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Abstract

5-Aryl-1,9-dichlorodipyrrins react with a series $fand N nucleophiles (both alkyl and
aryl containing ones). Reagents with mercapto grgighd product of double nucleophilic
substitution of 5-pheny-1,9-dichlorodipyrrin, i.ethe respective 1,9-bis(alkyl- of
arylthio)dipyrrin. On the contrary, 5-(4-nitrophdpy,9-dichlorodipyrrin causes disulfides
formation from the S-aliphatic substrates, wheneasleophilic substitution remains the main
path of the reaction for S-aryl ones. Reaction eAlKyl nucleophiles proceeds as mono-
substitution. UV-Vis spectra feature batochromigftsfor bis-S-substituted products and a

hypsochromic shift for mono-N-substituted oneshweéspect to the starting dichlrorides.

! Part of this work was reported at 6th EuCheMS €merice on Nitrogen Ligands in Coordination
Chemistry, Metal-Organic Chemistry, Bioinorganicedtistry, Materials and Catalysis, Beaune, FranepfeSnber

13-17.
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Introduction

Dipyrrins (DPs) and their metal complexes [1, 2¢ attracting much of researchers
attention, in spite of being somewhat in the shaidtheir boron derivatives (BODIPY) [3-6].
DP-metal complexes have been studied for applicatim dye-sensitized solar cells [7-9],
catalysis[10] and as new fluorescent dyes.[11] Tinmye been studied as prospective substance
of anti-tumor activities[12-14] Besides, DP-metalmplexes can govern the geometry and
composition of supramolecular aggregates[15, 1G}edding on both the mode of metal
coordination and the geometry and steric demand B ligand. [17-19] These factors also
control the formation of metal-organic framework0, 21] Extensive studies focused on the
substutients’ influence on the energies of the gdoand excited states manifested in their redox
properties and optical spectra. .[22] Additionabstituents at the periphery of DP bearing extra
complexing groups had also been shown to drasticathnge complexes properties. [23, 24]

Known synthetic pathways to substituted DPs includsmdensation of substituted
pyrroles. [25-32] Also, series of methods suchlastephilic substitution, oxidative couplings,

a direct H-substitution and halogenation-Pd-catdyzross coupling sequences have been
shown to work for BODIPY derivatization[33, 34] agll as conversion of a methyl group
adjacent to the electronegative heterocycle toubléobond and nucleophilic substitution at the
BODIPY core. [5] Some examples of these methoddiexppo non-borylated dipyrrins can be
also found in the literature. [35] Research grogpsThompson, Ravikanth and Hao have
developed synthetic methods leading to H-dipyrbased on F-BODIPY deborylation by boron

trinalides[36] or other Lewis acids[37], as wellaspotassium tert-butoxide [38, 39]. However



the scope of these methods is rather limited,reglipyrrins possessing groups with substantial
Lewis basicity are reported to stand these-Bffnoval conditions.

On the other hand no accounts on an aromatic npifullgo substitution in free dipyrrins
are found in the literature, although there areepmpmn the reactions of C-, S-, N- and O-
nucleophiles with more electrophilic 1,9-dichloroB®Y.[40] We were interested in the access
to 1,9-disubstituted dipyrrins that possess addatiopendant complexing substituents. 1,9-
Modification of the dipyrrin framework was employéat the sterical encumbering to be used in
catalysis[27, 41], the extension ofreconjugation (regulated both by metal complexad@[
and hydrogen bonding[38]), used in photophysicaliegtions.

This communication reveals first results of thedgtut is aimed at filling this gap, being
focused on the either bulky substrates or thossgsseng additional coordinating substituents.
As there is an NH acidic proton in the dipyrrinacgon of 5-aryl-1,9-dichlorodipyrrin® with C-
nucleophiles is more difficult to study, so at fiswe limited the scope to N-, O- and S-

nucleophiles

Materials and Methods

All solvents were distilled before use. Reagentsewmirchased from Aldrich and Acros
companies, solvents were bought from Reakhimg@NHand triethylamine have been distilled
from Cah. 1,9-dichloro-5-(4-nitrophenyl)-dipyrromethene,  9-tichloro-5-phenyl-
dipyrromethene [43], methyl 2-mercaptobenzoate,[d¥gthyl mercaptoacetate [45], and methyl
3-mercaptopropanoate [46] were prepared accorditiget literature procedures.

