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ABSTRACT: The alloying of monometal nanoparticles
with a transition element has recently attracted extensive
interest; however, the dealloying of alloy nanoparticles has
rarely been reported. Two-way alloying and dealloying in
metal nanoparticles is not known so far to the best of our
knowledge. In this work, for the first time, we successfully
achieved two-way alloying and dealloying of cadmium in
metalloid gold clusters via an antigalvanic reaction in
combination with a quasi-antigalvanic reaction and
demonstrated reactant-ion-dependent dealloying as well.

he alloying of metal nanoparticles is of great significance

not only for fundamental scientific research but also for
practical applications because alloying can effectively tune the
structural and electronic properties of metal nanoparticles.’
However, for relatively larger metal nanoparticles, conventional
characterization techniques, such as electron microscopy,
cannot always map an atomically precise structure, especially
the surface structure, to the extent that the alloying effects and
resultant properties can be understood in-depth.” The
emergences of metalloid clusters’™” with well-defined compo-
sitions and structures provide excellent platforms for solving
these challenging issues.*”*" The majority of previous research
on metalloid cluster alloying focused on silver, copper, and gold
metals.” Recently, metalloid gold clusters alloyed with IIB group
metals, such as cadmium (Cd) and mercury,’ are highly
regarded not only because Cd is an active metal compared to the
previously mentioned elements but also because Cd alloying
leads to rich structures and properties of metalloid gold clusters.
For example, three Cd alloying modes have been observed to
date. The first case is that the Cd atom replaces a kernel atom in
the metalloid gold cluster 1:1 without altering the staple
structure, such as in Au,,Cd(CH,CH,Ph) ;" The second case
is that the Cd atoms occupy both the kernel and staple positions
of the metalloid gold clusters, changing the original structure,
such as in Au,,Cd,(SH)(CHT),, (CHT = S-c-C4H,;).”” Last,
the third case is that the Cd atoms substitute the staple Au atoms
1:2 without essentially changing the kernel structure, as in
[Au,yCd,(CHT) 4].”> However, it is unknown whether there
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are any other alloying modes and whether the Cd atom(s) can
be removed (dealloyed) with the structure changed or not,
especially whether the two-way alloying and dealloying of
metalloid gold clusters can be achieved. Antigalvanic®*%>>%'?
and quasi—antigalvanicgd’10&’11 reactions were recently intro-
duced into nanochemistry for the synthesis of alloy or
monometal clusters. Interestingly, we fullfilled the two-way
alloying and dealloying of cadmium in metalloid gold clusters by
successively employing the antigalvanic and quasi-antigalvanic
methods.

Auy,(CHT),,"” was chosen as the precursor cluster because
of its facile access to us. The Cd alloying of Au,,(CHT),, via an
antigalvanic reaction is very facile. For reaction details, see the
Supporting Information, and for UV—vis/near-IR (NIR)
spectroscopy monitoring, see Figure S1. The formula of the
as-prepared material was determined by electrospray ionization
mass spectrometry (ESI-MS) in positive mode, assisted by
cesium acetate (CsOAC). Note that no rational signals were
obtained from both positive and negative ionization modes
without the addition of CsOAC, which implies charge neutrality
of the as-obtained clusters (Figure S2). Additional experimental
results provide support for this (Figures S3 and S4). Figure 1
shows one dominant peak centered at m/z 4187.08 correspond-
ing to the [Au,sCd,(CHT),, + 2Cs]*" species (calcd, m/z
4186.93; deviation, m/z 0.15), and the calculated isotopic
pattern is in agreement with the experimental isotopic pattern
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Figure 1. ESI-MS spectra of the as-prepared Au,;Cd,(CHT),,.
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(see the inset of Figure 1). Thereby the formula of the as-
prepared cluster is concluded to be Au,sCd,(CHT),,, which
was further supported by X-ray photoelectron spectroscopy
(XPS) and thermogravimetric analysis (TGA): XPS reveals a
Au/Cd/S atomic ratio of 26/4.07/21.96, very close to the
expected ratio of 26/4/22 for Au,;Cd,(CHT),,; TGA shows a
weight loss of 31.08 wt %, in well agreement with the theoretical
value (31.24 wt %; Figure SS) of Au,sCd,(CHT),,.

