

CHEMISTRY A European Journal

Accepted Article Title: The Quest for Stable Silaaldehydes: Synthesis and Reactivity of a Masked Silacarbonyl Authors: Shigeyoshi Inoue, Debotra Sarkar, Vitaly Nesterov, Tibor Szilvasi, and Philipp Altmann This manuscript has been accepted after peer review and appears as an Accepted Article online prior to editing, proofing, and formal publication of the final Version of Record (VoR). This work is currently citable by using the Digital Object Identifier (DOI) given below. The VoR will be published online in Early View as soon as possible and may be different to this Accepted Article as a result of editing. Readers should obtain the VoR from the journal website shown below when it is published to ensure accuracy of information. The authors are responsible for the content of this Accepted Article. To be cited as: Chem. Eur. J. 10.1002/chem.201805604 Link to VoR: http://dx.doi.org/10.1002/chem.201805604

Supported by ACES

COMMUNICATION

The Quest for Stable Silaaldehydes: Synthesis and Reactivity of a Masked Silacarbonyl

Debotra Sarkar,^[a] Vitaly Nesterov,^[a] Tibor Szilvási,^[b] Philipp J. Altmann,^[a] and Shigeyoshi Inoue*^[a]

Abstract: First donor-acceptor complex of a silaaldehyde, compound with general formula (NHC)(Ar)Si(H)OGaCl₃, was synthesized using the reaction of silyliumylidene–NHC complex [(NHC)₂(Ar)Si]Cl with water in the presence of GaCl₃. Conversion of this complex to the corresponding silacarboxylate dimer [(NHC)(Ar)SiO₂GaCl₂]₂, free silaacetal ArSi(H)(OR)₂, silaacyl chloride (NHC)(Ar)Si(Cl)OGaCl₃, and phosphasilene–NHC adduct (NHC)(Ar)Si(H)PTMS unveil its true potential as a synthon in silacarbonyl chemistry.

Carbonyl group is important and ubiquitous functionality in the field of organic chemistry, life sciences and beyond.^[1] While aldehydes, ketones, and carboxylic acid derivatives are generally well-known stable organic compounds, the synthesis and isolation of their stable heavier group 14 analogues is challenging.^[2] The instability and high tendency to oligomerize of the latter are attributed to the different nature of the heavier E=O bonds (E = Si-Pb), which exhibit higher zwitterionic character $E^{\delta+}-O^{\delta-}$ due to the significant decrease in electronegativity of heavier elements and their intrinsic propensity to form weaker πbonds descending the group. Recent years have witnessed considerable advances in the isolation of monomeric silacarbonyl compounds including silanones (R2SiO) and silanoic acid (RSi(O)OH) derivatives.^[3-9] Rational steric and electronic protection, Lewis base or Lewis base/acid complex formation are the key approaches to achieve the required stabilization.[3-10] Nevertheless, despite this success our knowledge about the reactivity of silicon analogues of carbonyl compounds and their synthetic potential remains to be very scarce.

Among reported silacarbonyls, derivatives containing a silaformyl group (-Si(H)O) are rare (I–IV, Figure 1a),^[6-9] while a stable analogue of an aldehyde (RSi(H)O) with three-coordinate silicon is not known. Driess and co-workers reported a silaformamide–borane complex (I) with essential Si=O double bond character synthesized by reacting corresponding hydroxysilylene with water–borane adduct $H_2O \cdot B(C_6F_5)_3$.^[6] Several years later, Roesky, Frenking and co-workers described the isolation of silaformyl chloride complex (II)^[7] via the reaction of the silylene dichloride–NHC adduct (IDipp)Cl₂Si: with $H_2O \cdot B(C_6F_5)_3$ and additional equivalent of the NHC. Hashimoto, Tobita and co-workers isolated anionic η^2 -silaaldehyde

-	
[a]	D. Sarkar, Dr. V. Nesterov, P.J. Altmann, Prof. Dr. S. Inoue
	WACKER-Institute of Silicon Chemistry and
	Catalysis Research Center
	Technische Universität München
	Lichtenbergstraße 4, 85748 Garching bei München (Germany)
	E-mail: s.inoue@tum.de
[b]	Dr. T. Szilvási
	Department of Chemical and Biological Engineering
	University of Wisconsin–Madison
	1415 Engineering Drive, Madison, WI 53706-1607 (USA)
	Supporting information for this article is given via a link at the end of the document