NMR spectra, unless otherwise stated, were recorded Bruker Avance 400
spectrometer, at 400.13 MHz fii (standard — HMDS, 0.05 ppm) and 100.13*fér (standard
—13C signal of the solvent, 77.0 ppm for CRICFor APT experiments, signals of secondary and

quaternary atoms are marked with an asterisk.



LDI-TOF spectra have been collected on Bruker Ded® Autoflex Il spectrometer,
samples were irradiated by, Mser A = 337 nm), accelerating voltage 19 kV. High retohlu
mass spectra (HRMS) were measured on a Bruker M@FOIl instrument using electrospray
ionization (ESI) [47]. The measurements were dana positive ion mode (interface capillary
voltage — 4500 V); mass range from m/z 50 to m@03Da; external or internal calibration was
done with Electrospray Calibrant Solution (Fluk&)syringe injection was used for solutions in
methanol (flow rate IL/min). Nitrogen was applied as a dry gas; intezfsmperature was set
at 180°C.

TLC has been performed on DC-Alufolien Kieselgel&Zb4 plates (Merck). Kieselgel
60 0.063-0.200mm (Merck) was used for column chromatography.

UV-Vis spectra were measured on Agilent-8453, incakes a drop of Bt had been
added to the sample before measurement. Extinciedfficients were reported for®° M

concentrations, unless otherwise stated.

General procedure for nucleophilic substitution.

Dichlorodipyrrin (1 eq.) and dry acetonitrile weptaced to three necked round bottom
flask equipped with magnetic stirring bar, stoppeog rubber septa and flushed with argoen
needles. Then a solution of the nucleophda @ eqg.) in CHCN and triethylaminecé. 6 eq.)
have been added by the syringe, reaction flaskimasersed into an oil bath heated to°G5
(unless otherwise specified). After a specifiedetiperiod, the solvent was removed on rotary
evaporator, the residue was dried on the vacuuendin5*10° Torr at 80-96C to remove the
base and one of the substrates and processe@@delow.
1,9-bis(methoxycarbonylmethylthia)-5-phenyl dipyrrin (7). 1a(8.9 mg, 30.3umol) in 4 ml of
CHsCN and3a (13.1 mg, 124umol) in 6 ml of CHCN and E4N (17pl, 12.4 mg, 12Z1mol),
rxn time 48 h, purified by TCL AD; neutral, hexane/CHgR2:1 + 1% CHOH. 7: (6.4 mg,
14.93pmol, 49%).*H NMR (CDCk): & = 3.79 (6H, s), 3.88 (4H , s), 6.38 (2H,J 4.1 Hz),
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6.44 (2H, d,J = 4.1 Hz), 7.36-7.44 (5H, m) pprfC NMR (CDC}) 8= 35.56, 52.76, 120.42,
127.60, 128.58, 128.79, 130.77, 134.41, 136.77,764147.65, 170.02 ppm. LDI-TOF: m/z =
429 [M+H]", 467[M+K]". HRMS (ES): GiH21N-04S, Found 429.0921 Calculated 429.0337.
Amax = 453 nm ¢=2.4x1d M cm™).

1,9-bis(2-methoxycarbonylethylthia)-5-phenyl dipyrin (8). 1a(25.1 mg, 86.&imol) in 10 ml

of CHsCN and3b (41.7 mg, 347mol) in 4 ml of CHCN and E4N (48ul, 35.2 mg, 34&mol),
rxn time 120 h, purified by TCL AD; neutral, hexane/CHgI2:1 . 8: (33.0 mg, 72.3imol,
83%).H NMR (CDCL): 8 = 2.73 (4H, tJ = 7.2 Hz), 2.91 (4H, ) = 7.2 HZ), 3.69 (6H, s), 6.38
(2H, d,J = 4.1 Hz), 6.44 (2H, d) = 4.1 Hz), 7.36-7.44 (5H, m) ppr’C NMR (CDCE) &=
28.87*, 34.42*, 51.88, 120.77, 127.72, 128.44, €28.130.75, 133.61*, 136.63*, 141.91*,
148.24*, 172.06* ppm. LDI-TOF: m/z = 458 [M]HRMS (ES): GsH2sN-04S, Found 457.1242
Calculated 457.1250 2= 456 nm €=1.9x10 M tem™).