The complete structure of the Au,;Cd,(CHT),, cluster was
revealed by X-ray crystallography (XRC), as shown in Figure S6.
The absence of a counterion also provides evidence for
neutrality of the as-obtained clusters. Parts a—c of Figure 2

Figure 2. Structure of Au,sCd,(CHT),,: kernel (a), surface motif (b),
and the complete structure from different perspectives (c). Structure of
Auy,(CHT),,: kernel (d), surface motif (e), and the complete structure
of from different perspectives (f). Comparison of the surface motifs
Auy,(CHT),, (upper) and Au,sCd,(CHT),, (lower), in which one Cd
atom replaces two nearby surface Au atoms (g). Comparison of the
kernel structures Auy,(CHT),, (upper) and Au,4Cd,(CHT),, (lower)
(h). Color labels: yellow, S; red, Cd; others, Au. C and H atoms were
omitted.

depict structural details of Au,,Cd,(CHT),,, which contains a
distorted face-centered-cubic (fcc) Au,¢ kernel capped by two
“paw-like” Cd(S—Au—S), motifs, one pentameric Auy;Cd,(SR);
motif and one monomer Au(SR), motif. The Au;Cd,(SR)g
motif was not previously reported in metalloid clusters. It was
revealed that the structural framework of Au,sCd,(CHT),,
resembled that of Auy,(CHT),,"” (Figure 2d—f), and it can
be concluded that the “paw-like” Cd(S—Au—S); motif might
have originated from one monomeric —S—Au—S— motif and
one trimeric —S—Au—S—Au—S—Au—S— motif, with one Cd
atom replacing two neighboring surface Au atoms (Figure 2g).
Cd substitution also induces the original staple motifs (two
monomeric —S—Au—S— motifs and one trimeric —S—Au—S—
Au—S—Au—S— motif) to transform into a newly found
pentameric Au;Cd,(SR); motif (Figure 2g), in which the
average S—Cd—S bond angle is slightly larger than that in the
Cd(S—Au—S); motif (~109° vs ~104°, respectively). Notably,
in the Cd(S—Au—S); and Au;Cd,(SR)s motifs, the Cd—S bond
length (varying from 2.55 to 2.61 A) shows an obvious
difference from the Au—S bond length (from 2.17 to 2.46 A),
indicating that the covalent radius of Cd is larger, as found in
many tables (for an example, see the previous work conducted
by Pyykko and Atsumi'®). The close AUy —Cdygqple distance

ranging from 2.78 to 3.01 A indicates that the Cd atoms in the
staple have strong interaction with the Au atoms in the kernel.
Additionally, the compacting of the staple motif and the
shortening of the intraparticle H—H distances after the
replacement of two Au atoms by one Cd atom were also
observed (Figure S7). For the case of [Au;yCd,(CHT);4] ", four
surface Au atoms of [Au,;(CHT),¢]~ were replaced by two Cd
atoms, with the kernel being unchanged.”” In Au,sCd,(CHT),,,
a distinct kernel change was observed compared with
Auy(CHT),, and is probably due to the relatively heavy
substitution of Cd in Au,sCd,(CHT),, compared with the
substitution in [Au;yCd,(CHT) ;4] . As shown in Figure 2h, it is
suggested that two Au atoms (orange) in the Auy,(CHT),,
cluster were shifted along the arrow direction. Because certain
Au—Au bonds in the kernel were stretched to fracture, a
distorted fcc Au,4 kernel structure was created. It is found that
the average Aujeie—AUjeme bond length of Au,,Cd,(CHT),,
(2.84 A) is a little shorter than the average Atyq—AUyeme bond
length of Auy,(CHT),, (2.90 A). Therefore, the Cd atoms not
only replaced the surface Au atoms by a 1:2 Cd/Au ratio but also
led to structural changes in the kernel. Such an alloying mode
was not previously reported and can be listed as the fourth
alloying mode of Cd in metalloid gold clusters.

