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A metal-free synthesis of pyrimidine functionalized primary amines via direct amination of pyrimidin-2-

yl tosylate with aqueous ammonia has been developed under mild conditions. The desired products

pyrimidin-2-amines can be generated in excellent yields in PEG-400, without any catalysts or other

additives.
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1. Introduction

 Primary (hetero)aryl amines are widely used in the synthesis of
natural products, pharmaceuticals, agrochemicals as well as
polymers and materials [1]. The common methods for preparation
of primary amines include coupling of aryl halides with ammonia
[2], reductive amination of carbonyl compounds [3], and hydro-
amination of alkenes [4–6]. Recently, ammonia, as one of the most
attractive sources of nitrogen, has attracted a lot of attentions due
to its great abundance and extremely low cost [7,8]. Very recently,
a few methodological advancements for coupling aryl halides with
aqueous ammonia to deliver aryl primary amines under mild
conditions have been developed [9,10].

Aryl sulfonates that are easily prepared, usually crystalline, and
lower toxicity, are with potential values to investigate as better
materials to synthesize primary amines. Despite great progress
toward the preparation of primary amines has been made, selective
synthesis of primary amines from ammonia still encounters
challenges, i.e. requirement of transition-metal, overreactions of
primary amines with ammonia. Hence, further efforts were needed
to developing a metal-free, mild method for the selective synthesis
of primary amines directly from aqueous ammonia.

3,4-Dihydropyrimidinones and their derivatives have conse-
quently been extensively used as a drug-like scaffold [11] and
55
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57
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utilization as important precursors in the synthesis of pyrimidine
bases [12]. In continuation of our ongoing interest in the synthesis
of 3,4-dihydropyrimidinone derivatives [13], we are recently
interesting in the synthesis of 2-aminopyrimidines.

2-Aminopyrimidines show interesting biological activities such
as inhibitors of rhoassociated protein kinease [14,15], glycogen
synthase kinease 3 (GSK3) [16], and of N-type calcium channels
[17]. Notably, the 2-amino-4-arylpyrimidine heterocycle is also
found in important drugs such as the hypocholesterolemic agent
rosuvastatin [18,19] and the potent anticancer drug Gleevec [20].

Usually, 2-aminopyrimidine subunits are constructed by
condensation reactions of enones with corresponding guanidine
or nitrogen-containing building blocks [21]. In 2007, Kappe et al.
[22] have described a three-step procedure to convert Biginelli
DHPMs to 2-methylsulfonyl-pyrimidines, which subsequently
converted to 2-aminopyrimidine by the substitution of the reactive
sulfonyl group with ammonium acetate as substitute for NH3

(Scheme 1, Method A).
Herein we developed a metal-free approach for the synthesis

of 2-aminopyrimidines directly from pyrimidin-2-yl tosylates
with aqueous ammonia under mild conditions in PEG medium
(Scheme 1, Method B).

2. Experimental

Commercially available reagents were used without further
purification unless otherwise stated. Melting points were mea-
sured on a XT-4 apparatus and are uncorrected. NMR spectra were
of pyrimidin-2-yl tosylates with aqueous ammonia under metal-
/10.1016/j.cclet.2015.01.034
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Scheme 1. Synthesis of the 2-aminopyrimidines starting from 3,4-dihydropyrimidinones.
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corded at 400 MHz (1H) and 100 MHz (13C), respectively, on a
rian Mercury plus-400 instrument using CDCl3 as solvent
d TMS as internal standard. High-resolution mass spectra
RMS) were obtained on a Bruker Daltonics APEX II 47e mass
ectrometer. Column chromatography was generally performed

 silica gel (200–300 mesh) and TLC inspections were on silica gel
254 plates.

1. General procedure for the synthesis of 2-amino pyrimidines (2a–

)

The pyrimidin-2-yl tosylate (1, 1.0 mmol), PEG-400 (2 mL) and
monia water (10 mmol) were added into a test tube. The tube

as then sealed with a balloon, and the mixture was stirred at r.t.
r 24 h. Then the mixture was poured into water to precipitate the
oduct. Crude product was obtained by means of vacuum
tration, and was further purified by column chromatography

 silica gel with petroleum ether/ethyl acetate (3:1) and (1:1) to
ve the corresponding products 2a–i and 2j–n, respectively.