Nucleophilic substitution of la with 3b — conversio and products distribution. All the
experiments have been carried out according tgéneral procedure. After the evaporation and
high vacuum drying reaction mixtures have beenyaeal by NMR.

Methyl 3-({(22)-2-[(5-chloro-1H-pyrrol-2-yl)(phenyl )methylene]-2H-pyrrol-5-yl}
thio)propanoate (7') 1a (30 mg, 104umol) in 8 ml of CHCN and3b (50.6 mg, 374umol) in

2 ml of CHCN and E4N (54 ul, 39.3 mg, 72&mol), rxn time 17 h. Reaction mixture has been
evaporated to dryness, then oily orange residuebbas subjected to heatingf@s 40 min) at
high vacuum (1- 18 Torr) for the nucleophile excess to be dried ®fie product was isolated
by column chromatography (SiOnheutral, petroleum ether/ethyl acetate 42). (13.5 mg,
34.8pumol, 33%). ):*H NMR (CDCk) 8 = 2.83 (2H, t, J = 7.2 Hz), 3.31 (2H, t, J = 7D }B.72
(3H, s), 6.33 (1H, d, J = 4.2 Hz), 6.48 (1H, d, 4.2 Hz), 6.25 (1H, d, J = 4.2 Hz), 6.54(1H, d,

J=4.2 Hz), 7.40 (5H, m). ppm*C NMR (CDC}) &= 28.63, 29.28, 33.92, 51.5 8, 117.53,



118.64, 127.36, 128.68, 130.37, 135.62, 171.51 pm-TOF: m/z = 373 [M]. HRMS (ES):
Ca0H20CIN,O,S Found 373.0778 Calculated 373.07W2:x = 454 nm €=0.9x1d M*cm™).
1,9-bis(4-methylphenylthia)-5-phenyl dipyrrin (9). 1a (14 mg, 48.4mol) in 8 ml of CHCN
and4 (24.1 mg, 194umol) in 2 ml of CHCN and E4N (27 pul, 19.7 mg, 194imol), rxn time
20 h (at 64C). Purified by column chromatography Si@Cl. 9: (21 mg, 45.21mol, 93%).’H
NMR (CDCL): 8 = 2.30 (6H, s) 6.27 (2H, d,= 4.1 Hz), 6.44 (2H, d] = 4.1 Hz), 7.13 (4H, d,
J=8.1Hz), 7.33 (4H, d) = 8.1 Hz), 7.37 — 7.41(5H, m), 12.2 (broad s, 1pYm.*C NMR
(CDCls) o= 21.23, 120.35, 127.64, 128.45, 128.57, 129.266.16, 130.75, 131.65, 134.46%,
136.66*, 136.66*, 138.14*, 141.91* ppm. LDI-TOF: 2¢# 465 [M+H]. HRMS (ES): [M+H]
CaoH24N2S, Found 465.1464 Calculated 465.14Bda, = 462 nm § = 2.1x1d M*cm'?).
1,9-bis(2-methoxycarbonylphenylthia)-5-phenyl dipyrin (10). 1la (14.6 mg, 50.fumol) in

8 ml of CHCN and5 (43.8 mg, 26Qumol) and E4N (27 ul, 19.7 mg, 194umol), rxn time 72 h
(at 76C). Purified by column chromatography Siexane-EtOAc 4:1. Dried residue was
chromatographed on ADs, hexane-EtOAc10: (23 mg, 41.6umol, 82%).'H NMR (CDCh): &