Interestingly, Cd alloying not only tailors the interior
structure but also changes the exterior crystallographic arrange-
ment from the 2H to 4H phase array (Figure 3). It was known

Figure 3. Crystallographic arrangement of the Aus,(CHT),, (a) and
Au,4Cd,(CHT),, (b) clusters in the single crystals. To highlight the
arrangement, the Au and Cd atoms of the clusters in each close-packed
plane are labeled in different colors.

that [Au,e_,Ag,(CHT);s]” (x ~ 19)¥ and Auy,Cd,(SH)-
(CHT),y clusters also have different crystallographic arrange-
ments compared with the parent [Au,;(CHT);4]” clusters
(Figure S8), which implies that alloying is also an effective way
to influence the assembly of metalloid clusters.'*

Although the kernel of Au,4,Cd,(CHT),, is distorted,
Au,,Cd,(CHT),, shows higher thermostability than
Auy,(CHT),, based on UV—vis/NIR (Figure S9) probably
because of the formation of Cd(SR); motifs. Note that some
other influencing factors such as the protecting ligand and
charge can be excluded and so can the nominal shell-closing
electron count (N*) because the two clusters have the same N*
(N*, 30 = NvA — M — 2=34 X 1 — 22 — 0 = 12; N* , yscae = 26
X 1+4x2—22—0-=12). Alloying not only strengthens the
thermostability of the parent cluster but also effectively tunes the
optical properties of the parent cluster, as supported by the
maximum absorption shifts from 610 to 590 nm and from 465 to
479 nm, respectively (Figure S9). Besides, the maximum
emission blue shifts from 807 to 763 nm, and the fluorescence
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intensity decreases by approximately 48% (Figure S10). The
emission blueshift may relate to the blueshift of the maximum
absorption of the Aus,(CHT),, cluster in the NIR region, and
the fluorescence intensity decrease may be attributed to the fact
that the Cd atom has a weaker electron affinity than Au, thus
inhibiting charge transfer from the ligand to the metal core
through the metal—S bond."

Reversible dealloying of Cd in Au,;Cd,(CHT),, by a quasi-
antigalvanic reaction’®'**!! between Au,¢Cd,(CHT),, and the
Au-CHT complex was observed (see Figures 4 and S11a and the

AuCd,(CHT),,

Au

Cd Pt (CHT),
® s hcp Auyg(CHT)y4

Figure 4. Au-CHT complex that induced the transformation of
Au,,Cd,(CHT),, to Auy,(CHT),, and Pt(CHT), complex that
induced the transformation of Au,Cd,(CHT),, to Au;s(CHT);,.
Color labels: yellow, S; red, Cd; others, Au; green, Pt; gray, C. H atoms
were omitted.

Experimental Section). Mass spectrometry identified the
product as Auy,(CHT),, (Figure S11b). Note that the reduction
of Au' is evidenced by the XPS results (Figure $12) and so is the
reduction of Cd" in the reaction between Au,,(CHT),, and Cd"
(Figure S13). Because the major metal in Au,sCd,(CHT),, is
gold, the reaction between Au,Cd,(CHT),, and Au-CHT is
named the quasi-antigalvanic reaction.””'**'" The redox
reactions are also validated by cyclic voltammetry measurements
(Figure S14). More interestingly, when the Au'-CHT complex
was replaced by a Pt(CHT), complex (see Supporting
Information for the reaction details), another dealloyed cluster,
Au(CHT),,,'® with an entirely different structure was
obtained (see Figure 4, and for the composition identification
and Pt exclusion, see Figure S15). This finding indicates that the
dealloying process is reactant-ion-dependent, which not only is
interesting but also provides versatile tuning of the metal
nanoparticles.

In summary, we synthesized a novel Cd-alloyed metalloid
gold cluster and precisely characterized it mainly with ESI-MS
and XRC, which revealed a new Cd-alloying mode: Cd atoms
occupy the parent cluster and change the kernel structure,
resulting in the formation of a novel staple structure,
Au;Cd,(SR)s. The alloying not only influences the interior
structure but also alters the exterior crystallographic arrange-
ment from the 2H to 4H phase array. Cd alloying effectively
tunes the stability and optical properties of the parent cluster.
Interestingly, it was found that the as-obtained Cd-alloyed
metalloid gold clusters can be dealloyed by a quasi-antigalvanic
reaction with the structure changed or unchanged and that
dealloying is a reactant-ion-dependent process. Overall, our

work provides novel insight into the structure of Cd-alloyed
metalloid gold clusters, has important implications toward the
structure—property correlation, reveals novel chemistry of
alloying and dealloying, and indicates a novel application of
AGR. Therefore, it is expected that this work will open new
avenues for engineering nanoparticles with atomic precision and
stimulating more research on metal nanoparticle alloying and
dealloying, as well as the structure—property correlation.
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