Figure 1. (a) Silaformyl compounds I–IV. (b) Present work.

complex (III) with a Si–O motif within coordination sphere of tungsten, considered as a three-membered metallacycle rather than a silaaldehyde π -complex.^[8] More recently, the group of Aldridge in an elegant study demonstrated the synthetic utility of nacnac-supported chlorosilylene to access a number of silacarbonyls, including silaformamide **IV**.^[9]

Previously we succeeded in the isolation of stable threecoordinate imino(silyl) silanones [(IDipp)N](R₃Si)SiO (IDipp = [HC(DippN)]₂C:, R = ^tBu, SiMe₃) with prolonged lifetime in solution.[3a] Our quest for a stable silaaldehyde started from the investigation of the reactivity of a NHC-stabilized silyliumylidene [(IMe₄)₂(^{Mes}Ter)Si:]Cl (1, ^{Mes}Ter = 2,6-(2,4,6-Me₃C₆H₂)₂C₆H₃, IMe₄ = [(Me)C(MeN)]₂C:)^[11] and hydridosilylene (IMe₄)(^{*t*}Bu₃Si)(H)Si: (2).[12] These compounds react with carbon dioxide affording NHC-stabilized silaacylium salt [(IMe₄)₂(MesTer)Si(O)][CI] (3) with comparably high double bond character of the Si=O bond,[5c] and NHC-free cyclotrisiloxane [('Bu₃Si)(H)SiO]₃ regarded as a trimer of silaaldehyde intermediate.[13] Exploration of the reactivity of silyliumylidene (1) towards chalcogens and H₂S enabled an access to NHC-stabilized heavier chalcogen silaacylium derivatives^[14] and thiosilaaldehyde.^[15] Herein, we report our study devoted to the synthesis of a silaaldehyde, isolated as a Si,Odonor-acceptor complex, and its unique reactivity showing strong relationship to the chemistry of carbonyl congeners (Figure 1b).

COMMUNICATION

Treatment of sillyliumylidene complex **1** with equimolar amounts of gallium chloride and water in acetonitrile at low temperatures led to the formation of complex **4** together with corresponding imidazolium chloride (Scheme 1). Recrystallization of the row product from acetonitrile/toluene solution (2 : 1) at – 30° C furnished colorless crystals of **4** in a moderate yield (61 %).

Scheme 1. Hydrolysis of silyliumylidene complex 1 in the presence and absence of the Lewis acid (GaCl₃).

The ¹H NMR spectrum of compound **4** in CD₃CN shows a distinct signal of silicon-bound hydrogen at 4.98 ppm (¹J_{Si,H} = 234.2 Hz). It lies within the range of values reported for silaformyl compounds **I**, **II** (broad signals at 5.64 and 5.55 ppm, respectively)^[6,7] and **III** (4.29 ppm,¹J_{Si,H} = 190.6 Hz),^[8] and considerably upfield shifted compared to the formyl proton of the corresponding aldehyde ^{Mes}TerCHO (9.65 ppm).^[16] The ²⁹Si NMR spectrum of **4** exhibits a resonance at –45.0 ppm, which is very close to that of silaformyl chloride **II** (–49.8 ppm).^[7]

The molecular structure of complex **4** was unambiguously confirmed by single crystal X-ray diffraction analysis (Figure 2), which revealed a distorted tetrahedral geometry of the silicon atom.

Figure 2. Molecular structure of 4. Hydrogen atoms except H1 are omitted for clarity.

