 135.1, 134.8, 133.2, 130.2, 129.7, 129.4, 

127.7, 127.2, 125.3, 75.3, 33.5, 19.9. HRMS (ESI-Q-orbitrap) m/z: [M+Na]+ calcd for 

C17H16BrClO2Na 390.9893, found 390.9892.

2-bromo-1-phenylpropyl benzoate (8ga). Yield: 87%, 83 mg; Colorless oil. 1H NMR (400 

MHz, CDCl3):  8.15 (d, J = 7.6 Hz, 2H), 7.60 (t, J = 7.2 Hz, 1H), 7.45−7.51 (m, 4H), 7.34−7.40 

(m, 3H), 6.21−6.23 (m, 1H), 4.50−4.54 (m, 1H), 1.75 (s, 3H). 13C{1H} NMR (100 MHz, CDCl3): 

 165.3, 137.1, 133.4, 130.0, 128.7, 128.6, 128.5, 127.2, 78.8, 50.4, 21.0. HRMS (ESI-Q-

orbitrap) m/z: [M+Na]+ calcd for C16H15BrO2Na 341.0148, found 341.0145.

2-bromo-2-nitro-1-phenylethyl benzoate (8ha). Yield: 64%, 67 mg; Pale yellow oil. 1H NMR 

(400 MHz, CDCl3):  8.01 (d, J = 13.7 Hz, 1H), 7.54−7.61 (m, 2H), 7.45−7.51 (m, 2H), 

7.37−7.43 (m, 3H), 7.26−7.28 (m, 2H), 5.87−5.91 (m, 1H), 5.01−5.05 (m, 1H). 13C{1H} NMR 

(100 MHz, CDCl3):  139.2, 137.2, 132.2, 131.9, 130.1, 129.5, 129.4, 129.3, 129.1, 127.2, 82.3, 

47.4. HRMS (EI) m/z: [M]+ calcd for C15H12BrNO4 348.9944, found 348.9944.
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2-bromocyclohexyl benzoate (8ia). Yield: 88%, 75 mg; Colorless oil. 1H NMR (400 MHz, 

CDCl3):  8.07 (d, J = 7.2 Hz, 2H), 7.56 (t, J = 7.2 Hz, 1H), 7.44 (t, J = 7.8 Hz, 2H), 5.10−5.16 

(m, 1H), 4.12−4.18 (m, 1H), 2.38−2.42 (m, 1H), 2.25−2.31 (m, 1H), 1.89−1.99 (m, 3H), 

1.75−1.81 (m, 2H), 1.53−1.56 (m, 1H). 13C{1H} NMR (100 MHz, CDCl3):  165.7, 133.2, 130.3, 

129.8, 128.5, 76.5, 52.8, 35.7, 31.2, 25.5, 23.4. HRMS (ESI-Q-orbitrap) m/z: [M+Na]+ calcd for 

C13H15BrO2Na 305.0148, found 305.0150.

2-bromocyclohexyl 2,6-dimethylbenzoate (8ib). Yield: 90%, 84 mg; Colorless oil. 1H NMR 

(400 MHz, CDCl3):  7.20 (t, J = 7.6 Hz, 1H), 7.03 (d, J = 7.6 Hz, 2H), 5.17−5.23 (m, 1H), 

4.00−4.07 (m, 1H), 2.38−2.42 (m, 8H), 1.89−1.99 (m, 1H), 1.74−1.83 (m, 2H), 1.46−1.57 (m, 

2H), 1.29−1.38 (m, 1H). 13C{1H} NMR (100 MHz, CDCl3):  169.1, 134.7, 134.0, 129.3, 127.6, 

76.8, 52.5, 36.2, 31.7, 25.8, 23.5, 19.8. HRMS (ESI-Q-orbitrap) m/z: [2M+Na]+ calcd for 

C30H38Br2O4Na 645.1011, found 645.1009.

2-bromocyclohexyl 2-acetylbenzoate (8ii). Yield: 89%, 87 mg; Colorless oil. 1H NMR (400 

MHz, CDCl3):  7.86 (d, J = 7.4 Hz, 1H), 7.47−7.56 (m, 2H), 7.41 (d, J = 7.4 Hz, 1H), 5.06−5.11 

(m, 1H), 4.05−4.11 (m, 1H), 2.54 (s, 3H), 2.27−2.37 (m, 2H), 1.84−1.94 (m, 3H), 1.70−1.78 (m, 

3H). 13C{1H} NMR (100 MHz, CDCl3):  166.1, 142.3, 132.0, 130.2, 129.7, 129.2, 126.6, 52.6, 

35.7, 30.9, 25.5, 24.1, 23.3. HRMS (ESI-Q-orbitrap) m/z: [M+Na]+ calcd for C15H17BrO3Na 

347.0253, found 347.0253.

2-bromo-2,3-dihydro-1H-inden-1-yl benzoate (8ja). Yield: 76%, 72 mg; Colorless oil. 1H 

NMR (400 MHz, CDCl3):  8.04 (d, J = 7.4 Hz, 2H), 7.57 (t, J = 7.4 Hz, 1H), 7.27−7.48 (m, 

6H), 6.59 (d, J = 3.6 Hz, 1H), 4.65−4.68 (m, 1H), 3.77−3.83 (m, 1H), 3.33−3.38 (m, 1H). 

