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Abstract: A promising strategy for mediating protein–pro-
tein interactions is the use of non-peptidic mimics of sec-

ondary structural protein elements, such as the a-helix.
Recent work has expanded the scope of this approach by

providing proof-of-principle scaffolds that are conforma-
tionally biased to mimic the projection of side-chains from

one face of another common secondary structural ele-

ment—the b-strand. Herein, we present a synthetic route
that has key advantages over previous work: monomers

bearing an amino acid side-chain were pre-formed before
rapid assembly to peptidomimetics through a modular,

iterative strategy. The resultant oligomers of alternating
pyridyl and six-membered cyclic ureas accurately repro-

duce a recognition domain of several amino acid residues

of a b-strand, demonstrated herein by mimicry of the i, i +
2, i + 4 and i + 6 residues.

The inhibition or stabilization of protein–protein interactions

(PPIs) represents a potential goldmine for medicinal chemis-
try,[1] yet the rational design of synthetic agents able to achieve

this goal has been seen by many as intractable until recently.[2]

There is growing interest in the synthesis of non-peptidic
mimics of secondary[3] and supersecondary[4] protein elements
and the side-chain residues they present for the recognition of
cognate partners. There has been considerable success in mim-

icking the a-helical structures that are ubiquitous at interfacial
peptide regions, prompting researchers to develop scaffolds
for the projection of groups that reproduce side-chain vectors
from one[5] or two[6] faces of the helix.

PPIs mediated by extended regions of proteins, such as b-

strands (Figure 1 A),[7] are also of great interest for our group[8]

and others,[9] inspiring strategies for the synthesis of minimalist
frameworks that replicate their key domains (Figure 1 B).

Recently, we described a homochiral foldamer of alternating
2,6-disubstituted pyridyl groups linked by imidazolidin-2-ones

bearing methyl groups, resulting in the mimicry of side-chains
from the i, i + 2, and i + 4 positions of one face of a b-strand.[10]

An important conformational feature of this motif is preorgani-
zation of the scaffold by dipolar repulsion between the pyridyl

nitrogen lone pair and the carbonyl groups of adjacent imida-

zolidinones. The resultant projection of three groups for side-
chain mimicry is in good agreement with those of one face of

a canonical strand (Figure 1 C).
Extending the scope of this design for the mimicry of amino

acid sequences over longer stretches of peptide requires two
challenges to be overcome: 1) the alternation of five- and six-

Figure 1. b-Strand peptidomimicry. A) Canonical b-strand; B) schematic of
side-chain projection; C) previous work: overlay of a three-residue mimic ri-
gidified through dipolar repulsion (green) with a strand (red) ; D) this work:
a modular synthesis from preformed monomers provides rapid access to fol-
damers of alternating six-membered rings. Increased linearity over extended
distances allows mimicry of longer peptide sequences. For example the six-
point (trimer) RMSD is reduced to 0.7 æ, and the eight-point value for the
tetramer is 1.1 æ. b-Strand from PDB: 3QXT, side-chains represented as
spheres for clarity, a- and b-carbons used for calculation.[12]
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membered rings introduces a backbone curvature that is in-
creasingly divergent from that of a canonical strand; and 2) a

linear synthesis, in which each side-chain mimic is formed on
the growing oligomeric strand, that is inherently inefficient. A

potential solution is to pre-form pyridyl–urea monomers that
mimic a given amino acid side-chain prior to oligomerization.

As one-carbon homologues of the imidazolidin-2-one, the re-
sultant foldamer is much more linear—thus, more closely re-

producing the side-chain vectors of a b-strand.[11] Calculation

suggests a reduction in six-point root-mean-square deviation
(RMSD) value from 1.1 to 0.7 æ for the five- and six-membered
urea mimics, respectively.[12a,b] Pre-forming each monomer has
the potential to drastically reduce the longest linear synthetic

sequence and more readily allows a peptidomimic of several
residues to be varied at a particular position and generated in

an iterative fashion (Figure 1 D). There are numerous commer-

cially available derivatives of enantiomerically pure a-amino al-
cohols bearing a wide variety of side-chains, making them an

ideal starting material for monomer construction.
As a representative amino acid found commonly in b-strands

we chose to explore a proof-of-principle strategy based on
phenylalanine. One-carbon homologation of N-Boc-l-phenyl-

alaninol (1; Boc = tert-butyloxycarbonyl) through O-mesylation

and displacement with sodium cyanide gave nitrile 2, which
was transformed to the aniline derivative 3 by diisobutylalumi-

nium hydride (DIBAL-H) mediated reduction followed by re-
ductive amination with sodium cyanoborohydride and aniline.