The Si–O bond distance in **4** is 1.605(3) Å. Surprisingly, it is only marginally shorter than Si–O single bonds in acyclic organodisiloxanes (R₃Si)₂O (1.61–1.64 Å) or siloxanes R₃SiOR' (ca. 1.64 Å), and even slightly longer than those in halogenodisiloxanes (X₃Si)₂O (1.58–1.59 Å, X = F, Cl).^[17] This

bond is also elongated compared to those in **I**, **II**, and **IV** (1.552(2), 1.568(15), and 1.5514(10) Å, respectively)^[6,7,9] and in three-coordinate silanones (1.52–1.54 Å).^[3]

In the solid state, the IR spectrum of **4** displayed a strong absorption band at 975 cm⁻¹. Although Si=O stretching vibrations of parent silaaldehydes in argon matrix are observed at higher wave numbers (H₂SiO, $\tilde{v} = 1202$ cm⁻¹, and MeSi(H)O, $\tilde{v} = 1207$ cm⁻¹),^[18a] this value is large enough to distinguish it from the absorption of Si–O single bonds ($\tilde{v} = 800-900$ cm⁻¹).^[18b] Thus, the structural and IR data suggest strong dominance of the zwitterionic resonance structure **4B** or equivalent Lewis structure **4C** into the ground state of the molecule (Figure 3).

Figure 3. Resonance structures of silaaldehyde 4.

DFT calculations at B97-D/def2-SVP level of theory showed a good agreement between calculated metric parameters, the ²⁹Si NMR as well as IR data ($\delta = -41.2$ ppm, $\tilde{\nu} = 964$ cm⁻¹) of 4 and the experimentally obtained data. HOMO and LUMO of 4 are mainly located at the aryl ligand/chlorine atom and NHC ligand/Si–C_{NHC} σ^* orbital/aryl ligand, respectively (Figure S22). No indication of possible Si–O π -orbital was observed. Natural charges of Si and O atoms (1.67 and –1.22, respectively) indicate strong charge separation. Obtained Wiberg bond index (WBI), and Mayer bond order (MBO) of the Si–O bond (0.74 and 1.21, respectively) indicate a single bond with negligible double bond character. The computed mechanism of formation of 4 includes barrier-free protonation of 1 involving H₂O·GaCl₃ complex and following transformations toward 4 with low energy barriers (Scheme S1).

Interestingly, the use of other Lewis acid reagents, such as AICl₃, B(C₆F₅)₃, BX₃ (X = F, CI, Br) or ZnX₂ (X = F, CI), instead of gallium chloride in the reaction of **1** with water did not lead to any selective transformation. In an attempt to procure an acceptor-free silaaldehyde ^{Mes}Ter(IMe₄)Si(H)O, hydrolysis of **1** was also performed in the absence of any Lewis acid (Scheme 1). However, it resulted in the formation of a mixture of unidentified products, from which only sterically hindered spirosiloxane **5** was isolated in 9.2 % yield. The structure of **5** was confirmed using multinuclear NMR spectroscopy and single crystal X-ray diffraction analysis (see SI). Attempt to remove the NHC from **4** using BPh₃ at 80 °C led to the isolation of the corresponding borane–NHC adduct and unidentified decomposition products.

In order to access donor-acceptor complex of a silacarboxylic acid (6), silaaldehyde complex 4 was reacted with water in the presence of the NHC as a hydrogen scavenger (Scheme 2). Reaction led to the formation of an unprecedented gallium silacarboxylate complex (7) isolated in low yield (8 %) if one equivalent of the NHC was employed. The yield of 7 was improved to 22 % using two equivalents of the NHC. Corresponding 2,2-dihydroimidazolidine and imidazolium salt

COMMUNICATION

were identified as by-products. Additionally, alcoholysis of complex **4** with *tert*-butanol provided silaacetal **8** isolated in 79 % yield (Scheme 2).

Scheme 2. Synthesis of siladicarboxylate 7 and silaacetal 8.

Molecular structures of **7** and **8** were confirmed using X-ray diffraction analysis. In the solid state, compound **7** exists as a centrosymmetric dimer containing two silacarboxylate (^{Mes}TerSiO₂) fragments bridged by two GaCl₂ units in a similar manner found in gallium(III) carboxylate complexes (Figure 4).^[19] Each silicon center has a distorted tetrahedral geometry. The Si1–O2 (1.586(17) Å) and Si1–O1 (1.603(17) Å) bond distances are close to each other and to the Si–O distance found in **4**. These distances are also comparable to those in the donor-acceptor-stabilized silanoic acid (EtO)(D→)Si(O→A)OH (1.588(2)–1.626(2) Å) reported by Baceiredo, Kato and co-workers.^[5e] Moreover, both Si–O bonds in **4** are sufficiently shorter than Si–O single bonds in gallium–siloxane complexes (1.62–1.70 Å).^[20]

Figure 4. Molecular structure of 7. Hydrogen atoms are omitted for clarity.