Ethyl 2-amino-4-methyl-6-phenylpyrimidine-5-carboxylate
a): White solid, mp 132–133 8C [22]. 1H NMR (400 MHz, CDCl3):
.52–7.50 (m, 2H), 7.41 (d, 3H, J = 5.2 Hz), 5.82 (s, 2H), 4.05 (q, 2H,

 7.2 Hz), 2.48 (s, 3H), 0.94 (t, 3H, J = 7.6 Hz); 13C NMR (100 MHz,
Cl3): d 168.31, 167.48, 166.47, 161.98, 138.60, 129.35, 128.15,
7.63, 115.95, 61.00, 22.58, 13.40.
Ethyl 2-amino-4-(4-fluorophenyl)-6-methylpyrimidine-5-

rboxylate (2b): White solid, mp 167–168 8C. 1H NMR
00 MHz, CDCl3): d 7.53–7.49 (m, 2H), 7.08 (t, 2H, J = 8.6 Hz),
82 (d, 2H, J = 10.0 Hz), 4.07 (q, 2H, J = 7.2 Hz), 2.48–2.40 (m, 3H),
00 (t, 3H, J = 7.1 Hz); 13C NMR (100 MHz, CDCl3): d 168.30,
7.60, 164.98 (d, J = 38.0 Hz), 162.31, 161.92, 134.70, 129.84 (d,

 8.0 Hz), 116.14, 115.27 (d, J = 22.0 Hz), 61.16, 22.65, 13.58;
MS: calcd. for C14H15FN3O2 [M+H]+: 276.1143; found 276.1147.
Ethyl 2-amino-4-(4-chlorophenyl)-6-methylpyrimidine-5-car-

xylate (2c): White solid, mp 164–166 8C. 1H NMR (400 MHz,
Cl3): d 7.46 (d, 2H, J = 8.4 Hz), 7.38 (d, 2H, J = 8.4 Hz), 5.74 (s, 2H),

08 (q, 2H, J = 7.2 Hz), 2.46 (s, 3H), 1.01 (t, 3H, J = 7.2 Hz); 13C NMR
00 MHz, CDCl3): d 168.11, 167.71, 165.07, 161.83, 137.00,
5.66, 129.16, 128.41, 116.09, 61.17, 22.67, 13.53; HRMS: calcd.

r C14H15ClN3O2 [M+H]+: 293.0847; found 293.0851.
Ethyl 2-amino-4-(4-bromophenyl)-6-methylpyrimidine-5-

rboxylate (2d): White solid, mp 138–139 8C. 1H NMR
00 MHz, CDCl3): d 7.51 (d, 2H, J = 8.4 Hz), 7.36 (d, 2H,

 8.4 Hz), 5.88 (s, 2H), 4.08–4.03 (m, 2H), 2.43 (s, 3H), 0.98 (t,
, J = 7.0 Hz); 13C NMR (100 MHz, CDCl3): d 168.09, 167.78,
5.19, 161.92, 137.49, 131.39, 129.42, 123.95, 116.11, 61.22,
.70, 13.56; HRMS: calcd. for C14H15BrN3O2 [M+H]+: 336.0342;

und 336.0345.
Ethyl 2-amino-4-methyl-6-p-tolylpyrimidine-5-carboxylate

e): White solid, mp 151–153 8C 1H NMR (400 MHz, CDCl3): d
41 (d, 2H, J = 7.6 Hz), 7.20 (d, 2H, J = 7.6 Hz), 5.87 (s, 2H), 4.08 (q,
Please cite this article in press as: H.-P. Gong, et al., Direct amination
free and mild conditions, Chin. Chem. Lett. (2015), http://dx.doi.or
2H, J = 6.8 Hz), 2.45 (s, 3H), 2.37 (s, 3H), 0.99 (t, 3H, J = 7.2 Hz); 13C
NMR (100 MHz, CDCl3): d 168.62, 167.23, 166.30, 161.96, 139.60,
135.66, 128.91, 127.70, 116.12, 61.09, 22.62, 21.27, 13.55; HRMS:
calcd. for C15H18N3O2 [M+H]+: 272.1394; found 272.1400.