Trifluoroacetic acid mediated removal of the Boc group and
cyclization with triphosgene gave terminally capped monomer

4 (Scheme 1 A).

The iterative monomer 8 was synthesized from commercially
available aziridine 5. Opening of the three-membered ring

with sodium cyanide gave 6, followed by nickel boride mediat-
ed reduction and cyclization with triphosgene to produce 7 in

40 % overall yield. Subsequent Buchwald–Hartwig amination of
2,6-dibromopyridine with 7 gave tosyl-protected monomer 8
in 54 % yield (Scheme 1 B).

Monomers 4 and 8 were coupled under Buchwald–Hartwig
conditions to give two-residue mimic 9 in an excellent yield of

96 %. The oligomer can be rapidly extended to a mimic of
three- 11 and four-residues 13 by an iterative two-step se-

quence of N-tosyl deprotection with magnesium in methanol
followed by Buchwald–Hartwig cross-coupling with bromide 8
(Scheme 2).

Single crystals suitable for X-ray diffraction were obtained

for monomer 8.[13] The solid-state conformation is consistent
with dipolar repulsion between the urea carbonyl group and

the pyridine nitrogen atom favouring an anti-relationship (Fig-
ure 2 A). The largely planar cyclic urea adopts a puckered con-

formation placing the benzyl group in a pseudo-axial position
(Figure 2 B and the Supporting Information).[14] To probe the
preferences of the higher order homologues 9–13, we con-

ducted a computational search of their lowest-energy confor-
mations.[12b,c] The validity of this method was confirmed by the

close agreement between the solid-state structure of mono-
mer 8 and the lowest-energy conformer by calculation (RMSD

0.5 æ; see the Supporting Information). Calculations for mimics

8–13 gave lowest-energy structures adopting fully extended
conformations with urea carbonyl groups anti to pyridine ni-

trogens, and with R groups in pseudo-axial positions (see the
Supporting Information). Consequently, the phenylalanine side-

chain mimics are projected from a common face, and are thus
in good agreement with those of a canonical b-strand. Trimer

Scheme 1. Synthesis of monomeric cyclic ureas bearing an amino acid side-
chain mimic for: A) uni-directional functionalization; and B) bi-directional
functionalization. Reagents and conditions: (a, i) MsCl (1.2 equiv), Et3N
(1.5 equiv), CH2Cl2, 0 8C!rt, 10 min; (ii) NaCN (2.5 equiv), DMF, 60 8C, 3 h,
66 % over two steps, (b, i) DIBAL-H (2.5 equiv), CH2Cl2, ¢78 8C!0 8C, 1 h;
(ii) aniline (2 equiv), NaBH3CN (3 equiv), AcOH, MeOH, rt, 16 h, 19 % over two
steps, (c, i) trifluoroacetic acid, CH2Cl2, rt, 0.5 h; (ii) triphosgene (0.5 equiv),
iPr2NEt (4 equiv), rt, 1 h, 47 % over two steps, (d) NaCN (1.35 equiv), MeCN,
H2O, reflux, 1.5 h, 84 %, (e, i) NiCl2 (2 equiv), NaBH4 (10 equiv, portion-wise),
MeOH, 0 8C!rt, 10 min; (ii) triphosgene (0.5 equiv), iPr2NEt (2 equiv), rt, 2 h,
47 % over two steps, (f) 2,6-dibromopyridine (2 equiv), 4,5-bis(diphenylphos-
phino)-9,9-dimethylxanthene (XantPhos; 30 mol %), [Pd2dba3] (10 mol %;
dba = dibenzylideneacetone), CsCO3 (2 equiv), dioxane, 80 8C, 1.5 h, 54 %.