= 3.91 (6H, s), 6.44 (2H, d,= 4.4 Hz), 6.52 (2H, d] = 4.4 Hz), 7.10-7.14 (2H, m), 7.21-7.27
(4H, m), 7.38-7.47 (5H, m), 7.85 (2H, db= 7.8 Hz, 1.1 Hz) ppm>C NMR (CDCE) 8= 29.68,
52.25%, 122.60*, 126.50*, 127.73* 128.65*, 128.79t29.55, 130.82*, 130.87* 132.34*,
134.56, 136.54, 137.13, 147.03, 166.80 ppm. LDI-T@#z = 465 [M+H]. HRMS (ES):
CaH24N,S, Found 465.1464 Calculated 465.14Bday = 456 nm € = 2.1x16 M 'cm™®).
1,9-bis(4-methylphenylthia)-5-(4-nitrophenyl) dipyrin (15). 1b (33.3 mg, 10Qumol) in 16 ml
of CHsCN and4 (50.7 mg, 40&mol) and E4N (54 ul, 39 mg, 388umol), rxn time 48 h (at
65°C). Washed by hot hexanes four times, removing thys decantation15: (19.6 mg,
38.4pmol, 39%).'H NMR (CDCh): 3 = 2.34 (3H, s), 6.27 (2H, d,= 4.3 Hz), 6.33 (2H, d] =
4.3 Hz), 7.16 (4H, d) = 7.9 Hz), 7.35 (4H, d] = 7.9 Hz), 7.58 (2H, d] = 8.8 Hz), 8.27 (2H, d,

J = 8.8 Hz) ppm**C NMR (CDC}) 8= 21.26, 120.75, 122.99, 127.76, 128.62, 130.28,613
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131.93, 138.55, 141.16, 143.47, 147.95, 150.59 pdh-TOF: m/z = 510.6 [M+H]. HRMS
(ES): GgH23N30,S, Found 510.1298 Calculated 510.13G4x = 467 nm € = 7.6x16 M™cm™).
1,9-bis(2-methoxycarbonylphenylthia)-5-(4-nitrophel)dipyrrin (16). 1b (33.8 mg,
101pmol) in 16 ml of CHCN and5 (68 mg, 55Qumol) and EfN (54 ul, 40 mg, 38Qumol), rxn
time 4 h (at 78C). ). Washed by hot hexanes four times, removhig by decantationl6:
(47.4 mg, 79.21mol, 79%).*H NMR (CDCL): & = 3.91 (6H, s), 6.41 (2H, d,= 4.2 Hz), 6.46
(2H, d,J = 4.2 Hz), 7.12-7.16 (2H, m), 7.24 (the peak iertaid by the CDGCl residual one,
confirmed by COSY expt.), 7.63 (2H, d,= 8.6 Hz), 7.87 (2H, dJ = 7.6 Hz), 8.30 (2H, d,
J=8.6 Hz), 11.92 (1H, br.s.) ppnf’C NMR (CDCE): & = 52.26, 123.05, 123.38, 126.70,
127.70, 129.59*, 130.88, 130.95, 131.68, 132.37/36 142.14*, 143.28*, 148.07*, 166.72*
ppm. LDI-TOF: m/z = 598.1 [M+H] HRMS (ES): GiH»3N:06S, Found 598.1051 Calculated
598.1101 A max = 461 nm ¢=1.7x1d Mtcm™).
1,9-bis(2-methoxycarbonylmethylthia)-5-(4-nitropheryl)dipyrrin 17. 1b (49.6 mg,
150pumol) in 28 ml of CHCN and 3a (63.6 mg, 60@umol) and E{N (155ul, 113 mg,
1.12umol), rxn time 21 h (at AT). 17: (58,2 mg, 123imol, 82%)."H NMR (CDCk): & = 3.75
(6H, s), 3.87 (4H, br.s.), 6.32 (2H, 3= 4.2 Hz), 6.38 (2H, dJ = 4.2 Hz), 7.58 (2H, dJ =
8.6 Hz), 8.26 (2H, dJ = 8.6 Hz).*C NMR (CDCE): & = 35.35, 52.75, 120.89, 122.88, 128.06,
131.13, 131.60, 140.90, 143.48, 147.84, 148.99,846ppm. LDI-TOF: m/z = 474 [M+H]
HRMS (ES): GiH1dN3OsS, Found 474.0783 Calculated 474.0794Anax = 458 nm
(e = 1.9x1M*cm?).