Ethyl 2-amino-4-(4-methoxyphenyl)-6-methylpyrimidine-5-
carboxylate (2f): White solid, mp 128–130 8C. 1H NMR
(400 MHz, CDCl3): d 7.49 (d, 2H, J = 8.0 Hz), 6.91 (d, 2H,
J = 8.0 Hz), 5.95 (d, 2H, J = 29.2 Hz), 4.10 (q, 2H, J = 7.2 Hz), 3.81
(s, 3H), 2.42 (s, 3H), 1.03 (t, 3H, J = 7.0 Hz); 13C NMR (100 MHz,
CDCl3): d 168.79, 167.07, 165.56, 161.98, 160.82, 130.88, 129.41,
115.85, 113.65, 61.07, 55.24, 22.53, 13.66; HRMS: calcd. for
C15H18N3O3 [M+H]+: 288.1343; found 288.1348.

Ethyl 2-amino-4-methyl-6-(4-nitrophenyl)pyrimidine-5-
carboxylate (2g): White solid, mp 128–129 8C. 1H NMR
(400 MHz, CDCl3): d 8.42 (s, 1H), 8.27 (d, 1H, J = 8.0 Hz), 7.84 (d,
1H, J = 7.6 Hz), 7.58 (t, 1H, J = 8.0 Hz), 5.75 (s, 2H), 4.11 (q, 2H,
J = 7.2 Hz), 2.49 (s, 3H), 1.03 (t, 3H, J = 7.2 Hz). 13C NMR (100 MHz,
CDCl3): d 168.45, 167.65, 163.86, 161.94, 140.25, 129.23, 124.11,
123.16, 116.07, 61.43, 22.98, 13.64; HRMS: calcd. for C14H15N4O4

[M+H]+: 303.1088; found 303.1093.
Ethyl 2-amino-4-methyl-6-(3-nitrophenyl)pyrimidine-5-

carboxylate (2h): White solid, mp 131–132 8C. 1H NMR
(400 MHz, CDCl3): d 8.43 (s, 1H), 8.28 (d, 1H, J = 8.0 Hz), 7.85 (d,
1H, J = 7.6 Hz), 7.59 (t, 1H, J = 8.0 Hz), 5.73 (s, 2H), 4.12 (q, 2H,
J = 6.8 Hz), 2.50 (s, 3H), 1.04 (t, 3H, J = 7.0 Hz); 13C NMR (100 MHz,
CDCl3): d 168.45, 167.64, 163.85, 161.92, 148.06, 140.25, 133.86,
129.23, 124.11, 123.16, 116.05, 61.42, 22.98, 13.64; HRMS: calcd.
for C14H15N4O4 [M+H]+: 303.1088; found 303.1095.

Methyl 2-amino-4-(4-fluorophenyl)-6-isopropylpyrimidine-5-
carboxylate (2i): White solid, mp 146–148 8C. 1H NMR (400 MHz,
CDCl3): d 7.55 (s, 2H), 7.11 (t, 2H, J = 6.6 Hz), 5.56 (d, 2H,
J = 12.4 Hz), 3.62 (s, 3H), 3.13 (s, 1H), 1.25 (t, 6H, J = 3.2 Hz); 13C
NMR (100 MHz, CDCl3): d 175.27, 169.32, 164.78, 164.46, 162.42,
134.65, 129.78 (d, J = 8.0 Hz), 115.51, 115.29, 52.14, 32.82, 21.50;
HRMS: calcd. for C15H17FN3O2 [M+H]+: 290.1299; found 290.1302.

6-Methyl-N2-phenylpyrimidine-2,4-diamine (2j): White solid,
mp 122–124 8C. 1H NMR (400 MHz, CDCl3): d 7.67 (s, 1H), 7.52 (d,
2H, J = 7.6 Hz), 7.20 (t, 2H, J = 7.2 Hz), 6.90 (t, 1H, J = 7.4 Hz), 5.70 (s,
1H), 4.77 (s, 2H), 2.17 (s, 3H); 13C NMR (100 MHz, CDCl3): d 165.97,
163.81, 159.45, 139.89, 128.64, 121.97, 119.32, 95.48, 23.25;
HRMS: calcd. for C11H13N4 [M+H]+: 201.1135; found 201.1139.