According to our DFT calculation, the Si–O bonds in SiO₂ moieties in **7** are almost identical within 0.02 Å. MBOs are same for all Si–O bonds (1.18) and the same as found in the starting material. Noteworthy, HOMO–40 of **7** (Figure S24) shows a cyclic delocalization through the oxygen atoms, thus supporting the heavy silacarboxylate analogy. Conversion of **4** into **7** involves intermediate formation of the acid **6** and starts from the

nucleophilic attack of the silicon of **4** by the oxygen of H_2O ·NHC complex (Scheme S2).

We used reaction of silaaldehyde complex **4** with an excess of gallium chloride to access novel silaaroyl chloride **9** (Scheme 3). Analytically pure sample of **9** was obtained in low yield (9 %) as a very moisture sensitive solid with low solubility in polar and non-polar solvents. All attempts to characterize single crystals of **9** led to their contamination with the corresponding acid Ar(IMe₄)Si(O)(GaCl₃)OH (**10**) due to partial hydrolysis.

In order to examine a relationship to classical acyl transfer reactions, we performed hydrolysis of silaacyl derivatives **9** and **3** with water under various conditions. It was found, that reaction of silaaroyl chloride **9** with water in the presence of NHC leads to selective formation of siladicarboxylate dimer **7**, while the reaction of silaacylium salt **3**^[5c] with a NHC/GaCl₃/H₂O mixture (1:1:1) provides the same product in 43 % yield (Scheme 3).

Scheme 3. Synthesis of silaacyl chloride complex 9 and alternative approaches to siladicarboxylate complex 7.

Aldehydes and ketones are known as important reagents not only in C-C bond forming reactions, but also for the construction of mono- and heteronuclear C=E double bonds (E = C, N, P).^[1] We found, that reaction of 4 with tris(trimethylsilyl)phosphine at elevated temperature in fluorobenzene yields selectively thermally stable NHC-supported phosphasilene 11 (Scheme 4). While the mechanism of this transformation remains unclear, it may involve nucleophilic attack of the phosphorus reagent on the electropositive silicon, leading to elimination of transient [TMSOGaCl₃] anion and following formation of TMSOGaCl₂ dimer,^[22] TMSCI, and phosphasilene **11** (Scheme S3). Notably, analogous reaction of aldehydes RCHO with bis(trimethylsilyl)phosphines R'PTMS2 in the presence of AICl3 is known to yield corresponding phosphaalkenes R(H)C=PR'.[21]

Scheme 4. Synthesis of phosphasilene 11 from silaaldehyde complex 4.

The same phosphasilene complex **11** was obtained alternatively using a convenient two-step approach starting from

COMMUNICATION

MesTerSi(H)Cl₂ (see SI). Reaction products in both cases were identical and showed same spectroscopic data. Moreover, **11** was characterized by X-ray diffraction analysis (Figure 5). Obtained spectroscopic and structural data of **11** are in good agreement with those of the described previously similar phosphasilene–NHC complex bearing more bulky ^{Dipp}Ter aryl substituent at the silicon atom.^[23,24]

Figure 5. Molecular structure of 11. Hydrogen atoms except H1 are omitted for clarity.

In summary, we have synthesized and characterized the first donor-acceptor complex of an aryl silaaldehyde. Notably, it reacts as masked silacarbonyl providing an access to a number of stable derivatives, thus showing a relationship to carbonyl chemistry. Difficulties in the preparation of the corresponding donor, and acceptor-free silaaldehyde complexes, as well as the isolation of free spirosiloxane underline low stability of the corresponding free silaaldehyde. Thus, the quest for stable free silaaldehydes remains challenging.

Acknowledgements

We gratefully acknowledge financial support from WACKER Chemie AG, the European Research Council (SILION 637394), the DAAD (fellowship for D.S.), Dr. A. Pöthig for crystallographic advice, Mr. J. Sicklinger for IR measurements.