1,9-bis(2-methoxycarbonylethylthia)-5-(4-nitropheny)dipyrrin  (18). 1b (51.2 mg, 1541mol)

in 27 ml of CHCN and3b (72 mg, 60Qumol) and EfN (159ul, 218 mg, 2.1umol), rxn time
21 h (at 76C). 18: (64,8 mg, 129,41mol, 84%).'H NMR (CDCLk): & = 2.83 (4H, tJ = 7.1 Hz),
3.32 (4H, tJ = 7.1 Hz), 3.70 (s, 6H), 6.37 (4HJt= 4.4 Hz), 7.60 (2H, d] = 8.6 Hz), 8.28 (2H,

d, J = 8.6 Hz), 12.42 (1H, br.s.) ppm’C NMR (CDC}): & = 28.79, 34.23, 51.89, 121.25,



123.01, 127.75, 130.30, 131.59, 141.09, 143.36,9B47149.61, 171.88 ppm. LDI-TOF: m/z =
502 [M+H]". HRMS (ES): G3H23N30sS, Found 502.1096 Calculated 502.118%ax = 463 nm
(e=2.1x10 Mtcm™).

9-chloro-1-((2-hydroxyethyl)amino)-5-phenyldipyrrin (19) 1a(15 mg, 52umol) in 8 ml of
CHsCN and6a (16 mg, 262umol) and E4N (27 pl, 20 mg, 19Qumol), rxn time 163 h (at 7C).
After the solvent removal on the vacuum line thact®n mixture was dissolved in 10 ml of
CH.Cl,, washed with 0.1M HCI. Water phase was neutralizgé@n equal volume of saturated
ag. NaHCQ and extracted with Ci€l,. Combined organic phases were dried oveiS®a and
the solvent was removed on rotary evaporator. Bselue was loaded onto silica gel column
(hexane/EtOAc 1:3). Second fraction was collecteding dark orange crystals after drying.
19 (7 mg, 22 mol, 45%).

H NMR (CDCI3): = 3.69-3.72 (2H, m), 3.94-3.97 (2#), 6.00-6.02 (2H, m), 6.15 (1H, d, J =
4.7 Hz), 6.71 (1H, d, J = 4.7 Hz), 7.36-7.43 (55, ppm.*C NMR (CDCE): = 45.7*, 62.3*,
108.19, 116.77, 117.72, 120.11*, 127.64, 127.7£28.23, 130.94, 132.29*, 137.04*, 137.92,
166.80* ppm. LDI-TOF: m/z = 314.1 [M+H] HRMS (ES): G/H1sCINsO Found 314.1055
Calculated 314.105%\ nax = 416 (£=9.7x1¢ Mtem™); 521¢=2.2x1d M*cm?) (c = 7.6x10
M).

9-chloro-1-((N-2-hydroxyethyl-N-methyl)amino)-5-pheyldipyrrin (20) 1a (15 mg, 52umol)

in 8 ml of CHCN and6b (16 mg, 213umol) and E4N (27 pl, 20 mg, 19Qumol), rxn time 57 h
(at 70C). ). After the solvent removal on the vacuum lme@ction mixture was dissolved in
10 ml of CHCl,, washed with brine and with water. Organic phaas dried over N&O, and
the solvent was removed on rotary evaporator. Tdrk drange solid 020 were collected with
the quantitative (17 mg, 5§2nol) yield. '"H NMR (CDCk): = 3.27 (1H, s), 3.74-3.77 (2H, m),
3.94-3.97 (2H, m), 6.01 (2H, AB systeih= 3.9 Hz), 6.38 (2H, d] = 4.76 Hz), 6.77 (2H, d =
4.76 Hz), 7.36-7.43 (5H, m) ppriC NMR (CDCI3): & = 37.8, 54.0, 61.4, 108.1, 116.1, 116.3,

119.8, 127.1, 127.6, 127.9, 131.0, 132.7, 137.8,21.3146.5, 168.4 ppm. LDI-TOF: m/z =327
8



