Journal of Organometallic Chemistry, 190 (1980) C5—C7
© Elsevier Sequoia S.A., Lausanne — Printed in The Netherlands

Preliminary Communication

THE INSERTION OF THE DIOXIDES OF CARBON AND SULPHUR INTO THE PALLADIUM-CARBON BOND

Trinh Hung, P.W. Jolly and G. Wilke

Max-Planck-Institut für Kohlenforschung, Lembkestr. 5, D-4330 Mülheim a.d. Ruhr, W.-Germany

(Received February 11th, 1980)

Summary

Bis(η^1 , η^3 -ally1)palladium phosphine complexes react with carbon dioxide and sulphur dioxide by insertion into the palladium-carbon σ -bond to give η^3 -ally1palladium-carboxy1ate and -S-sulphinate complexes.

Bis(η^3 -allyl)nickel complexes are known to react with carbon dioxide, in the presence of basic phosphines, to give η^3 -allyl-nickel carboxylates (1)

$$(\eta^{3}-2-CH_{3}C_{3}H_{4})_{2}Ni + CO_{2}$$
 $\xrightarrow{P(CH_{3})_{3}} \eta^{3}-2-CH_{3}C_{3}H_{4}Ni(OCOC_{4}H_{7})P(CH_{3})_{3}$

Insertion has been suggested to be preceded by conversion of one η^3 -allyl group into the η^1 -form. Incorporation of CO₂ has also been observed in reactions with (η^3 -allyl)₂Ni (2) and η^3 -allyl-Pd(X)L complexes (3) without, however, isolation of the intermediates involved. Recently we have shown that the adducts formed

by bis(η^3 -ally1)palladium complexes with basic phosphines contain both η^1 - and η^3 -ally1 groups (4) and we report here their reactions with carbon dioxide and sulphur dioxide.

Carbon dioxide reacts readily at -30° to -20° with a toluene solution of the (η^{1} , η^{3} - $C_{3}H_{5}$)₂PdPR₃ (R = CH_{3} , $C_{6}H_{11}$) complexes to give η^{3} -allylpalladium carboxylates (I) as pale yellow solids. The 2-methylallyl complexes react similarly. I absorbs two equivalents of CO at room temperature eliminating 2-propenyl-2-butenoate. Hydrogenation followed by protonolysis liberates butyric acid

$$R_3P$$
 R_3P
 R_3P

Similar reactions are observed with sulphur dioxide at -30° : palladium-S-sulphinate complexes (II) are formed. The formulation of II as an S-sulphinate derivative, rather than the less common O-sulphinate form, is supported by the presence of the diagnostic absorptions in the infrared spectrum (KBr disc) at 1150 and 1025 cm⁻¹ (R=CH₃) which are attributed to the asymmetric and symmetric SO₂ stretching frequencies (5) . II also undergoes reductive elimination upon reaction with CO

at room temperature to give a 1 : 1 mixture (R=CH₃) of diallyl-sulphone and allyl,2-propenylsulphone.

The structural assignment of I and II is supported by their $^{1}\text{H-}$ and $^{13}\text{C-nmr}$ spectra. The $^{13}\text{C-nmr}$ spectral data is summarized below.

Complex

(R=C ₆ H ₁₁)	δC ₁ (J _{C,P} , J _{C,H})	$\delta C_2^{(J_{C,P})}$	$\delta C_3^{(J_{C,P})}$	$\delta C_4^{(J_{C,H})}$	δ С ₅	δC ₆
I a)	44.82(1.1;158-2)	116.01 (4.3)	79.88 (26.9)	44.9(126 - 5)	138.22	114.78
II	58.59(- ;159 [±] 2)	120.88(4.2)	72.33(26.2)	77.10(140 [±] 5)	b)	119.89

a) δCO 175.7 ppm b) J_{P,C}^{2.4 Hz}

Characteristic are the large coupling constants for the allylic-carbon atoms $\underline{\text{trans}}$ to phosphorus (J_{P,C_3}) and the difference in $J_{C,H}$ for C_1 (sp²-hybridized) and C_4 (sp³-hybridized).

References.

- P.W. Jolly, S. Stobbe, G. Wilke, R. Goddard, C. Krüger,
 S.J. Sekutowski and Y.-H. Tsay, Angew. Chem. <u>90</u>, 144 (1978);
 S. Stobbe, Dissertation Ruhr-Universität Bochum (1979)
- 2 T. Tsuda, Y. Chijo and T. Saegusa, Synth. Commun. 9, 427 (1979)
- B R. Santi and M. Marchi, J. Organometal. Chem. <u>182</u>, 117 (1979)
- 4 B. Henc, P.W. Jolly, R. Salz, S. Stobbe, G. Wilke, R. Benn, R. Mynott, K. Seevogel, R. Goddard and C. Krüger, J. Organometal. Chem. in press
- 5 See for example G. Vitzthum and E. Lindner, Angew. Chem. 83, 315 (1971)