Keywords: Silaaldehyde • Silanone • Silacarbonyl group • Silyliumylidene • N-Heterocyclic carbene

- [1] J. Clayden, N. Greeves, S. Warren, *Organic Chemistry*, 2nd ed., Oxford Press, Oxford, **2012**.
- a) Y. Xiong, S. Yao, M. Driess, Angew. Chem. Int. Ed. 2013, 52, 4302;
 Angew. Chem. 2013, 125, 4398; b) S. S. Sen, Angew. Chem. Int. Ed.
 2014, 53, 8820; Angew. Chem. 2014, 126, 8964.
- [3] Ambient temperature stable silanones with three-coordinate silicon: a) D. Wendel, D. Reiter, A. Porzelt, P. J. Altmann, S. Inoue, B. Rieger, J. Am. Chem. Soc. 2017, 139, 17193; b) A. Rosas-Sánchez, I. Alvarado-Beltran, A. Baceiredo, N. Saffon-Merceron, S. Massou, D. Hashizume, V. Branchadell, T. Kato, Angew. Chem. Int. Ed. 2017, 56, 15916; Angew. Chem. 2017, 129, 16132; c) I. Alvarado-Beltran, A. Rosas-Sánchez, A. Baceiredo, N. Saffon-Merceron, V. Branchadell, T. Kato, Angew. Chem. Int. Ed. 2017, 129, 10617; d) A. C.

Filippou, B. Baars, O. Chernov, Y. N. Lebedev, G. Schnakenburg, *Angew. Chem. Int. Ed.* **2014**, *53*, 565; *Angew. Chem.* **2014**, *126*, 576.