[M], 328 [M+H]". HRMS (ES): G;H1CIN;O Found 328.1207 Calculated 328.1201. =
432 nm € =1.9x1d M cm™), 530 € =0.49x16M*cm™).
9-chloro-1-((2-hydroxyethyl)amino)-5-(4-nitropheny)-dipyrrin (21) 1b (19.4 mg, 6Jumol)

in 10 ml of CHCN and6a (19 mg, 31Qumol) and E4N (32 ul, 23 mg, 23Qumol), rxn time 24 h
(at 73C). The solvent has been removed on the rotaryceagq, then the residue has been
dried on high vacuum line (¥0Torr) at 77C for 40 min.17: (21.5 mg, 59.6imol, 96%).'H
NMR (CDCL): & = 3.68 (2H, m), 3.93 (m, 2H), 6.04 (1H, d,= 4.0 Hz), 6.13 (1H, d,
J=4.0 Hz), 6.38 (1H, d] = 5.1 Hz), 6.64 (1H, dJ = 5.1 Hz), 7.56 (2H, dJ = 8.8 Hz), 8.29

(2H, d,J = 8.8 Hz) ppm*C (CDC}) 45.9, 61.8, 108.9, 116.5, 117.2, 118.5, 121.3,1,2125.1,

130.6, 131.1, 131.8, 131.9, 137.4, 143.9, 147.8.6.¢pm. LDI-TOF: m/z = 358 [M] 359
[M+H]*. Ci7H1sCIN4Os [M+H]* Found 359.0895 Calculated 359.09B5. = 424 nm § =
1.3x1d M*ecm®), 523(0.26x16M*cm?).
9-chloro-1-((N-2-hydroxyethyl-N-methyl)amino)-5-(4nitrophenyl)-dipyrrin (22) 1b (23 mg,
73 umol) in 11 ml of CHCN and6b (24.3 mg, 323imol) in 2ml of CHCN and Ei{N (38,
28 mg, 27Qumol), rxn time 24 h (at 7&). After the solvent removal on the vacuum lin@ (4
min at 80C). The dark orange solid @2 were collected with 95% (26 mg, fénol) yield.*H
NMR (CDCL): = 3.31 (1H, s), 3.70-3.81 (2H, m), 3.96-3.98/(2n), 5.91 (1H, dJ = 3.9 Hz),
6.03 (1H, d,J = 3.9 Hz), 6.45 (1H, dJ = 4.8 Hz), 6.67 (1H, dJ = 4.8 Hz), 7.57(2H, dJ =
8.8 Hz), 8.25(2H, dJ = 8.8 Hz) ppm*°C NMR (CDCI3): & = 38.06, 54.35*%, 60.81*, 108.9,
116.6, 123.0, 132.0*%, 131.8*, 131.9, 134.8*, 137.84.2*, 147.7*, 167.0* ppm. LDI-TOF: m/z

=372 [M], 323 [M+H]. HRMS (ES): GsH:-CIN4O; Found 372.1001 Calculated 372.0989

=441 nm € =1.4x1¢ M cm™); 530 nm ¢ =3.4x1GM*cm?) .



Results

Two dipyrrins differing in electrophilicity have ba chosen to probe their substitution
reactions, i.e. 5-phenyl-1,9-dichlorodipyrromethen®h-DP) 1a, 5-(4-nitrophenyl)-1,9-

dichlorodipyrromethene (N£’h-DP)1b.

Figure 1. Starting compounds used in this study.

R'HN
R=H, 1la dan=1 4 5 6a, R=H
NO,, 1b 3bn=2 b, R=CHj

All reactions have been carried out as for the BOOM4O] , i.e. in refluxing acetonitrile with
triethylamine as the base. The reactions occurteduzh slower rates than thdirBODIPY
counterparts €g. 48 h for 7 vs 8h for its BE counterpart[40]). Despite the oxygen-free
conditions, formation of the disulfidd<d-14 were detected along with disubstituted products in
all cases, indicating that the DP also acts asadant. The results are presented in the

Scheme 1.
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Scheme 1.