Scheme 2. Oligomer homologation to form conformationally rigidified pepti-
domimetics of two (9, 10), three (11, 12) and four (13) side-chain residues
from one face of a natural b-strand. Reagents and conditions: a) condi-
tions X, 96 %; b) conditions Y, 56 %; c) conditions X, 72 %; d) conditions Y,
10 %; e) conditions X, 52 %. Conditions X: XantPhos (30 mol %), [Pd2dba3]
(10 mol %), CsCO3 (2 equiv), dioxane, 90 8C, 16 h; conditions Y: Mg (25 equiv),
MeOH, sonication, RT, 10 min.
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11 mimics the i, i + 2, i + 4 residues with a six-point RMSD

value of 0.7 æ, whereas tetramer 13 adds the i + 6 residue and
has an eight-point RMSD value of 1.1 æ (Scheme 2 and the

Supporting Information).[12a]

Solution-phase conformational behaviour was probed with

NOESY and ROESY NMR experiments in CDCl3 (Figure 3). NOE
signals between the pyridine and cyclic urea hydrogens, for ex-

ample, H8$H15 and H20$H17 for dimer 9, were not ob-

served for compounds 8–13 (Figure 3 B, dashed red arrows).
However, strong correlations were observed between urea hy-

drogens and the terminal phenyl/tosyl hydrogens by way of
comparison, for example, H6eq$H3 and H22eq$H29 (Figure 3 B

and D, green arrows and the Supporting Information).[15c, 16]

These data are consistent with the previously reported five-
membered imidazolidin-2-one analogues,[10] indicating that the

predominant species in solution adopts the desired extended
conformation, in which the urea carbonyl groups are anti- to
the pyridine nitrogen atoms as depicted in Figures 3 B and D.
This result highlights the utility of dipolar repulsion as a confor-

mational determinant for pre-organisation of peptidomimics.
Further inspection of the NOESY NMR spectra of 8–13 re-

vealed interesting features regarding the position of the phe-

nylalanine mimic. For dimer 9, the absence of trans-annular
NOE correlations between H6 and H8, and between H20 and

H22, was consistent with their occupying pseudo-equatorial
positions,[15a] with the side-chain mimic in a pseudo-axial site

(Figure 3 C and D). Interestingly, the only NOE signal in this
region, corresponds to two hydrogens (H8 and H20) located

on adjacent cyclic ureas.[15b] Additional evidence for this ring

conformation was given by cross-peaks between the cyclic
urea and benzylic hydrogens. For example, the NOE signal be-

tween benzylic H9 and one of the diastereotopic H6 hydro-
gens (Figure 3 D, green arrows) is much stronger than it is with

the H7 hydrogen (49:1 by direct integration of cross-peaks).
Moreover, one of the diastereotopic H7 hydrogens has no

cross-peak with the aromatic region, indicative of occupation

of a pseudo-axial position.[16]

In conclusion, we have designed a synthetic route to an

oligomer consisting of alternating pyridyl and six-membered
cyclic urea groups. The resultant foldamer is conformationally

Figure 2. Conformational behaviour of b-strand mimics 8–13. A) X-ray crystal
structure of monomer 8 showing the benzyl substituent in a pseudo-axial
position; B) equilibrium between ring conformers placing the Bn side-chain
mimic in pseudo-axial and pseudo-equatorial positions. Selected inter-hydro-
gen distances given for each conformer based on MM calculations.[12b,c, 14, 15]

The difference in inter-hydrogen distance allows the conformers to be distin-
guished by NOE observations.

Figure 3. Solution-phase conformational analysis of dimer 9. A) Selected
region of the NOESY NMR spectrum focusing on cross-peaks with the pyri-
dine signals (py) ; B) conformation based on NOE data; C) selected region of
the NOESY NMR spectrum focusing on cross-peaks between the cyclic urea
hydrogens; and D) perspective view of conformation based on NOE data.
Key observed (green) and absent (red, dashed) NOE correlations are indicat-
ed (CDCl3, 400 MHz, 298 K).[16]
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pre-organized by dipolar repulsion and ring puckering to proj-
ect groups along the same vectors as the side-chains of amino

acid residues from one face of a b-strand, as was shown by X-
ray crystallography, NMR and MM calculations. As proof-of-

principle, we demonstrated this for mimics of two, three and
four phenylalanine side-chains. A particularly attractive aspect

of the approach is that an iterative two-step process allows
the foldamer to be extended by incorporation of pre-formed

monomers. Work is underway to evaluate the conformational

behaviour of mimics of specific peptide sequences containing
a range of proteinogenic amino acids, and to assess their effi-

cacy in mediating protein–protein interactions in aqueous
media.
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