- [4] Silanones with four-coordinate silicon: a) R. Rodriguez, T. Troadec, D. Gau, N. Saffon-Merceron, D. Hashizume, K. Miqueu, J. M. Sotiropoulos, A. Baceiredo, T. Kato, *Angew. Chem. Int. Ed.* **2013**, *52*, 4426; *Angew. Chem.* **2013**, *125*, 4522; b) Y. Xiong, S. Yao, R. Müller, M. Kaupp, M. Driess, *Nat. Chem.* **2010**, *2*, 577; c) S. Yao, Y. Xiong, M. Driess, *Chem. Eur. J.* **2010**, *16*, 1281; d) Y. Xiong, S. Yao, R. Müller, M. Kaupp, M. Driess, *J. Am. Chem. Soc.* **2010**, *132*, 6912; e) Y. Xiong, S. Yao, M. Driess, *J. Am. Chem. Soc.* **2009**, *131*, 7562.
- a) R. Rodriguez, I. Alvarado-Beltran, J. Saouli, N. Saffon-Merceron, A. [5] Baceiredo, V. Branchadell, T. Kato, Angew. Chem. Int. Ed. 2018, 57, 2635; Angew. Chem. 2018, 130, 2665; b) R. Rodriguez, D. Gau, J. Saouli, A. Baceiredo, N. Saffon-Merceron, V. Branchadell, T. Kato, Angew. Chem. Int. Ed. 2017, 56, 3935; Angew. Chem. 2017, 129, 3993; c) S. U. Ahmad, T. Szilvási, E. Irran, S. Inoue, J. Am. Chem. Soc. 2015, 137. 5828; d) Y. Wang, M. Chen, Y. Xie, P. Wie, H. F. Schaefer III, P. v. R. Schleyer, G. H. Robinson, Nat. Chem. 2015, 7, 509; e) R. Rodriguez, D. Gau, T. Troadec, N. Saffon-Merceron, V. Branchadell, A.; Kato, T. Baceiredo, Angew. Chem. Int. Ed. 2013, 52, 8980; Angew. Chem. 2013, 125, 9150; f) R. S. Ghadwal, R. Azhakar, H. W. Roesky, K. Pröpper, B. Dittrich, S. Klein, G. Frenking, J. Am. Chem. Soc. 2011, 133, 17552-17555; g) Y. Xiong, S. Yao, M. Driess, Angew, Chem. Int. Ed. 2010, 49. 6642; Angew. Chem. 2010, 122, 6792; h) Y. Xiong, S. Yao, M. Driess, Dalton Trans. 2010, 39, 9282; i) S. Yao, Y. Xiong, M. Brym, M. Driess, J. Am. Chem. Soc. 2007, 129, 7268,
- [6] S. Yao, M. Brym, C. V. Wüllen, M. Driess, Angew. Chem. Int. Ed. 2007, 46, 4159; Angew. Chem. 2007, 119, 4237.
- [7] R. S. Ghadwal, R. Azhakar, H. W. Roesky, K. Propper, B. Dittrich, C. Goedecke, G. Frenking, *Chem. Commun.* 2012, 48, 8186.
- [8] T. Fukuda, H. Hashimoto, S. Sakaki, H. Tobita, Angew. Chem. Int. Ed. 2016, 55, 188.
- [9] S. Aldridge, D. Do, A. Protchenko, M. Angeles Fuentes, J. Hicks, E. Kolychev, P. Vasko, Angew. Chem. Int. Ed. 2018, 57, 13907; Angew. Chem. 2018, 130, 14103.
- [10] V. Nesterov, D. Reiter, P. Bag, P. Frisch, R. Holzner, A. Porzelt, S. Inoue, *Chem. Rev.* 2018, 118, 9678.
- [11] S. U. Ahmad, T. Szilvási, S. Inoue, Chem. Commun. 2014, 50, 12619.
- [12] S. Inoue, C. Eisenhut, J. Am. Chem. Soc. 2013, 133, 18315.
- [13] C. Eisenhut, N. C. Breit, T. Szilvási, E. Irran, S. Inoue, *Eur. J. Inorg. Chem.* 2016, 2696.
- [14] D. Sarkar, D. Wendel, S. U. Ahmad, T. Szilvási, A. Pothig, S. Inoue, *Dalton Trans.* 2017, 46, 16014.
- [15] A. Porzelt, J. Schweizer, R. Baierl, P. Altmann, M. Holthausen, S. Inoue, Inorganics 2018, 6, 54.
- [16] R. C. Smith, L. B. Gleason, J. D. Protasiewicz, J. Mater. Chem. 2006, 16, 2445.
- W. S. Sheldrick in *The Chemistry of Organic Silicon Compounds* (Eds.: S. Patai, Z. Rappoport), John Wiley & Sons, Ltd, Chichester, **1989**, pp. 227–303.
- [18] a) R. Withnall, L. Andrews, *J. Am. Chem. Soc.* **1986**, *108*, 8118; b) V. N. Khabashesku, Z. A. Kerzina, K. N. Kudin, O. M. Nefedov, *J. Organomet. Chem.* **1998**, *566*, 45.
- [19] M. R. Kaluđerović, S. Gómez-Ruiz, B. Gallego, E. Hey-Hawkins, R. Paschke, G. N. Kaluđerović, *Eur. J. Med. Chem.* 2010, 45, 519.
- [20] a) C. N. McMahon, S. J. Obrey, A. Keys, S. G. Bott, A. R. Barron, *Dalton Trans.* **2000**, 2151; b) N. R. Bunn, S. Aldridge, C. Jones, *Appl. Organomet. Chem.* **2004**, *18*, 425.
- [21] J. I. Bates, B. O. Patrick, D. P. Gates, New. J. Chem. 2010, 34, 1660.
- [22] H. Schmidbaur, W. Findeiss, Chem. Ber. 1966, 99, 2187.
- [23] K. Hansen, T. Szilvási, B. Blom, M. Driess, Angew. Chem. Int. Ed. 2015, 54, 15060; Angew. Chem. 2015, 127, 15274.
- [24] V. Nesterov, N. C. Breit, S. Inoue, Chem. Eur. J. 2017, 23, 12014.

COMMUNICATION

COMMUNICATION

First silicon analogue of an aldehyde stabilized with an external Lewis base and Lewis acid was successfully isolated and characterized. lt shows unique reactivity mimicking behaviour of carbonyl congeners and provides an access to various classes of silacarbonyl derivatives.

Debotra Sarkar, Vitaly Nesterov, Tibor Szilvási, Philipp J. Altmann, Shigeyoshi Inoue*

Page No. – Page No.

The Quest for Stable Silaaldehydes: Synthesis and Reactivity of a Masked Silacarbonyl