R R
(C2Hs)3N
R 4 €q.
* HS ——— + R'SSR'
CH,CN
\\ SN reflux \\ i
NH N=x< 12-24 h NH N=<
Cl Cl argon RS SR’
Entry R Nucleophile, R' DP adduct  Disulfide
1 H 3a, SCH,COOCH, 7, 49% 1
2 H  3b, S(CH,),COOCH; 8 83% 12
3 H 4, S(CgH,4-p-CHy) 9, 93% 13
4 H 5, S(C6H4-O-COOCH3) 10, 84% 14
5 NO, 4, S(CgHs-p-CHa) 15,58% 13
6 N02 5, S(C6H4-O-COOCH3) 16, 78% 14
7 NO, 3a, SCH,COOCH; 17,82% 11
8 NO, 3b, S(CH,),COOCH;  18,84% 12

Both shorter reaction times and lower exces3agjive rise to either lower conversion or
to the formation of the mixture of mono- and di-stiiution products7’ and 7 (Scheme 2).

However no conditions can be found for selectivenfation of7".

Scheme 2
(CzH5)3N
1a + 3a \ \ NH N\
TCHON )-NH N\
reflux Cl
argon 3COOC COOCH3
7 COOCH3 7
Entry 1a: 3a rxn time, h  conversion, % 7:7
1 1:4 29 100 0:100
2 1:4 16.5 100 2:3
3 1:2 29 85 2:3
1:1 29 50 1:1
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Nitrogen nucleophiles — react willa and1b to yield mono-substitution product only. All

attempts to effect disubstitution (severe condgjdong reaction time, solvent variation) failed

(Scheme 3).
Scheme 3
R
+
XN N
\ NH Nx<
Cl Cl
1 6 HO
Entry R Nucleophile, R'  DP adduct
1 H 6a, H 19, 45%
2 H 6b, CH3 20, 99%
3 NO2 6a, H 21, 99%
4 NO2 6b, CH3 22, 95%

No products were observed when reacfingth EtOH in similar conditions.

Use of DMF as the solvent caused no substantiaffgrent results: all reactions have
been acceleratezh. 1.5 times, no disubstitution in the case of N-eophiles has been observed,
no substitution products by O-nucleophiles havenlzetected.

NMR of the disubstituted products feature much ldgterence between signals of
pyrrolic protons (0.05 — 0.1 ppm) than &xg. 1a (0.27 ppm [29]). Spectra of mono-substituted
ones19-22 exhibit two pairs of the pyrrolic protons: for pgle and pyrrolene units (see the
Supporting Info). One may expect two possible tangoc forms which distinctly differ in
energy for such compounds (Fig.2). To get moreghtsio which form A or B, Fig. 2)
predominates we did the NOESY experiméf Its results (see the Supporting Info)
unambiguously indicate that N-methyl-N-(2-hydroxyd) group is attached to the doublet with

the splitting of 4.8 Hz, not to the doublet witl8 3z. Mono N-substituted BODIPY [48-51] and
12



O-substituted dipyrrins [52] do possess doubletdh woupling constants that differ in their
values forca. 1 Hz. However, no authors appear to discuss iffsrence in terms of pyrrole-
pyrrolene tautomerism. Analyzing the literature aren make the conclusion that, it's the
pyrrolene ring in dipyrrins that has the consta®tHz (for instance, as i@ [53]), and pyrrole
ring features 3 Hz coupling constant (for instaraseinD [54])

Figure 2. Possible tautomeric equilibrium, (B) of 20 and NOE correlation (see

Supplementraty Info); literature exampfdssalues in pyrrole and pyrrolene rings, O).

Thus we assume that 4.8 Hz doublet belongs toitfgeaxisting predominantly in the
pyrrolene form, whereas the residual chlorine sitbent is attached to a "pyrrole-character”
ring. This hypothesis supports the observed compieability of the chlorine atom to be
substituted after the first reaction occurred.