13C{1H} NMR (100 MHz, CDCl3):  166.1, 141.4, 138.5, 133.5, 130.0, 129.9, 129.7, 128.6, 
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127.8, 126.1, 125.0, 84.6, 50.0, 41.7. HRMS (ESI-Q-orbitrap) m/z: [M+Na]+ calcd for 

C16H13BrO2Na 338.9991, found 338.9995.

3-bromo-2,3-dimethylbutan-2-yl benzoate (8ka). Yield: 89%, 76 mg; Colorless oil. 1H NMR 

(400 MHz, CDCl3):  8.04−8.06 (m, 2H), 7.53−7.57 (m, 1H), 7.42−7.46 (m, 2H), 1.94 (s, 6H), 

1.84 (s, 6H). 13C{1H} NMR (100 MHz, CDCl3):  165.3, 132.9, 131.8, 129.7, 128.5, 86.5, 73.1, 

30.0, 21.9. HRMS (ESI-Q-orbitrap) m/z: [M+Na]+ calcd for C13H17BrO2Na 307.0304, found 

307.0319.

4-bromohexan-3-yl benzoate (8la). Yield: 95%, 81 mg; Colorless oil. 1H NMR (400 MHz, 

CDCl3):  8.10 (d, J = 7.7 Hz, 2H), 7.58 (t, J = 7.3 Hz, 1H), 7.46 (t, J = 7.7 Hz, 2H), 5.17 (td, J = 

6.7, 3.1 Hz, 1H), 4.09−4.13 (m, 1H), 1.82−1.96 (m, 4H), 1.08 (t, J = 7.3 Hz, 3H), 0.97 (t, J = 

7.3Hz, 3H). 13C{1H} NMR (100 MHz, CDCl3):  166.1, 133.3, 130.0, 129.9, 128.6, 76.7, 59.5, 

28.9, 25.8, 12.7, 9.9. HRMS (ESI-Q-orbitrap) m/z: [M+Na]+ calcd for C13H17BrO2Na 307.0304, 

found 307.0304.

2-bromo-1-methylcyclohexyl benzoate (8ma). Yield: 50%, 45 mg; Colorless oil. 1H NMR (400 

MHz, CDCl3):  8.01 (d, J = 7.7 Hz, 2H), 7.55 (t, J = 7.3 Hz, 1H), 7.44 (t, J = 7.6 Hz, 2H), 4.86 

(dd, J = 8.4, 3.9 Hz, 1H), 2.46−2.50 (m, 1H), 2.05-2.10 (m, 1H), 1.94−2.01 (m, 1H), 1.69−1.82 

(m, 5H), 1.45−1.58 (m, 3H). 13C{1H} NMR (100 MHz, CDCl3):  165.4, 132.9, 131.5, 129.7, 

128.5, 84.1, 57.9, 34.3, 33.2, 31.1, 23.7, 22.1. HRMS (ESI-Q-orbitrap) m/z: [M+Na]+ calcd for 

C14H17BrO2Na 319.0304, found 319.0305.

2-bromo-1-(3-nitrophenyl)ethyl benzoate (8na). Yield: 50%, 53 mg; Colorless oil. 1H NMR 

(500 MHz, CDCl3):   8.34 (t, J = 1.9 Hz, 1H), 8.23 (dq, J = 8.2, 1.1 Hz, 1H), 8.12 (dd, J = 8.3, 

1.3 Hz, 2H), 7.80 (d, J = 7.8 Hz, 1H), 7.58−7.64 (m, 2H), 7.49 (t, J = 7.8 Hz, 2H), 6.29 (dd, J = 
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6.6, 5.4 Hz 1H), 3.77−3.85 (m, 2H). 13C{1H} NMR (125 MHz, CDCl3): 

            . HRMS (ESI-

Q-orbitrap) m/z: [M+Na]+ calcd for C15H12BrNO4Na 371.9842, found 371.9840. 

Procedure for the preparation compound 1c-Br.

1,3-Dibromo-5,5-dimethylhydantoin (20.9 mg, 0.073 mmol, 1.1 equiv) was added to a mixture 

of indole catalyst 1c (0.066 mmol, 16.3 mg, 1.0 equiv) in dichloromethane (0.22 mL) at 23 oC 

and allowed to stir for 15 minutes in the absence of light. The product mixture was then 

concentrated under reduced pressure and the yellow solid residue was diluted in hexanes. The 

solution was filtered and concentrated under reduced pressure to give compound 1c-Br as a 

yellow oil with 79% yield.

Methyl 3-bromo-2-nonyl-3H-indole-3-carboxylate (1c-Br). Yield: 79%, 20 mg; Yellow oil. 1H 

NMR (500 MHz, CDCl3):  7.58 (d, J = 7.5, 1H), 7.55 (d, J = 7.5 Hz, 1H), 7.40 (t, J = 7.5 Hz, 

1H), 7.24 (t, J = 7.5 Hz, 1H), 3.76 (s, 3H), 2.92−2.99 (m, 1H), 2.73−2.80 (m, 1H), 1.83−1.94 (m, 

2H), 1.25−1.46 (m, 12 H), 0.88 (t, J = 6.8 Hz, 3H). 13C{1H} NMR (125 MHz, CDCl3):  180.5, 

166.6, 153.6, 136.4, 131.0, 126.8, 124.5, 121.1, 60.2, 54.2, 32.0, 30.3, 29.65, 29.59, 29.53, 29.4, 

26.7, 22.8, 14.3. HRMS (ESI-Q-orbitrap) m/z: [M+Na]+ calcd for C19H26BrNO2Na 402.1039, 

found 402.1037.
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