6-Methyl-N2-o-tolylpyrimidine-2,4-diamine (2k): White solid,
mp 188–190 8C. 1H NMR (400 MHz, CDCl3): d 7.95 (d, 1H,
J = 8.0 Hz), 7.11 (q, 2H, J = 8.0 Hz), 6.90 (t, 1H, J = 7.2 Hz), 6.60 (s,
1H), 5.71 (s, 1H), 4.60 (s, 2H), 2.21 (s, 3H), 2.17 (s, 3H); 13C NMR
(100 MHz, CDCl3): d 166.73, 163.89, 160.33, 137.96, 130.28,
128.36, 126.34, 122.95, 121.83, 95.47, 23.76, 18.10; HRMS: calcd.
for C12H15N4 [M+H]+: 215.1291; found 215.1295.

6-Methyl-N2-m-tolylpyrimidine-2,4-diamine (2l): Yellow oil.
1H NMR (400 MHz, CDCl3): d 7.38–7.26 (m, 3H), 7.09 (t, 1H,
J = 7.6 Hz), 6.72 (d, 1H, J = 7.2 Hz), 5.70 (s, 1H), 4.75 (s, 2H), 2.24 (s,
 of pyrimidin-2-yl tosylates with aqueous ammonia under metal-
g/10.1016/j.cclet.2015.01.034
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3H), 2.17 (s, 3H); 13C NMR (100 MHz, CDCl3): d 166.26, 163.84,
159.72, 139.83, 138.43, 128.52, 122.86, 119.97, 116.57, 95.45,
23.48, 21.51; HRMS: calcd. for C12H15N4 [M+H]+: 215.1291; found
215.1297.

6-Methyl-N2-p-tolylpyrimidine-2,4-diamine (2m): Yellow oil.
1H NMR (400 MHz, CDCl3): d 7.69 (d, 1H, J = 7.2 Hz), 7.35 (d, 2H,
J = 7.2 Hz), 6.98 (d, 2H, J = 7.6 Hz), 5.66 (s, 1H), 4.74 (s, 2H), 2.20 (s,
3H), 2.11 (s, 3H); 13C NMR (100 MHz, CDCl3): d 166.38, 163.85,
159.93, 137.30, 131.53, 129.17, 119.79, 95.34, 23.54, 20.69; HRMS:
calcd. for C12H15N4 [M+H]+: 215.1291; found 215.1294.

N2-(4-Chlorophenyl)-6-methylpyrimidine-2,4-diamine (2n):
White solid, mp 136–138 8C. 1H NMR (400 MHz, CDCl3): d 7.72
(d, 1H, J = 8.0 Hz), 7.45 (d, 2H, J = 8.4 Hz), 7.12 (d, 2H, J = 8.4 Hz),
5.72 (s, 1H), 4.76 (s, 2H), 2.15 (s, 3H); 13C NMR (100 MHz, CDCl3): d
165.48, 163.74, 158.89, 138.43, 128.45, 126.60, 120.41, 95.62,
22.86; HRMS: calcd. for C11H12ClN4 [M+H]+: 235.0745; found
235.0758.

4-Nitroaniline: 1H NMR (CDCl3, 400 MHz): d 3.64 (s, 2H), 6.59–
6.61 (m, 2H), 7.09–7.10 (m, 2H); 13C NMR (CDCl3, 100 MHz): d
116.15, 123.02, 129.03, 144.88.

3. Results and discussion

The work was initiated with the optimization of the reaction
conditions of the direct amination of pyrimidin-2-yl tosylate 1a
with aqueous ammonia, utilizing 20 equiv. of sodium dodecyl-
benzenesulfonate (SDBS) as phase-transfer catalyst (PTC) and
dioxane as solvent at 100 8C for 12 h (Table 1). As our prediction,
the reaction afforded the amination product 2-aminopyrimidine
2a in a yield of 69% (entry 1), however, hydrolyzed product
pyrimidin-2-ol 3a of 1a was also isolated in 41% yield. Lowering the
temperature to 50 8C resulted in a higher yield of 2a (entry 2).
When the SDBS was changed to hexadecyl trimethyl ammonium
bromide (HTAB), cetylpyridinium chloride (CPC) and bromohex-
adecyl pyridine (CPB), the yield of 2a increased (84–89%) and trace
of 3a was detected (entries 3–6). In order to find a cheaper PTC, PEG
was tested. To our delight, only using PEG-200 without any other
Table 1
Optimization of conditions of pyrimidin-2-yl tosylate with NH3�H2O.a

Entry NH3�H2O

(equiv.)