Tautomerism in the dipyrrin series due to the miigraof the inner proton is widely
accepted phenomenon, [55] although there are feerpahat discuss possible position of this
equilibrium. For instance, Lightner and Datta [®8$cuss the equilibrium in 1-methoxy-3,8-
diethyl-2,7-dimethyldipyrrin (Fig 3). They point ptthat the equilibrium is shifted to the left, as
judged by the bond lengths in the X-ray structufalk et.al. [57] also point out that the

tautomeric form in which the pyrrolene ring is attad to therdonor substituent predominates.
13



Figure 3. Tautomers of 9-methoxy-3,8-dimethyl-2i@tayldipyrrin [56]

\\ XN\ - g N
NH N=< =N HN/

OCH; OCHj

UV-Vis spectra

UV-Vis spectra (for examples, see Figure 3) shosvfttlowing trend. First, substitution

of the S atoms for Cl (Table 1, entridg, 12, 17, 18) yields a bathochromic shift of an

absorption maximum that amourga 30 nm if an additionattsubstituent, i.ep-tolyl group, is

attached (entryl1). On the contrary the introduction of a N-substitu yields a substantial

hypsochromic shift (entrie&l-24).

Figure 4. Samples of the UV-Vis spectra @CH) of the starting compounth (dashed

line), bis-S-substitutedO (grey line) and mono- N-substitut@@(solid line).

e*10™,

f: 1.00 -
=

3.00
2.50 +
2.00

1.50 -

0.50 +

0.00

3
-0.50 -
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Table 1. UV-Vis spectral data of DPs in ¢-N at r.t.

Cmpd  Amax(€) Cmpd  Apax(€)

(at 5x10°M)

la 440(1.410" 16 461(1.710%
1b 448(2.410% 17 458(1.910%

7 453(2.410%) 18 463(2.110%

416(9.410%
8 456(1.910%) 19

521(2.210%"

432(1.910%;
9 462(2.110% 20

530(0.4910%

424(1.310%
10 456(2.110% 21

523(0.2610%

441(1.410%
15 467(7.610°) 22

530(0.3410%

) Measured at 7.6x1

This effect of a mono N-substitution has alreadgrbebserved in the series of BODIPY
dyes [40, 58-63] and reasons for it were comprdtielysanalyzed. Boengt.al. [50] carried out
solvent-dependent UV-Vis and fluorescence studigdheodye23, as well as quantum chemical
calculations of the ground and the excited stathefmolecule. The authors suggested that the
dipole moment of the exited state being lower tthet of the ground state is responsible for the
blue shift of the UV-Vis maximum o3 with respect to24. On the other hand, mono S-

substitution does not cause such an effect [4065H,

15



Figure 5. Mono-N-substituted BODIPX3[50] and its precursd4.

Besides, a low intensity bathochromically shiftechd® is observed in the UV-Vis spectra
of mono-N-substituted products. However, we cutyewere are unable to make any plausible
assignment of this band, although it is reproducedll studied spectra. The analysis of more

data will make it possible to attribute the band.

Conclusions

This study demonstrate that dihafiedipyrrins can undergo the nucleophilic substitatio
reaction with S- and N-nucleophiles and are inei®tnucleophiles. This relatively simple and
mild method for substituted dipyrrins is complenzggtto the recently emerged "BODIPY
nucleophilic substitution — deborylation” sequengkso, the specific mono-N-substitution may
be regarded as a reliable and clean procedure fbootmono-N-substituted dipyrrins and for
mono-N-substituted BODIPYs , eliminating the needdljust the reaction conditions and/or the
chromatography isolation of dyes [61, 66]. This kv in progress and will be reported in due

course.
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1.NMR spectra of S-substitution products

1H and 13C NMR spectra of products:
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2.NMR spectra of N-substitution products
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3.UV-Vis spectra of S-substitution products
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4.NOESY data of 20 spectra of S-substitution products

Figure S1. a) Structure, BH NMR and c) part of the NOESY experiment 22

confirming the predominant position of the pyrraley.
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Free 1,9-Dichlorodipyrrins indergo nucleophilic substitution by S- and N-
nucleophiles

S-Nucleophiles yield disubstition resulting in 1,9-dithiadipyrrins

N-Nucleophiles quantitatively substitute only one chlorine atom

UV-Vis spectra of bis-S-substituted products shift bathochromically as to that of
dichlorides

Mono-N-substituted products with H-bonding group feature two bands in the UV -
Vis spectra