Solvent (PTC) 

1c 10 Dioxane/SDBS 

2 10 Dioxane/SDBS 

3 10 Dioxane/CTAB 

4 10 Dioxane/CPC 

5 10 Dioxane/CPB 

6 10 Dioxane/PEG-200 

7 10 PEG-200 

8 10 PEG-400 

9 10 PEG-600 

10 10 PEG-800 

11c 10 PEG-400 

12c 10 PEG-400 

13d 10 PEG-400 

14 5 PEG-400 

a Reaction conditions: pyrimidin-2-yl 4-methylbenzenesulfonates (1a) (1.0 mmol), co
b Isolated yield.
c The reaction time is 12 h.
d K3PO4 (0.1 mmol) was added.
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solvents, the reaction gave a good yield of 2a and the hydrolyzation
of 1a was completely inhibited (entries 6 and 7). Further testing
implied that PEG-400 was the best one among the PEG-200, PEG-
400, PEG-600 and PEG-800 to give 2a in 86% yield (entries 7–10).
Higher temperature slightly enhanced the yield at a shorter time
(entries 11 and 12). Therefore, our focus was concentrated on the
solvents and reaction conditions. Notably, base can greatly
accelerate the translation of 1a into the byproduct 3a (82%), with
the yields of 2a tremendously declined (entry 13). Download the
amount of aqueous ammonia to 5 equiv. caused lower transfor-
mation (entry 14). Thus, the optimal conditions for this reaction
were established: using PEG-400 as the reaction medium to
perform the reaction at r.t. for 24 h.

Under the optimized conditions, the amination of pyrimidin-2-
yl tosylates (1a–i) with aqueous ammonia was tested in the
reaction scope (Scheme 2). In general, good Qyields of the desired
products were obtained. The reaction tolerated a variety of
pyrimidin-2-yl tosylates containing the electron-withdrawing
group as well as the electron-donating group on the phenyl ring
to deliver the products (2a–i) with good yields. Compared with the
previous reports, this non-catalytic approach was proven to be a
powerful tool for the amines preparation in mild conditions with
the lower-priced ammonia water as ammonia source [22].

Given the operational simplicity and broad generality of this
direct amination protocol, we explored to demonstrate the utility
of this strategy for the similar amine 2-aminopyrimidines using
pyrimidin-4-yl tosylates (1j–n) as substrates. The desired products
(2j–n) were also obtained in moderate yields under this simple
reaction conditions. However, lower yields were observed, which
due to the hydrolyzation of the starting materials.

To further demonstrate the versatility of the above described
amination protocol, aryl- and pyridinyl tosylates were tested with
aqueous ammonia. Unfortunately, only the aryl tosylate with
strong electron-withdrawing substituent (NO2) underwent the
amination to afford 4-nitroaniline in 50% yield. However, phenyl
tosylate and pyridine-2-yl tosylate did not undergo amination
with aqueous ammonia.
Temp

(8C)

Yield

(%)b

2a 3a

50 45 41

r.t. 69 21

r.t. 89 Trace

r.t. 84 Trace

r.t. 87 Trace

r.t. 78 Trace

r.t. 77 Trace

r.t. 86 Trace

r.t. 74 Trace

r.t. 58 Trace

50 85 Trace

100 88 Trace

r.t. 10 82

r.t. 68 Trace

mmercial 28% aqueous NH3 (10 mmol), solvent (2 mL).

of pyrimidin-2-yl tosylates with aqueous ammonia under metal-
/10.1016/j.cclet.2015.01.034
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 Conclusions

In conclusion, we introduced a novel approach for amination of
rimidinyl-2-tosylates with aqueous ammonia. The desired
oducts 2-aminepyrimidines can be generated in high yields in
ild conditions, without any catalysts or other additives.
eanwhile, the similar pyrimidin-4-yl tosylates and aryl tosylates
bstituted by electron-withdrawing substituents such as -NO2

forded the desired product under the simple reaction conditions.
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